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ABSTRACT

In General Relatmty there is a conservation law, expressed in terms of the
(synfmletnc) energy—momentum tensor, associated to each isometry of the space—time.
Using Noether's theorem we prove the validity of these conservation laws in the. more
) cbﬁ:plicated case of Einstein—Cartan 'theory, with spinorial matter. The proof is much
- .harder because the energy-momentum: tensor is ot symmetric.

' (+)Permanen£ -address: -~ Escola. Federal De-Engenharia de Itajubi, Departamento de
Fisica & Quimica, Instituto de Ciéncias, Itajubi, Brasil.

. case, for instance, of space—times with 501'sion(3),

1. Introduction

The theorem of Emmy ? \Ioether( ) connecting symmetries and conservation laws
is a result of great importance and beauty. The original memoir, of which an English
translation is now avazla.ble(Q), is still unsurpassed for generality and depth. On the
other hand, the development of new theorics opened the way to new applications of
Noether's results whick can be very useful when the:formalism is heavy. This is the
: like those of the Einstein—Cartan:

. theory of gravity(4), particularly for fermionic matter. In this paper we address this
" problem and, using a lucid strategy due to Jackiw(5 » Succeed in obtaining simple, yet

general, results, _
- The main applications of Noether's theorem are in classical physics, of course.

The study of the generalized symmetries of the Korteweg—de Vries equation is a recent -

conquer 6 , at least as far as this method is concerned That was our first motivation to.
undertake this research, and the stimulus came from Prof. J.J. Giambiagi, who has since
long been champicning the study of fliid mechanics as a branch of modern. theoretical

physics. Itisa pleasure to dedicate to him this paper.

2. The Flat Case

The classical action which descnbes our system (for the moment restricted to flat.
space-—tlme) is written

S = f d‘*xﬁ((ﬁ,aﬁé} . ' ' (2.1)

L being the Lagrangian density, a function of some fields ¢ and of their derivatives
Bﬂé. To start with, ¢ will be a scalar, in order to reveal most clearly the structure of

the theorem.
- An infinitesimal transformation of the fields

o) — () = olx) + 89(x) (22)



Toor

induces an infinitesimal variation & in the Lagrangian. The trengformation is a
symmetry when it can be shown, without using the equations of motion, that

5{x) = 3, A4 (2.3)

where A s some 4~vector. That is to say, 6 has the form given in Eq. (2.3) for all
field configurations, not just for those which are solutions of the equations of motion.
Example: transtations. Consider the infinitesimal transformations

# = P + &

1

e being an infinitesimal constant d—vectors (infinitesimal translations). They induce
on $(x} a transformation dp(x) to be computed now. Taking ¢{x) to be a scalar
under translations, one has

. | #) = o) . (24)
Power expansion on e gives
P) = ¢ + =0t 0, 6x)

i) = #6) + 2 3, o) (25)

" which, combined with (2.4}, gives

_ 0(x) = $(x)—9(x) = <3, 4 . @9
Suppose ' '
| L=n#60,0- s 27)
30 that, ' : :
: 8x) = ¢ 3, 6¢~ mP¢sp ; . (2.8)
using (2.6),

o= —ct o, {(1/2) al‘¢aﬂ¢~(m2/z}¢2} =-cloc . (2.9)
Finally, as e’\ is a constant,
o= a(-ep) (2.10)

which shows that translations are symmetries of the system deseribed by the Lagrangian
(2.7). We will, henceforth, call quantities like 6¢(x} the "form variation" of the field
in guestion.

The Nosther theorem asserts that to each continuous symmetry there .
corresponds a current which satisfies a continuity equation. Furthermore, it gives an
explicit expression for that current. Suppose §¢ is the symmetry transformation.
Then there is A¥ such that :
5(x) = 9, A (2.3)

An independent computation of &, now uging the equations of mdtiaﬁ, will now be”
done:

_ e, O S :
6 = w&wwaﬂ 56 . (2.11)
and the equations of motion are : _ -
o _ r (219
Lz #9F,8
Using (2.12) into (2.11) gives o o o
= . ' .1
&= 2, [Waqa] (213)
Subtracting (2.13) from (2.3) one gets
3, { W~ s 56 } 0 | (2.14)
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This is the Noether theorem. The 4—vector

i T ¢
: 7 :

7 is the Noether current associated to the symmetry 6.
It is a simple matter to see that the conservation law associated to translations is

b - )
3,1, =0 7 {2.16)

where: - . o
™, = Wﬂyé—ﬁ’u’vﬁ (2.17)

is the canonical energy—momentum tensor.

3. The Curved Case

An infinitesimal transformation in curved space—time

xH o= gﬁ(x) : (38.1)

" induces-on a scalar field ¢(x) the same form variation we have met before,
box) = — €43, ¢ . (3.2)
Let:us compute the form variation induced on the metric tensor g™(x). From

gy = B B gl (39)

it follows, for the infinitesimal transformations (3.1}, that

g0 = g P F e g
and, by Taylor expansion arouﬁd x*
g# ) = g™ + €1 0, g¥x) | . (35)
Using both, cne arrives at

) =~ 0, gV P et | (3.6)
or, equivalently, : _
&x) = &Y 4 g G

Vector fields £¥(x) which generate transformations for which " =0 are called
Killing fields.. They are, therefote, characterized by

O I (3.8)
A transformation of type (3.1) with a & which is Kiiling, is called an isometry
of the space—time, Observers connected by such a transformation observe identical
metric relationships in space~time, and hence the same gravitational field. .
We have still to determine the form variation of a Dirac spinor, This is a harder
task. The inspiration will come from the Dirac equation in curved space—times.

4. Dirac Equation in Finstein~Cartan Spaces

The Dirac action in spaces with torsion (see Refs. (3), (4), (7)) reads
§ = f d* =g £

L= %ea”(ﬁﬁ‘?#—vﬂi"ra ¥) ~miy S )



" where ea” are local tetrads, +* are the usual Dirac matrices and v, is the covariant

derivative for fermions, which reads

- 1 Ja b]] :
V,u ¥ {6# M NN ¥ (4.2)
and - s b]
5 5 1 = Ja b
szb = %'gb-zwﬁab Pyt ) (4.3)
Reacall that
cC _ 44 c )
Qp =¢e"e 6[” & (4.4)
and that _
“abe T na.bc - cha. * nca.b - Sabc - Sbca + Sca.b {4.3)
and
_.c
Wuab = € Yeab (4.6)

Sa.bc being tetrad components of the torsion tenser

) A A
Suy = Tisd

See the Appendix for a collection of formulas and conventions.
An equivalent way of writing (4.1) is

L= QDB P 0,908, Bel 7 ) + (/4 wp ¥ 1" - mpp
' (4.7)

5. Field Equafions

We now let the Dirac field to interact with the (Einstein—~Cartan) gravitational
field by writing the action

§ = fd“x J—_g(£m+£g)- (5.1)
where Em will be the Dirac Lagrangian and(4)
£, = (~1/2KR '  (52)

which, though formally identical to Einstein's action, differs from it in that torsion is
present. Eq. (5.1) therefore reads

s = [ atxe{-1m0m+ 62 620 PV, 97,7 9 -] . 69

Field equations follow. in the usual way, by requiring that the variations with
respect to By > K ,ulr) (the contorsion tensor) and + vanish. Putting

Sel ) '
m 2 : )
and .
(a(ecm)/aicm’; ) = er,# ©(58)

one gets (see the Appendix}

v A A L : : : .
G#u_'VA(Tuu"Tu ,u+T 'W) = knw : Co o (B)
and

THA o g : (5.7)
Defining a new energy—momentum tensor

£ 8 LA -
E‘W = t‘pu'.'vA(Tpv Tt .W) . . (5.8}




. - : 9 A AL
one is able t rewrite {5.6) as o S . §ea v, f'“ ‘tes \ﬁ e = o e+ Bete (6.5)

. . . - a
G;w = kZ'u'y ‘ (5.9}

for, respectively, scalar fields, spinors and their derivatives, and tetrads. '

which looks like Einstein’s equation. The tensor 'E.W » however, is not symmetric, the The next step i3 to show that isometries are symmetries. Consider first the Dirac

sameas G . ’ : action _
v . : L _ - ‘ )
The Dirac equation, obtained by requiring that Sp = f d*x e(x) £(¥, 9, VoV eaﬂ) — (6.8)
b= 5.10
Aeby)/o =0, (5.10) whose form variation we start to compute.
reads: _ 1oy _ . ‘
i1 e SV, o gKy L y-my = 0 . (5.11) = 2L gy spdL, O 87, v+ 67,9 U L son
i % N i &Y, B de
6. The Noether Theorem for Spinors -
o 5::=_.5"{“v p+ *Vﬂwwai“ A#vyw}
We now. apply the strategy of Section 2 to prove Noether's theorem for spinor H ( ¥) (V ¥) _
fields in Einstein-~Cartan theory. We look for space—time symmeétries which lead to , . (6.7)
tensorial conservation laws. In General Relativity these symmetries turn out to be the - {’\ { v, 1}@ +V, ¥ 55_ +29 % oL /\V } -
isometries of the space—%ime(s'), when they exist. We will see that the same is true in # H(V#w) v 3V#¢‘ #

our more general seiting, provided we slightly modify the definition of isometry, in the
presence of torsion. :

The basic quantities are the form variations of all fields present in the action.
For an infinitesimal transforma.tmn

A FEZEA v=g%y 7 v] +EE£(VA ee

Notice that

(L N X ! i= a Y Y.
" x# +§(:x) | ) (_61) @V -7, 9y = 7ol
8x) = — ¢ 8, ¢ (6.2) _ :
a ‘ _ so that {6.7) may be rewritten as
bp(x) = — € V, ¢ ' ' _ - (6.3)

6=~ 5[“11 vt vy pyv gy y & |
p AT g

b = .
KO, 90 = =V, 07, - v, ¥ y-26hs, vy (64) W, OV ¥




oAl b_O v v O oo
28 {ea p ea"s’\”—e‘a‘ —-—-3 " #S,\V . (6.8)

The fast térm vanishes, and we have

' Al &L o€ aL L
i =-¢|=V, p+-=2.7 V y‘;+V rj) +V Vv —/—+
. [ A N ¥ A A Au ¥

v
& 4 et A%
‘ (6.9)
where the last term can be added because V, ea'u ={ . But then (6.9) reads
=-vr=-ac. . (6.10)

Suppose the transformation (6.1} is an isometry. For us this is defined by the
conditions
" =0 (6.11)
and
A .
6K‘W =0, (6.12)
so that de =0 and &’\(ef’\) = 0. Equation (6.10) then leads to

Bel) = eff = —e £ d) L = ~ (e 0) (6.13)

showing that isometries aew symmetries of the Dirac action.

Now, for the whole action, Sg+sm , one has

& = J._d“x [ﬁ(eL)—%EJ(eR)

- 4. of[_1 LI A 1
= fdxe“ EE[GW—VA(TW_TV LT W}] 3t }5 o
+ [IT W 5K, 8 3 0
E'A 2 —ef VEL s (6.14)
so that, for isometries, .
s = —f d'x 4, (e e (618

showing that isometries are symmetries of the total action.

Ta proceed, we now compute 85 in a different way, malunv use of the equatlons
of motion.

5 =fd4xe[@5w+a{b3—§+—-—aﬁ 50, b+ 60 p—2_|
m 3y a2 aw;,w) a £ aa,m )
4, | & : geE! - S '
+fdx[6K W+ fe J e _(6.16)_-
7% & T
and this last integral is

fd*xe(rA”#EKﬂﬁ_+§tﬂU§g”y) . -

For &8 = b‘Sg+JSm we then have

—- 4 /17 V) A
5 _fde?g[[rA +ETA“]EI<#y+

prp_ 1 S A_m A A 1
+ g [EE[GILU V/\(T”y Tyﬂ-i-Tﬂy)]'FeZt#y}-i-
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ap % &9,u) h b7 80

Using now all the equations of motion 85 is reduced to

8 = fd‘*xc? {ei&w ea{o"’—ﬁ_]
_ A 90,9 o3, %

_ NI,
AL [?"‘f_,_-[@v*‘-‘“v%‘”ﬂ” |

I

.. - Subtracting (6.18).from (6.15) one has

o leet | v pav, -2 1
f x“{e€ [-av p AT 3T

s p
showing that \ :
8] 2
8p[e£ fy } = {
- where

gk = O ¢ v+ V5 _# o
A A A = A
o #w av #w
=58 BPV -V, ¥ 9 -, .
Equation {6.20) is Noether's theorem: every isometry

= 2 fx)

=0,

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

is associated to a conservation law given by (6.20). Notice that Y 4 is the same as the

E)\ﬂ of Eq. (5.8), so that, it is not symmietric.” In the case of General Relativity 8/\# is

the usual symmetric energy—momentum tensor, and Eq. (6.20} is an immediate

consequence of the symmetry of t  and the antisymmetry of ¢ e In the case of

v
Einstein—Cartan, however, this result can only be obtained in the garb of the theorem of
Emmy Noether. '



Appendix

Riemann—~Cartan spaces have a (non symmetric) connection

1 A
A A
F.W = LL u] I\W (A1)
where K ﬂ%\ =K wloA] is the pontorsmn tensor. The torsion is given by
A A
= A2
i T (A2)
and one has A \ \ \
KFV S o +5, u 5 P |
{A.3)
s, Ak
[IW]
- The modified. torsion tensor is given b;y
A _ g A .
T’_H/ = Sﬂy+2§[” V]& - (A.4)
We assume-that
V'\ gﬂ” =10 N (A.S)

v 1 being the covariant derivative with the connection {A.1). The curvature and Ricci

tengorg are 3
’ = A
R = 2T+ r[uiprlv} %9
and . \ )
le = R,\;w ] (A.7)

The identity

3 _ . 3 '
VL‘.! RM]& = 28[;;3 RA}J& : _ (A.8)

corresponds to & Bianchi identity of riemannian geometry. The "Einstein tensor"

- 1 o
Gy = R, —58,R (49)
is not symmetric. Instead, :
- A
GIPV} = V,\ TW : _(A.I(l)
where '
7 Q=vQ+254Q . (A.11)
' I TtpA v )

b

Denoting by R(T'} and R({}) the scalar curvatures of the connection: I' and -
{} respectively, cne has :

R(r} = R({ })- TI\V“I{!‘;)-FJL_% [y (A12)

From {A.12) one easily derives

1 §eR) LIPS | A Aoy pa

& gh GuWNWTy,-T, 5, +T) (A1)

1 §{eR} _ 7 ) ’ . .

1 é{—rl = 2T, _ (A14)
2 o

which are used'i_n the text.
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