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ABSTRACT

In order to gain intuition for variational problems in field theory, we analyze
vatiationally the quantum-mechanical anharmonic oscillator [V(x) =X +%,\4} .

Special attention is paid to improvements to the Gaussian effective potential.

*Work partially supported by CNPq and FAPERJ.

1. INTRODUCTION

The study of spontaneous symrmetry breakdownll] in field theory is usually carried
out by the analysis of the effective potential (V). In general, V. can be defined as the

minimum expectation value of the system's Hamiltonian Ve(¢) = ?11}1 <y|H[¢>,
¥

subjected to the constraints <y|¢> =1 and <p|®|y> = ¢, where & is the field
operator. The point where Vg is minimum defines the physical theory. As is well
known, the effective potential generates the Green's functions at zero momentum and
energy. |

Since the minimization of <#|H|¢> over the whole functional space is a
tremendous -task, a very popular field theoretical method for obtaining V. is the loop
expa.nsion[2], which suffers from the shortcoming of being a perturbative expansion. One
way to look for some non perturbative effects is to employ the so called "Gaussian effective
potential"lg] which is evaluated by minimizing <y|H|¢> over the subspace of Gaussian
wave functionals. Gausstan Ansgtze have also been used to analyze time dependent
problems[ ] that appear in the description of the early universe. '

Although the Gaussian effective potential is very appealing for its simplicity, it is
not easy to improve upon since we must enlarge the subspace of the allowed wave
functionals and this leads to involved calculations.

In this paper we shall analyze a simple quantum-mechanical system through the
effective'.potential method, in order to gain some intuition that can be applied to field
theoretic models. Our goal is to compare the results of the Gaussian approximation with
the one obtained by enlarging the class of allowed wave [unctionals. We shall restrict our

attention to trial wave functions that belong to the class of linear combinations of

* Gaussians or products of Gaussians by polynomials because, with this choice of Ansitze,



the computations involved are féasible not only in the quantum mechanical context bu_t
also for field theoretic models.

This paper is organizéd as follows. As a first step, in Sec. II, we obtain the ground
state for the quantum—mechanical anharmonic oscillator using several Ansdfze for the
states 1. Section III contains the analysis of the effective potential obtained for different

Ansétize Our conclusions are presented in Sec. IV.

2. VARIATIONAL ESTIMATE OF THE GROUND STATE

We shall study the quantam system consisting of a urit—mass anharmonic oscillator

subject to a quartic potential, whose Hamiltonian is*:

2
H = g— + V(x) , . (2.1a)
with p being the momentum operator and
Vix) = %xz + %f‘ , (2.1b)

where A is a positive constant, and k may be positive or negative. For k <0 eq.(2.1b)
represents the double~well potential, that in Quantum Field Theory is refated to
gpontanecus symmetry breakdown.

The purely Gaussian Ansetz has been considered previously as an approximation to

the eigenfunction of H associated with the lowest energy[3]. _As a warm up for the field

theoretical problem, we shall improve the Gaussian Ansetz in Quantum Mechanics in order

*We are using units where: i = 1.

to get more precise information on the behaviour of the system descr_ibed by {2.1).

For fixed "A(=1), a qualitative analysis based upon‘the shape of V(x) suggests the.
existence of three different intervals of k where the system is expected to exhibit different
physicéi behaviour, For k>0, V(x) has only one minimem and the lowest energy
eigenstate is a function with one peak at x=0. Even for small negative values of k
(k2 —1) we expect the same one—peak behaviour for the lowest energy eigenstate since its
eigenvalue is supposed to be bigger than V(D) , so that, the particle is not forced to stay - =
very long in any of the wells. _ . |

For moderate negative values of k (=3< k.ﬁ—i-},_ the-lowest energy- of the -
gystem is smaller than V{(0), and the only possibility that the particle beginning in one
well reachs the other is through tunnelling. In this case, the barrier that the particle has to
cross is not thick enough, such that the tunnelling effect is still large. Moreover, the
eingenfunction of the lowest state is expected to have two peaks that are not well separated

from one another.

For large negative k (k < —3), the barrier that the particle has to cross, when it is

~ initially in one well, in order to get to the other, is very thick and the wave function inside

the barriér vanishes so quickly that the system almost behaves. as consisting of two
independent. wells. We need to take this last phrase with caution, because there is always
tunnelling in Quantum Mechanics, even though it can be very small. |

Now we proceed to make more quantitative the previous considerations.- Our first
improvement to the Gaussian Ansatz is the introduction of a quadratic polynominal

multiplying the Gaussian wave function — that is,

_u {x—xo)2

Wx) = N[1+8(x-x)]e ° , (2.2)

where w, # and x, are variational parameters used to minimize <¢p|H[¢>,and N is




the norrmalization constant such that y has umit norm.

The anharmonic potential given by eq. (2.1b) is obviously invariant under the
parity transformation x - -x . S0 that the ground state is an even function of x. For
moderate negaﬁive vaiues of k (—3 < k<—1), each well of the double—well potential is
sufficiently deei) to force the ground state eigenfunction to become nodeless endowed with
two peaks. For such vz}h@ of k we can not expect the single—peaked Gaussian Ansatz to
be a good approximation to the ground state wave function. Therefore we are naturally led

to consider the following Ansalz

) _w 3
: +B[1+ﬁ(x+x0)2] e 2 (4 } 2.3)

W) = m{[lw(x—xo)” Nl

N is a normalization constant such that % has horm one, and it is determined in terms of
the variational parameters 5, x;, w and B. The purely Gaussian A_nsatz is obtained
from {2.3) by putting B = #=10, and an even wave function is obtained by setting B=1.

lmpc_)éing the normalization condition on %, we Obtain that

2
N = E"5?'[2{(1+B2) [w2+ﬂw+%ﬂ”] +2Be—wﬁ

= [uﬁ[1+2axg+mxg]+
+¥ [2.@—-2621(%] +%ﬂz]}ml . (2.4)

Using equations (2.1}, (2.3) and (2.4), it is straightforward, but somewhat tedious,

to compute

Ef{y = <¢{H{p> : o (25)

which yields

Efy = w-z{(1+132) [u}g+ﬁu+%ﬁ2] +2Be [ [1+2ﬂxg+52xg] .

. o
%w[gg_mxg_]+%,52” {(_1_+Bz){—zlfﬁw4+7mﬁzu?+%uﬁ+k[iuﬁ+
T S R T L R E T TR
+;1Iw4xg-;%%ﬁw+%ﬁuﬁxg+iﬁuﬁxg+é%§ﬁ2+%—gﬂ?mﬁ+%gﬂzaﬁx3” +

2
+Be C[-hAd4h 4 pig - -2 - Pt +
+ B Puixt - b+ TP + k[ F P+ Bt + 5 Pl + § 02 -5 et +

+Bpo]ealder ot +foxe+ gao-Podur o)l
(26)

For fixed values of k and A we can get an approximation to the ground state
energy E, by finding the values of the parameters f, , x, [for B =0, 1] for which E[¢]

is minimized. This is achieved by requiring that the partial derivate of E[y] with respect

. to each of these parameters to be zero. However, in this fashion we obtain coupled

nonlinear algebraic equations that are too intrincate to be solved analytically. Therefore,
for fixed k and A we determine numerically the set of parameters that minimize (2.6).

So long as only the relative values of k and A are important, we shall set . A =1

2
from now on (with the consequence that the location (= |— % ) -and depth (—i—)‘—) of
the minima of V(x) are determined by k alone). '

We compare the numerical results for the minimur value of E[y] for the following



Ansitze: Gaussian (§=10,B =0), sum of two Gaussians (#=0,B = 1), one quadratic
correction (B = {) and a symmetric quadratic correction (cf. eq.(2.3) with B =1). The
numerical analysis is made for two values of k' that give rise to a single—well potential
k=0 a.ﬁd 1} and for six values of k for which the potential (2.1b) possesses two wells.
The latter situation is expected to exhibit a more interesting behaviour. In Table 1 we
display the approxiﬂlaiie values of the ground state energy for each of the four previous
Ansgtze. Table 2 contains the relative corrections afforded by the other three trial
functions with respect to the Gaussian Ansatz (B = 0 and § = 0).

' From the numerical results, we learn that, in the interval k > —1, where the
eigenfunction has an one—peaked form (ses for example Figure 1), the best wave function Vof
the three Ansitze (2.2), (2.3} with B=0 and B =1, are flatter and broader than the
Gaugsian Amsatz in the. region around x=10. Moreover, they vanish faster than the
Gaussian Ansatz for large x, and the.Ansatze considered yield almost the same value for
the ground state energy. We should remember that for this interval of k the approximate
lowest energies are positive and there is no classically forbidden region. '

In Figure 2 we present an example of best fit wave function for k= —2.0, that
iflustrates a typical behaviour for —3 <k g —1. For this interval of k the three
Ansdize have a two—peaked form while the Gaussian one has only one maximum.
Therefore, there is a qualitative difference between the three new Ansétze and the Gaussian

Ansetz, in this interval of k: from the shape of the triai wave functions, we see that the

quantum tunnelling effect is very important and each well "feels” the presence of the other. -

The best fit.of the sum of two Gaussians is very close to the best one using a quadgatic
correction to. 2. Gaussian, while the symmetric quadratic correction wave function is flatter

in the region around the two maxima of the wave function than the Ansitze (2.2) and (2.3)

with -8= 0 and B = 1. Between the two extrema of the wave functions, the symmetric -

quadratic correction wave function is slightly bigger than the others, and it contains more

information about the tunnelling phenomenon.

Finally we shall discuss typical best fit of the four Ansatse for k <-3. In' this
interval of k , the best fit of the Gaussian Ansaiz and the quadratic correction one are. very
close, and both exhibit only one peak. These wave functions constrain the particle to stay-
in only. one well, but this Is not a correct picture, since there is always tunnelling, besides.
the fact that the ground state wave function must be symmetric under the cha.ngé
x~—x. The Ansétze (2.3) with B=1 and #= 0 (sum of two Gaussians) and (2.3) with
B =1 (the symmetric quadratic correction) are virtually undistihguishable. It should be
noticed that the tunnelling effect is very small, even though it is not exactly zero, and the
ground state wave function can be regarded as a nearly incoherent sum of two wave
functions localized in disconnected wells. From Table 1 we verify that the minima of
<#|H|y> furnished by each of the four Ansitze are very close to each other and this
happens because a single Gaussian centered at one of the minima gives the sa.mé result as
the sum of two independent Gaussians, each cenfered ab 'one of the minima. For
normalization reasons, the maximum value of the siuéle Gaﬁssia.n is higher by the factor
¥2 than the maximum value of the double Gaussian, and this is clearly shown in Figure 3.

For k<-4, we conclude that the quadratic correction i3 not a significantly
improved Ansatz for the ground state neither the symmetric quadratic correction is an

improvement to the sum of two Gaussians.

3. APPROXIMATE EFFECTIVE POTENTIAL FROM DIFFERENT ANSA TZE
The effective potential Vg for quantum mechanical systems is defined asl1:9]

Veprl<x>) = milu <y|H|¥> (3.1a)

{v




whgré;.the miﬁ_imization is performed over all states. |¢> such that,
<Plxjp> = <x> : ' (3.1b)
where - <x> is fixed, and the states are p:operly normalized — that is,
<glg> =1 . | (3.1¢)

The potential V(x) that we are considering (see expression (2.1b)) is symmetric
under the transformation x - —x , but the expectation value of x is fixed, hence the wave
function that minimizes (3.1a) does not have definite parity.

We have computed the approximate effective potential in three cases: the Gaussian
eﬁ'ecﬁve potentialla} where ﬁhe space of functions is given by (2.2) with S=0; the
quadratic correction to the Gaussian Ansatz, whose space of functions is given by (2.2), x,
being the expectation vaiue of x; and finally, the last Ansatzis the sum of two. Gaunssians
(expression (2.3) with §=.0). o -

Let us begin by the approximate effective potential derived from the normalized

quadratic correction to the Gaussian Arnsatz,

- ' @
¢(x) [1'112(0)3, + ,Gw_ + % y)

1/2 W o2
B2 } -[1+ﬁ(x—xo]2]e 7 %) . (3.2)

where w and 8 are the variational parameters and x, i3 equal to <#|x|¢> , which is

fixed: This approximation to the effective potential V r(x,) is obtained by means of

Vegrl%g) = {Iili,g}_*if#lﬁlﬁ’?. | ‘(3.3a)

where*

i -
<y|H|y> = w2 [w’*‘+ﬁw+%ﬁz] -{—-é—ﬁu‘*+%5ﬁzu3+i-w5+

x| P 4gutd+ 0l paid 4 R R0+ § PG| +

]

#a[fpor+ i+ furd+ 3w+ Fond + Fauid +
P+ Brud+ B )] (3.3b)

The Gaussian effective potential is found by setting A= 0 in (3.3), since in this
case we recover the normalized Gaussian Ansatzin (3.2). o

The third Ansatz that we consider is the sum of two Gaussians,
&y Wy
- ) g ()’

#x) = J/Nie +Be , (3.4a)

where w, why, X, X, and B are variational parameters. We should remember that for
<x> fixed the lowest energy eigénstate is not necessarily an even function of x. The

normalization constant N, such that <g¢[¢> =1, is given by

o wws 2yl
N=L{i+ﬁ+ﬂ—3-e m(xlxﬂ)} . (3.4b)
VES WV N m

*For the sake of completeness, we are exhibiting all the following expressions for arbitrary A, although
we use: A=l in the numerical work.
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The expectation value of H for the space of trial functions {3.4) is

: I xd
A 3 1 1
+ 5 | =2+ =+ | +
[4.’»‘;’/2 w::’/z wiﬂ

<yp|H|p> = —g {g+k

1/2

i;+k

+

[ g 3% x3
1/2

+ —mt—st—==
z 4w§l2 ui” -wélz

&y W

2w+m2{ ) 7
+ 2B m e . @ +w2 + Uhih y - wlwz(x1+x2}y +

1 LA 3 _67% | o
+x;x2w1w2+k[wl+wz+y +§ W+wl+w2+y y (35&)
where N is given by {3.4b) and
o Xy + Xapuy'
¥ = = .(3'5b)

The parameter B can be written as a function of the expectation value <x>, and

the other variational parameters,

wy
o — s (x)®
- | @] _ e T o
B = x2—<:2c> I (F—<x>)+
: Wy Gy ;
r (x xz) _ _ 1/2
- 9 (Wit 1 (x <x>)(x <x>}
R e - ’ . (39)
1 2 Vi

Il

where the sign of the square root that appears in {3.6) is chosen such that {3.5) gives the
mirimum for <x> fixed.
Again we have three distinct behaviours of the approximate effective potential .

dependmg on the value of k. For k > — L5 the three approximate effective potentials

are convex and they are equal for x 2 X s 'IWhere X ( !—_XF)_ is the classical
minimum of V(x), and the quantum corrections are negligible. For a typical behaviour of
these approximations,” see Figure4 where we have k=—I. We notice that the
approximate effective potential yielded by the trial wave function (3.2) is lower than the
Gausstan effective potential, as it should be, since it contains more variational parameters. .
For —3<k<—15 we show some typical behaviour in Figure 5 for k=—2.
Notice that in the classical region (x4 > 2 ) ‘the three Ansitze give the sime resiilt, but
in the region 0<x<xy, the Gaussian effective potential and the one.quadratic
correction effective potential are no longer cnnvex, whereas the sum of two Gaussians st.xll
nges a convex potential, _ T T
For the last region of k (ie, k < —3)we exhibit the typical behaviour in f‘.ig.;ure 6.
where we have chosen. k =—4. In the elassical region the three Ans&tze'vive the same
result, however for 0<x < xy the Gaussra.n effectxve potential is non—convex and the
approximate effective potentials obtained using the sum of two Ga.ussmns or the quadratic
polynomial times a Gaussian are virtually identical. The effective potential coming from
the sum of two Gaussians, or in the same way, the one coming from the one qugdratic
correction, are nearly convex, see Figure 6. This caﬁ bé understood fr'(;-m'the fact that, in
the absence of tunnelling, as happens in field theory, the sum of two Gaussians corresponds
to a Maxwell construction for the effective pdten:tia.l[ﬁi. However, this is not the correct _
realization of the system, since in' Quantum Mechanics there is no thﬁnét.'ry.breékdo{vnm:‘_'.
It must be stressed that we are in the interval of k such that the barrier between the two

clagsical minima is very thick, and the two Ansittze (3.2) and (3.4) are not good enough to




£

take into account the tunnelling effect that is always present Quantum Mechanics.
Therefore for k < — 3 none of the three Ansitze leads to a reasonable description when we

have a double well poteutia.l.-

4. DISCUSSION

Tﬁe Gaussian Ansatz was applied to Quantum Mechanics and it is quite easily
extended to Quantum Field Theory in the Schrddinger PictureES]. However, if one is
interested in improving this Ansatz; perbaps the simplest extension amounts o taking the
product of 4 quadratic polynomial by the Gaussian function. The presence 6f the quadratic
term makes the calculations- more involved, and the aim of this work is to compare the
Ansaté (2.3) with the Gaussian one and also with another trial function in the form of a
symmetric sum of two Gaussians.

... From Tables 1 and 2 we can infer the range of % in which it is important to

consxder {2.3}, and where it can be repiaced qutte effectively by the symmetric sum of

Gaussians:

For positive k, it is clear that the Gaussian Ansaifz is pretty goo&. In these cases

the quadratic correction to the Gaussian Ansatz makes the wave funetion flatter around its

maximum and a little broader than the Gaussian. Moreover, the wave function goes

quickly down to zero. The inclusion of an x? term to correct the Gaussian A_nsatz is
unimportant because it is dominated by the rapid decrease of the exponencial function.

For small negative k (k> —1) the ground state energy is positive and there is no
tunnelling.  The wave function still has one—peaked form whose maximum is at x=10.
However, for —3 < k g —1 the tunnelling effect becomes important. A rough estimate of
the proba.b:hty of tunnelling P can be obtained by using the WKB method[gl For
instance, for k,=-1.5 —2,—3.2,and —4 we have that P 2 0.5,0.2,3 x 1073, and 107,

13

respectively. In the region —3 < k < —1 the Gaussian Ansalz Is not good at all and the
Ansatz (2.3) provides a better approximation.

‘For large negative k' (k £ — 3) the sum of two Gaussians wave function coincides
with the one obtained from the family of trial functions (2.3). So long as the computations
including the quadratic correction to the Gaussian Ansatz are more complicated but lead to
1o significant improvement of the ground state energy, in this region of k values, thus it -
is completely unjustified to start with eq. (2.3) with 340 . In the casé k=—4, for
instance, the ground state energy is effectively the same whether one starts from the trial
function {2.3) or simply from a linear combination of two Gaussians, that is, eq. (2.3) with
g=0. ' -

The approximate effective potentials that are derived with the three Ansitze (3.2)
{with # =0 and 8+ 0) and (3.4} behave differently for distinct regions of k. For k> -1
there is no tunnelling effect and the three Anséize give convex effective potential curves.

They are all equal in the classically allowed region, |x| > x; where xy is the positive

classical minimum of V(x} and the effective potential derived from.the quadratic

correction is lower than the one obtained using the Gaussian Anrsaiz, as it should be.

For ~3<kg—1, the tunnelling effect is very impoi'ta.nt., and the quadratic
correction takes into account this phenomenon. Both the Gaussian effective potential and
the quadratic correction one become non—convex while the effective ;;otential coming from
the two—Gaussian Ansatz is convex. Please notice from Figure 5 that the two—Gaussian
effective potential is always lower than the Gaussian and the quadratic correction ones.
Furthermore, for small x the two—Gaussian effective potential is almost identical to the
quadratic correction one.

For k <3, the guadratic correction and the sum of two Gaussians give a picture
where there is spontaneous symmetry breakdown in Quantum Mechanics, since the

effective potential that we obtain in these Ansiize is a Maxwell construction, as we bave in

 the broken A¢* in Quantum Field Theory. Since there is no spontaneous symmetry

4
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breaking in Qha.ntum Mechanics, these Ansitze are not coinplétely saiisfaétory for
k< —~3. The reason for this unphysical behaviour is that tunnelling is very small for this
range of k since the ba.rfier between the classically allowed regions is thick. However, the
quadratic Gaussian and the two—Gaussian effective potentials give arise to a better
physical picture than the Gausstan one since they yield no false vacuum and their value at

x =0 is much smaller than the one for the Gaussian approximation.

15
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FIGURE CAPTICNS

Figure 1: Comparison of the different Ansiize {solid lines) with the Gaussian one
(dot—dashed line) for =1 and k=-—1: a}sum of two Gaussians; . Tablel
b) quadratic correction to a Gaussian; ¢} Ansaiz (2.3). ‘ E,
Figure 2: Cornparison between different Ansitzefor k =—2 and A =1: a) Gaussian K B=0. #=0 B=1. 50 - B=0 b=t
(solid iine) and sum of two Gaussians (doi—dashed line); b) Gaussian (solid _ 1.0 . 0.62402 3.62105 0.62106 - 0.62093
line) and quadratic correction 10 a Gaussian (dot—dashed line); ¢) Gaussian 0.0 .42927 0.42119 0.42124 0.42083
(solic line) and the Ansatz (2.3) (dot—dashed line}; d) sum of two Gaussians =01 0.40716 0.39309 0.39814 0.39775
(solid line) and the Ansaiz (2.3)7 {dot—dashed line). ) - -1.0 0.17782 0.14800 0.14932 . 0.14743
. —1.5 0.02062 - (1.03882 —0.03778 — 0.04236
Figure 3: Same as Fig.2 for k=—4 ‘and A=1: a) Gaussian (solid line) and —-2.0 —0.16376 —0.2891% —0.28522 --0.29369
‘quadratic correction to a Gaussian (dot—dashed iine); b} Gaussian (solid —32 —1:36046 -~ 1.38061 —1.36051 — 1.3%8062
line} and the Ansaiz (2.3) (dot—dashed line); ¢) Gaussian (solid line) and the —4.0 —2.63270 — 263742 . ~ 2.63551 — 2.63660

sum of two Gaussians (dot—dashed line); d)sum of two Gaussians (solid

line) and the Ansatz (2.3} (dot—dashed line).

Eq- is the minimum value of <y¢|H|¢¥> for the four Angifze and A =1 . The Gaussian
Ansatzis B=0 and F=0; the sum of two Gaussians is B= 1 and §=0; the one
Figure 4. Effective potential obtained with the Ansatz (3.4) for A=1 and k=—1. qua.dra_tic correction is B = 0, and finally, the symmetric quadratic correction is B = 1.

Figure 5. Effective potént.ial obtained using several Ansitze for A=1 and k=-—2
Gaussian (dashed line), polynomial times a Gaussian (dotted line), and .

Ansetz (3.4) (solid line).

Figure 6.  Same asin Fig. 5butfor A =1 and k= —4.
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Table 2 .

AE%

k B=1, 8= B=0 B=1
1O 0at% o 0.50% “1.97%
0.0 1.90% 1.90% 1.97%

—01 2.20% 2.20% 2.30%
~1.0 16.20%  16.03% 17.09%
~15 288% 283% 307.80%
—-2.0 76.54% 4.1T% 82.39%
-3.2 O 1.48% 0.34% 1.48%
—40 0.20% 0.10% 0.15% .

This table shows the relative difference of lowest energy for the three Ansatze: sum of two
Gaussians, the one quadratic correction and the symmetric quadratic correction, to the
Gaussian Ansalz, where;
Ey(B=0, 3=0)-E,
E, (B=0, 8=0)

AE% = 100

19
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