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A'b"_.stract: We present a1nethod to construct a complete set of stationary states correspond-
ing to small éﬁplitude motion which naturally includes the continuum solution. The energy
wheighted sum rule {fEWSR) is shown to provide _for_a.' quantitative criterium on the impor-
tance of instabilities which is known to occur in nonasymptotically frec_Lheéries. Qur results
for the linear ¢ model showed be valid for 2 large class of models. A unified description of

baryven:and meson properties in terms of the linear ¢ model is also given.
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1. INTRODUCTION

One of the main oper problems in the area of particle physics nowadays is the nnderstanding of the
properties of hadrons starting from the microscopic theory of strong interactions, namely quantum
cromodynamies (QQCD). The most powerful although technically very invoived methods to treat this
nonabelian gauge theory rely on Monte Carlo lattice calcula.tion.s. Inspite of being very complicated
and sometimes not at-all transparent, these calculations may serve as a guiding factor wheil one -
uses simpli-ﬁed phenomenological modeis. There have also been various theoretical attempts [1-6} to
derive such models starting from QCD. One has been able to arrive at chiral effectiye meson and
quark-meson lagrangians. In using such simplified models, however, one has to be very careful and
make sure that the results are not very sensitive to their high energy behaviour, which is known t(..J
deviate radically from the behaviour of QCD. As pointed out by Perry and Cohen et al[7], the break -
down of such theories happen when the momentum s:ca.le gr'ea,tl.y exceeds other mass scales in the
problem. In such regions one can not rely upon theoretical results which ignore the inLerﬁai strubure
of rucleons and mesons, . - .

‘The main characteristics of QCD. which should be incorporated in.p_l:quou‘lcnoiogi(la.l models: to
describe hadrons. are essentially three: confinement, chiral symnmetry and asymptotic fr;aedom. The

first 1wo have been lncorporated in a variety of models, The low energy spectra of hadrons have been

" successfully described by some of these models, namely the MIT bag model {81 or its. generalizations

which includes chiral symmetry [9] or still by topelogical scliton models [10): As to what concerns
asymptotic freedam, there is a rigorous result which states that phehomenological models lacking,
such property will present instabilities, th as. much work has been devoted to this topic, ie, tq_.a
quaititative study of the importance of such instabilities. .

The purpose of the present paper is twofold : Fristly to introduce a methed to obtain a co:npiéte.
set of stationary states corresponding to small amplitude motion. The method stems from-tratii.tiona] :
many body tlechniques in which the continuum solutions are naturally ingluded. Whem applied to,
¢g., the linear o model it allows, in particular, for the calculation of the pion.decay constant. An
intéresting result of our calculations in the context of this model is ;11‘3.(. the EWSR cau.be_ a usefull

tool in giving a quantitative criterium to study Perry’s instabilities. Although we shall be working
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in the particular o model, the method is general and the above conclusion should be valid for ali
phenon-lenological rﬁodels which include the same ingredients (a fermionic ficld coupled to several
bosonic fields). Secondly, we study the bosonic spectroscopy for boik bound stales and resonances of
the linear & model, and compare it with corresponding result;s obtained in the context of the Nambu
Jona-Lasinio (NJL) [t1] modet, which is known to give a fairly good descriptior ol light meson spectra
f12-15]. We show that this model may also pfovide an adquate description of the bosonic sector,
analbgous to the one. given by the NJL model. This suggests that the chiral o model may provide a

unified framework for the description of both the baryonic and mesonic sectors.

[ section 2 we present the chiral ¢ model which will be described semiclassically in the sense -

that feemions are treated guantum mechanically whe.rea.s meson fields are treated classically. The
‘counterterms added to the hamiltonian are needed to assure stability of the ground state [16]. The
: meson-.spect.ra. are given in section 3 for bound states and in section 4 for the continuum. The mesons
“in tﬁe continuum s_how.- up as qua.rk—antiquaﬂ: { g7 Y resonances with a certain spreading width. Despite
ﬁf t:he fact tﬁé.!} this spreading width has no rela;ion with the width associated with the decay of the
"resona.ncesr[-i-'f]:, 'tile. position of thé_resona.nces ¢an be-compared to experiment. Finally in section 5

. we present some:. conclusions.
3. THE CHIRAL MODEE.

o .T]l"lé-'a' mbdél is'a field: theoretical Imcdél or'iglina.ily introduced by Gell - M;mn and Lévy {18] as an
'é;caniﬁie ofa. phienomenological ;'nodel which realizes one important characteristic feature of QCD,
.chir_al symetry and partial conservation of the axial current. It involves a fermionic iso-doublet field
of zero bare mass interacting with a triplet of pseudoscalar picns ¥ and a scalar ﬁel‘d.a.

In the present section we present a semiclassical realization of the above mentioned model, and
introduce the corresponding effective hamiltonian describing a system of N fermions occupying either
ﬁositi\_re or negative energy states, interacting with the classical fields corresponding to ¥ and o.
Our effective hamiltonian is written as .

N
H = Y [5;.8; + 98;(o(z;) + ivs(7)75- ¥(z,)))

J=l

1 - — - 3 - - K ‘ - a 1,
+§jd3r(H3+Va-Va+l[q,+§V\Fg-\"‘¥.; - TJ/([‘SI(O"—@'—G‘;)'Z

+2§f‘i{2’:;f B+ gHat + 1) O - ph + L}lj x4 10, (2.1)
wllel;e &, 3 and ys are the usual Dirac matrices, 7 corr.e;s'pond to the matrices of the fundamental
flavor representation SU(2),I1, and Hy are the conjugate momentl;lm associated with the classical
fiehds o and ¥ respectively .The coupling constant g and the constants i and aq will be fixed in
the calculations in order to attribute physically reasonabie masses for quarks and mesons. The factor
§ stands for the degeneracy of the system and will be taken equal to six [ we shall be considering
three colours). The last two terms in eq.(2.1} are renormalization terms, which depend on a cutoff
parameter A [16]. The second _renorma.liza.tion term which c;mtains the parameter A allows for the
definition of the scalar meson mass in the vacuum. Note that our hamiltonian is adjusted to the
coqﬁguration space spanned by | 7|< A and is invariant under a chiral rotation in the v — isospin -

space. More precisely, the repiacements
8 — B +i€s7. 8],
iﬂjs'F — iBysT + iejsTy, i0sT]
T —o— .26—-'.'&.' .
¥ ¥y 2%,

where £ is an infinetisimal constant vector, leave the hamiltonian, including counterterms, inva.ria.n.t.
In what follows we shall be considering an extended system of fermions, which are treated quantum
mechanically and interact with classical fields, as déécribed above.
The ground state of the model is determined variationaily within the family of Slater determinants
| g¢ >, or equivalently, of density matrices po obtained by occupying single-particle positive energy
states with momentum lower than Pe and single-particle negative energy states with momentum

lower than A(A > Pr). In quark homogeneous matter we can write

po= (r+ ———M”’M') o(PE~ )+ 5 (I— ———’7'5*‘3‘”')'9(:\‘ -, 22

r? + M2 Vit + M2



.
Here M* is a variational parameter, representing the quark mass, to be fixed by the usual encrgy
minimization procedure. The ground state energy in such a state can be immediately calculated and

is given by
E=2%Y" (o + a7 M lge = M) )) (n2+n )
r Vot + M
( W -adY + 26 30 /o HgHe? 4 1Y) (2.3)
p<A
where 3, = ¥ e p— Fpea and @ is the normalization volume. Variations with respect to M*, o

and ¥ in the static case give the following relations
M* =go, (2.4)

al

2 . z -
ST T ¢ K -+ 38 e =

(2.5)

2\'[;2
2 @, 2.6
K=ot G i O ¢

In the limit. A — oc the only solution of eq. (2.6} is ¥; = 0 . The corresponding energy density

E_2% “2_ 2 2y2 ‘
—== €+ —-—-M - gle)?, (2.7
Q n F‘(ZI:F g‘

where go has.been replaced by #~. We als get the self consistency condition

Koo 2 20y, 2EM* o
where € _'\/pz + M=%, . : Cd

. me eq.. (2.8) we see tha.t. the vacuum. state (Pr=10)is characterized by M* = M = gog which
is- the constituent quark mass. If we are dealing with extended quark matter ( Pr # 0) this effective
mass will change according to the self consistency cc_:nndition €q.(2.8). This implies that the energy
per volume will be a function of Pr (or the effective quérk mass) for a':ﬁx_ed set of parameters I, o

and g; In Fig. 1 we show the energy per unit,.volume,' €q.(2.7}, as a function of M~ for some values of

FPr. For small values of Pp, there are onIy two solut:ons for eq {2.8), one corrcspondmg te M= =0

(whtch remains as a solution for any values of Pp), and one. correspond:g to M" # 0 which is the

5.

minimal energy solution. However,as Pr grows the situation changes and we come into a region
where eq. (2:8) provides three solutions. One of them corresponds to a maximumn of the energy and
must be discarded, the other two solutions correspond to a local and an absolute minimum of the
energy. If we keep increasing Pr we wil obtain only the saletion M* = 0. The symetry is restored
at Pr = Ppe for which the two minima are degener'ate.

The energy per particle represented in Fig. 2, refers to the absolute minimum solution. The
curve is continuous, in spite of the discontinuous behaviour of M* which is represented in Fig, 3 as
a function of Pr. The reason for this becomes clear from Fig. 1 observing that at the peint where
the discontinuity in M occurs, namely Pre, the two minima are degenerate and from that point
forward we have always Af* = 0. Note f.ha.t the energy per particle exhibits a pronoun.ced minimam
at the Fermi momentum Pr = 1.58fm™% (for the values of the parameters given in the ﬁgure).

It is also important to emphasize that the inclusion of the Dirac sea plays an essential role in

insuring the stability of the vacuum against fluctuations of M™ [16].
3. SCALAR AND PSEUDOSCALAR MESONS SPECTRA FOR BOUND STATES

In this section we present the time evolution of small homogeneous excitations (carrying zero
mﬁmenﬁufn) around equilibrium. In considering this, the last counterterm in eq. (2.1) is very
important to guarantee that the scalar meson mass in the vacuum correspands to its physical mass
(or the mass we choose as physically reasonable). .

The time evolution of a density matrix p{t} corresponding to a Slater determinant slightly dis-

- placed from equilibrium can be written as

p(t) = e WpgeiS) | BN CEY!

where §(t) is a hermitian, one-body, time dependent operator. For small amplitude motion,it is .
sufficient to consider the effect of 5(f) up to second order. Obviéusly, due to the coupling terms in
the hamiltonian (eq.(2.1)) there will also be fluctuations in the scalar and pseudoscalar classical fields,
respectively éo and &§U;, which are non vanishing and time depende_nt. Consistently we shall treat.
these térms only up to second order. In order to obtain the equations of motion and correspondiné

eigenfrequencies and cigenvectors we follow the method presented in ref, [t4).
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"~ The lagrangian describing small amplitude oscillations around the equilibrium state is '

(54)2 (5@,- )2)

L= SeroolS, 1) - Sertol i SI) = tr(onl5, 60 + 3 ( 2+

- Sonr - e+ (a7 - o0 - & 5 (Boo - }(N.-)?) SN

p<i
where hg, 8 are given by

hg = pad+8M", (3.3)
bk = fgbo + igﬁ-ysf".ﬁ\i!. . (3.4)

The generators of the scalar and pseudoscalar homogeneous excitations for zero momentum trans-

fer are respectively given by

8 = F.E0{P%,1) + iBF.ETAP%. 1) , {3.5)

= iBysT. 51 (2% 1) + 157 52(2% 1) . (3.6

I.nsertmg eq. (3. 5) in eq. {3.2) leads to the fol.lowmg equations of motion

&+ 2M8; =0, (3.72)
M8y ~ 2628, + gbor =0, (3.7)
6 2
T+ oo a4 B 5 B T (3.7¢)
<A P

The eigenfrequencies and eigenmodes are now easily obtained from the ahove equations. For the

eigenfrequencies we get the following dispersion relation, corresponding to the scalar mode

o2

‘;’;_ -2 2 25.‘? 859 b
= M - M)+ = Z€3+ o ——E(4€2_w3). (3.8)

When describing the vacuum state we should have w, = m,, the scalar meson mass. We choose
me = 2M (Ithe justification for this choice is the comparison with the results .obtained for the same
spectrim in the NJL model ref.[13,14])). This requeriment fixes the relation between K and g° to
be .

' =2, (3.9)

Ul

-

and also determines the parameter A :

1 & 1
Z = 55 =, - (3.10)
A 20 = &
where ¢ = +/p? + M? . Finally, the dispersion relation for the scalar meson mass reads
2 o oM™ _ oM 4 4p? 8Eg® 7
wp = 6M™F .2M Z ( ) Z ——-E(4€2 ) (3.11)

There are {19] two types of solution of eq.{3:11). If wy = £wWss1Wys < 26, there are two collective
discrete modes (bound states). On the ather hand, if 2¢r < w,. < 2¢y, there is'a continuum of
solutions which we will discuss in detail in section 4 for the pseudoscalar excitation.

This dispersion relatio;t is independent of the cutoff parameter A in the li;nit A — oo, Butif A .
is too large one imaginary root appears [16]. Ho;vever for values of the cutoff below- a-given critical .
value, of the order of 24/, all roots are real irﬁplying, dynamical stability of the system. To work
with a finite cutoff A corresponds to the suggestion of Cohen: et al[7] (see section 4). In any case,
the collective frequencies of the discrete moldes are not very sensitive to.the value of the cutoff A-,.
for A > 2M.

The discrete scalar mass spectrum is shown in Fig. 3 :_md exhibits a qualitative b.eﬁaﬁout-véry )
similar to the one found in ref.[14] for the NJL model. The main difference is connected with the
way in which chiral symmetry is restored in the two models : in the NJI; model (see ref.[13], Fig. 5) .
chiral symmetry is restored in a continuous fashior as the quark density matter increases, whereas
in the present model a discontinuous behaviour may occur (see Fig. 3). This qualitative difference
can be reduced by a convenient choice of parameters. There remains however a small quantitative
difference : whereas in the NJL model the scalar meson mass is always given by w, = 2M*, this is"-
not the case any more in the present model, although the difference is not too large as shown in Fig. -
) . .

The scalar RPA eigenmodes for the bound states are given by

; () .

@) _ _Figwor o7 3.12a)
! M® 42 — g2’ ( )
P— S (3.125)

4e? — 1w,
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1 1
=) o {3.12¢)
o -
f1_BEg? 22
Lo \/‘29 1 Wyz I bt %’Zp’c(qg —wa:d)
n# = i?f—ia(*' . (3.12d)
The modes are normalized .according to

. . 2 . .

i (a(*) LS - o8I 5%{"2‘ _p;_,(‘pgi)q,(zi:l e q:.f,"‘")) = irgz_ai BT RES
r 7z

" - We turn now to the description of the pseﬁdoscalar:excitation. [ts generator is given by eq. (3.6)
and a dispersion relation can be abtained in a similar way as in the case of the scalar mode (note,

however that the parameter A has already been fixed). We get

: 2w 1 1 2 ’ €
wi =AM MY+ Eﬂ'mw p> (_ e(ez__.__.__%/‘”) + -&!.]ip;p T YT (3.14-)
For values of the Fermi momentum Pr such that Pr < Ppe the above equation has one collective
low-energy solution wy = 0. Thls solution corresponds to the pseudoscalar Goldstone boson. For
Pp 2 Pre the chiral symetry is restored and the scalar meson and pion masses are degenerate as
expect.gd.- This result is also d.isi)layed in Fig. 3.
In order to ge.e;lera.te normalizable RPA like states of the pionic excitation il is necessary to

eliminate zero-valued. frequencies. The solution to this problem is to introduce a perturbative term

in the hamiitonian eq.(2.1) which explicitly breaks the chiral symmetry. This term is simply

Qoc. . _ {3.15)

“This term will not have any influence on the equilibrium value of the ¥ field, but now the

expectation value of the scalar field in.the-vam.mm will be given by

- c .
M =M =gootyooms (3-16)

as a consequence it appears an extra ¢/og term in fhe r.h.s. of eq.(3.14). This termn is responsable
for the existence of the pion mass in the vacuum (Pr = 0}, and to get wy = 138MeV we need
ve/oo = 140M eV . for the values of M and g used in the figures. The presence ot this new term

_(:eci.(3.15}) in the hamiftonian has also the _ébnsquence of removing the degeneracy in the scalar and

9

pseudoscalar spéctrum as is shown in Fig., 4. Again a comparison of the presel-l_t results to those
obtained in the context of the NJL model (refs. [13,14]) indicates that very similar predictions come
out {rom both models for these parts of their mesonic sectors,

Again we have two discrete solutions of eq.{3.14), wy = #w,, and the pseudoscalar RPA eigen-

modes are given by

Fi) ) 1

= . (3.17a)
VA wr [\ 4 —BET by

ﬁ&t) = ’El‘% i) | (3.176)
S = ¢4 g —\p(*’ (3-176)

) _ 2_q€ g5
=y (3.17d)

i being an arbritary unit isovector. These modes are normalized according to
QU I - gl 5 4 4_“_4:2’1(5&}- S _ 58 Gtey) _ 4 Wn (3.18)
W 7 4 PR 2 ) = el :

We are now in a position te calculate the pion decay constant by using the above presented
eigenmodes. This is done following a very simple and commonty used procedure in nuclear structure:
calculations, which is well suited for the calculation of such a quantity. The pion decay constant is

defined by the pion to vacuum tramsition amplitude induced by axial charges [20]

<0{Q}im* >= i\{&‘;—’-’f,ﬁj, : ' (3.19)

where Q'; are the charge operators related to the time component of the axial current
- 7 .
s = ZTS(J) ( ) + fd"'m——ﬂw ) (3.20):

for a static scalar field.
In our description the fields [y, ¥ are classical fields. The generator i1y being cannonically
conjugate to ¥ is to be understood as the generator for a flucteation of the & field. ’fhe axial

charges are therefore associated with aispécia.l form of the generator eq.(3.6) given by
() .
S = 3 ‘5-.1 ’ o (3.21a)

10



(3.215)

§i=0,
and ¥,11y fields given by
o = Mg (3.21¢)
g
g =0, : (3.21d)

where j is associated with the component j of the axial charges (eq.(3.20}).

Such a state may be expanded iz our normal RPA modes accorging to

+) -}

. ¥ B
o = o4 Sff’ -+ oa SE'T’ . (3.22)
1/2 s s

The signs + and ~ are related with positive and negative frequencies respectively, and ¢_ = €}

Using eq. {3.18) we can write the coefficient c; as )
N I M~/g (1 By 1
p = : - Vet {3.23)
| 2 \/% - ;Vﬂiz;m A R £ eded —wl)

; .’I‘his- coe_ﬂiﬁent can be interpreted as follows

' Co [0
G ==i <0|Q}IT >= /=2 £ (3.24)

This yields the following expression for the pion decay constant (in the bound state we have

wy << 26)

.In_ the vacuum, and using eq. (3.10)
=i @

holds:exactly. Equation (3.26) agrees with the Goldberger-Treiman relation. In order to reproduce
the ‘experimental pion decay constant, for instance f, = 93MeV, for a constituent quark mass
M,z = 320MeV we get for the coupling constant g = 3.44. These were the values used in all

numerical calculations.

11

1 1t 1 - . .
=& ;-5 2. | (3.25)
)

4. PSEUDOSCALAR MESON SPECTRA IN THE CONTINUUM

In order to study the RPA normal modes in the continuum it is convenient to write the Lagrangian

€q.(3.2) in 2 dimensionless form. Inserting eq.(3.6) in eq.(3.2), and using the dimensionless quantities

g=5%/M (4.'1.;)
B =1y /M? = 54/ (4.16) -
i z= /MY T ' . (4.1c)
m= M'./M . | (4.1d)
flzy= Ei_z = _zmz (4.1#),
da? = '2(.r.n’ ~ 1t Sm) + o j': " dzf(z) . S @

we get

-3

Ly _1s5%
—_—F 2(P.Q_

s = @) = m [ eS8 Gy - 2 [ et | B P+ 1)

- TA - 7 e T - - — C .
+om@=. [ da @)+ gmd. [ " azf(e)5} - GO PR HaTIGP) - (42)

whete all time derivatives are relates to r = Mt . -

The Euler-Lagrange equations are

g-aF=0, _ _ ‘(4.3a) -
P +40°F - 2mg /-z-A dzf(z)8a(z) =0, : . (4.36)
£
mSy(z) - 2281(z) =0, (4.3¢)
§i(2) - oG + 2mByfz) = 0, _ : (4.3d) -
and using the ansatz . .
Q(f) E Q;_w .
P(T) — Pw P y
1 .5__"_1(::, ) § L Su() ¢ (44)
Sz, 1) 5ru(z)
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we get the following equations to the normal. modes =

w@y = AP, , S {4.50)

wB, = ~4a*(., + 2mg j; i“ def()5u(z), (4.58)
wSiu(z) = 9§ — 2mBaul(a) , (4.5¢)
i:-dgzo(ﬂ:) = %El_u(z') ) (@5

As mentioned before, there are always two types of solutions of eqs. (4.5}. Two discrete modes,
w = Hw;, if w? < dzp (the subscript z denoting "zero-sound” values) and a continuum of solutions
if dzp < ¥ < dzy.

The- dispersion relatibn for "zero-sound™ solutions is’

2z 2 oz
Yi_ a2l 8N e
nEty ./,;.- e (S 7l (4.6)

and the discrete modes are described by

Ge=w, (4.7a)
B=22ta, (AT

S (z)= £ 028 % __
Slt(z) = 4 i Z— w2/4 y . (4.7C)
Saxle) = 2= —— (4.7d)

Im T wifd’
the only difference with eqs.(3.17) being the fact. that now the modes are not normalized. In the

continuum the normal modes. are given by

Gu= -?4@%4)&, _ ' (4.8a)
P= —%%ma(wz/'i)ﬁ, R | (4.85)
_‘:..5';.1“(3} = zw%gzu(&“), L o (4.8¢)

13

u2/4 -z

Gz} = (5@.;2/4 ~a)+ M) 7, (4.84)
where a{w?/4) satisfies the equation o
) ‘
wifA - da? 4 g¢ f:: dzf(a:)ﬁﬁ

a{w?f4) = {4.9).

In what follows and in eq.{4.9), integrals involving the factor 1/{z — u2/4).'ha.\{e to be interpreted as
principal value integrals. .
It can be seen from egs.(4.5) that he normal modes are orthogonﬂ, and using eqs.(4.7) and (4.8}

we get the following orthogonality relations:

(P8 = 0y Famom [ dof(a)S i - S B0 ) = m L s ey,

wlfd

(4.10e}
; (Q‘i. vy = oG, —2m f, e (2} 5 g ~ S”&.s"-w)) =0,  (4109)

N R z - .
' (Qt.P'i - Pr.gty - 2m/ a‘xf(x)(.?']i.S'gi - Sgi.S'li)) =7, (4.10¢)

zr
where
1, g% po T’ _ e

= 2w, (X + "4"[:? da:f(z}m) . e (4.11)

It has been shown by van Kampem (21}, for the electron plasma, and in ref.[22] for the nuclear

case, that this set of solutions is complete. This means that given an arbitrary initial state

Q(D) do
to= %1:(:33) = f{?z) (4.12)
So(z, 0} Hi(z)
there is a function o{w) and numbers Cy,C- such that

7 e j;,,—; e(w) 5 et 5 RN Ea (413)

Halez) . Sz} S24(z) o] 5a-(a)

Fol_lowing_, van Kampen [21] and making use of the auxi!_i_a.ry functions

Bl )= o3 ;;; myrey j: deos i{'-f’:)i i’ - (4.140)

14



¢l -"-f(’)ﬁ 1z) *
Gl* 21!‘1(&12;'1 40!2) (j T _u2/4 + i§ + Al) ¥ (4.145)
G = g s f@(z) | : '
C " 2wi(w?/X - 40?) (jsp 3 —w*/ii %t A’) : (4.14c)
. and
Ryult/) = 521

T¥ 2miFs(@?/4)’ (4.14d)

where -A1, A2 ‘are constants to be determined by the injtial values Py and (Jp respectively, and § is

an inﬁnitesima.l-,.we can show that
o) = 5-(;,’375 (2R a) = Rt 4) + §Ras(?1) - BalP1) - (439)
Using eqs.(4.14) and eq(4.15) we fimally get
' - &w) o ' |
cfw)= T riat(ot At /a AT . (4.16)

iw? /4 = I

._E(Q)iﬁm(on ~ Fy. 2m/ dzf(z)(H;(z)S,w(:c) - fa(z). Slw(z))) {(4.17)

where we have already used the sqlﬁtions A= Bofg and Ay = 2Qo/(mg)|).
Oie is not allowed to use the orthogonality relations to derive ¢{w). because of the singularities
in 5"1“,(::)( and §;,_,(z),'but wé can.obtain’ the expressions to Cy directly {rom these equations. It

gives
Ci= i% (ﬁ;;éo Gy B —2m f:“ de f(z )y (2).Fou(x) - ﬁg(r).gf*(m})) L (aas)

The solution of the initial value problem satisfyng both eq.(4.3) and the initial condition eq.(4.12)

is therefore

S N I .2 a 1 g
P(T} — A : Fa fuT P+ ST . _.P--' —iw,'r.
Sy | ke | sl [T Sl |0 s |

Fala, ) 52.(z) S24(=) : S3-(z)

The use of sum rules is 2 complementary approach to the use of equations of motion when one is

" looking at collective states microscopically. Following ref.[19], we find that the amplitudes &w), Cs
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“and C. satisfy the energy wheighted.spm rule (EWSR}:

WA )
2EF Wil + W“a’(wzlfi)wzﬂ)

4m

S (104 +10-F) = 5 (AP + 40%Gof)

A — - . FA . — L. Zh - -
+2 / de f(z)(m?| Hal? + 2|1 [?) = gmiCo. j def(2)E3(z) - gmy. f dr f(z)Ha(z) . (4.20)
TF zF f.3] .
The strength function representing the pionic xﬁode in the ¢7 continuum is

dm?|E(w)* flw?[4)

@21)

oW = T ¢ mtatwt Ay [d)
The simplest example of initial condition which favours the mode in the continuum is [‘23] 3
0
0 o
Yo = p (1.22)
7 .
for this condition, the strength function in the vacuum (Pr = 0,m = 1) becomes-
2 4
() = /2P 4)m/20)  (423)
(G4 firdz ﬁJ_; +(g3)? - 8) TR /ey '
and, from eq.(4.20) the EWSR is . . ) ) . o
my =2 j ™ dzfiz). . 42
1 . : .
The fraction of the EWSR exhausted by the discrete freqiency o, in this case, is-
4l frm, N2 1} 1 o :
F(wz) = (( Mu,) - 'X) o : - {4.25).
with w, giver by eq. (4.4) that we can rewrite as’ . - : : . .
et ()
2| - = —_— | = — . - 4.26
Yz (A T 1. dzz-w§/4- oo M _ . (4.26)

In sp]te of both ¢/oo.and the maximum in .s(w) bemg mdependeut. of A in the limit A — oo,

 the EWSR is not satisfied if A > 2. 018M(1/A < 0) It is because, as pointed out in ref.[16], one

imaginary solation of eq.(4.6) appea.rs if 1/2 < 0, and in this case the set.of solutions eqs.(4.7) and

('4.8) is not complete. From this imaginary solution we should not infer that the minimum of the
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potential energy éq.(2.7) is a local minimum only. The imaginary solution reflects, instead, the fact
that the kin.etic energy controlling the scalar meson field dynamics became negative.

This imaginary solution corresponds to the Perry’s insta.ﬁi]ity momentum, and can be avoid if
the cutoff is kept finite (A- < 2.018M). The only consequence of working with a finite cutoff Is the
fact that we have Lo interprel; the theory as some sort of elfective theory useful for a restricted class
of calculation, as suggested by Cohen et al.{7].

Cur EWSR can also provide a tool to investigate the importance of the instability. If, for some
value of the cutoff, the EWSR is not strongly violated, we can say that the existence of the instability
is not infecting the calculations and the simplest procedure, in this case, is to ignore the problem
[24}, as suggested by Perry. .

To the initial condition eq.(4.22) we found that the EWSR is minimally violated (less than-1.5%)
for AfM = 5. Figb sﬁows-.fhe- strength fﬁﬁctionéq.(ﬂl.ﬁi!) calculated with this value of A. It
exhibits a pronounced maximum: around 2200 MeV which is of the same order of the experimental
mass of the {not. well established} resonamce.-x(1300) [25], which is indicated by an arrow.For this
‘initial condition,. 98.2% of the. total EWSR lies in-the continuumt- while only 0.5% is exhausted by

. the-discrete frequencies;- o

. On the other hand, if we want to a.uoi&_the .imagina,ry solution we must have A < 2.018.M , and,
in: tb.__is_ situation, two- new discre:te:moqles :w_ill appear with. w = twy,wl > 424, The fraction of
the: EWSR: exhausted 5y these new modes is-also given by eq.(4.25), the only difference with the
"zerc-sound” values being. the value of w. In'Fig.6 the strength function eq.{4.23} calculated with
A =2.017M is shown. The maximum is not so pronounced as in Fig.5 and it is around 1100 MeV.

An arrow indicates the experimental value,

Te this value of A alinost the EWSR. is eshausted by these new modes #w, which numerical

solution is wy = 48,340MeV . We see that this solution.has no physical significance since do not

exist mesons, with the same quantum numbers of the pion, with this mass.
5. SUMMARY AND._CONCLUSI.ONS

. In the present work we consider a chiral lagrangizn consisting of a fermionic field coupled to scéla.r

and pseudoscalar meson fields. The description treats the fermions quantum-mechanically and the
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meson fields classically. The efects of the Dirac sea is properly included.. By means of traditional
many body techniques we obtain a set of stationary modes of small amplitude excitation {which
includes the continuum in a natural way} satisfying orthogonality and completeness relations. The
corresponding EWSR. is also obtained and shown to provide for a very useful tool to investigate
the importance of the instabitities that always appear for all nonasymptotically free theories, at the’
one-loop level (equivalent ta RPA) ca.]culatéions. These in.sta.bilities are usually found i the literature
ard, to our knowledge, it is the first time a quantitative analysis of its importance is.\given.

Moreover, exploring the bosonic sector of the linear & model with the above method showns that

~ our results are in excellent agreement with the ones found for light mesens in the NJL model. This

indicates that the linear chiral ¢ modal is well suited to provide for a unified description of both,

baryenic and light meson properties
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FIGURE CAPTIONS

Fig.1- The energy per volume in homogeneous quark matter in units of M* {the vacuum guark mass)
for different values of the Fermi momentum. for the parameter values: g = 3.44 and K = 2¢°.

The curves.are in. different scales so that details can be observed.

§1g2- _I@g_gqe{géz_pg: particle 23 a_function: of the.Fermi momentum for.the. parameter values: g =

344, K = 2¢%, M = 320MeV .

Fig.}- The effective quark mass (dotted line}',( the'scalar meson spectra (solid line) and the pseudoscalar
meson spectra (dashed line} as a function’of the Fermi momentum for the parameter values :
g=3.44,K = 2¢*, M = 320MeV . The point Prc indicates the value of Pr for which the chiral

symmetry is restored.

Fig.4- The pseudoscalar (solid line)} and the scalar (dashed line) mesons spectra when the chiral sym-

A

metry is broken, for the parameter values :l. g =344, K =2¢°, M = 320MeV, m = 142MeV.

Fig:5- Strength function representing the pion resonance, as 2 function of w for A = 15M. The arrow .

idicates the experimental mass.

Fig.6- Sameas Fig.5 for A = 2,01TM.
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