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ABSTRACT

The multiple scattering theory is used to develop a theoretical framework for the caleuiation of
the heavy-ion total resction cross section. Several important medium effects such as Pauli blocking,

" interaction

are included. The second order double scattering contribution to the ion-ion “tpyps’
is calculated and found o contribute at most 10% eﬁect on og. It is found that whereas at
intermediate energies the “4pip” accounts reasonably well for the total reaction cross section,
indicating the predominance, at these energies, of single nucleon knockout, it Vunderstimates aR

Ll

at lower energies by a large amount. This is mainly due to the absence in “tp1p2” of fusion and

inelastic surface excitation. The case of exotic {neutron-and proton-rich) nuclei is also discussed.

1. Introduction

In recent years the total reaction c;osé section of heavy lonshas become the focus of extensive
theoreticall™® and experimental’~1% attention. On the theoretical side, microscopic calculations
have been performed within both the (tp;p2)* Lax approximation and the more exact G-matrix
formulation ¥. A major emphasis has been allocated to the discussion of the degree of transparancy
in the heavy jon system, and how this is traced to the nucleon-nucleon scattering. A basic input
in these calculation is the nucleon-nucleon elastic t-matrix appropriately modified to take into
account nuclear medium effects in both projectile and target.

Since at intermediate energies these medium effects can be taken into account as corrections
added o posteriori to the free nucleon-nucleon t-matrix, one may use this exhaustively studied
object in the caléulation of 7R Owing to the !inear x;elation involving the total nucleon-nucleon
cross section and the fm ¢, through the optu:al theorem, the energ} variation of ¥ is accordingly
quite relevant for the purpose. In pa.rtlcuia.r the d;scussmn of the reactwe conient of o whether
for nucleon-nucléus or nucleus-nucleus systems becomes mt:mately related to that of 0’

To set the stage for action we show in Fig. (1) the already extensively exhibited o™ vs center
of mass energy, for the pp and pn systems 11}, We note that o} is about twice as large as off or
o%" at small energies. At intermediate energies they become comparable. Ignoring the very small
Bremsstrahlung emission, the cross section of" at Ep., < 280 MeV is practically 100% elastic
scattering. The first reaction ¢hannel; namely oneé' pion production, opens at Epg, ~ 280MeV,
followed at Er.s = 530 MeV by the two-pion prodiiction cross section, etc. Thus in the energy
range 280 MeV < Ep. < 530 MeV the nucleon-nucleon total reaction cross section is just the
one-pion production cross section integrated over angle. This is shown in Figure (2).

In fact, what.is plotted are the production cross sections for the isospin T=1 and T=0 states.
The identifications ap(T = 1) = ¢%f and or(T = 0) = 26 — oif then give the relevant nucleon-
nucleon cross. sect:on As a result, one finds, at least in the energy reglme EL“ < 530 MeV
(i.e. before reachmg the two pion production threshold), that cr"” is about 0.62% of ¢ff. For
the purpose of completeness, we also show, in Fig. = (3), the’ two pion production cross-section

a(np —+ nprta™) and ¢(pp — ppr¥w~). These cross sections’ are:orders of magnitude smaller
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than the one-pion production cross-section.

Clearly, the threshold energies for one- and two-pion production processes in the free nucleon-
nucleon system are significantly reduced in magnitude in the nucleon-nucleus and more so in the
nucleus-nucleus systems, owing to muclear medium effects as experimental findings have shown
2}, This fact, however does not necessarily indicate that qualitative considerations concerning
the reactive context of nucleon-nucleus {tp}, and nucleus-nucleus (p, p2) interactions, respectively,
cannot be made using as a g'uideﬁhe the nucleon-nucleon reaction cross sections discussed so far.,

- Accordingly we can afirm that the reactive content of the tp and £0;p2 interaction is pre-
dominantly single nucleon knockout 13) at low energies, and/or one- or two-pion production at
intermediate energies. Clea.rly the excitation of collective degrees of freedom are not accounted for
in either of the interactions mentioned above. Thus it becomes quite important to investigate the
energy range in which the “tg; py” interaction is the dorminant component of the ion-ion potential.

The vehicle through which the above can be at;complished is the multiple scattering descrip-
tion. This theory, not only supplies a convenient framework through which the simple Lax potential
can be derived and discussed, but it also makes pos.sible. the construction of higher order corrections
which may contribute significantly to o at lower energies.

1t is the purpose of this Report to investigate the significance of the.“¢p, p,” interaction for the

total reaction cross section of heavy ions. Both nuclear medium effects and higher-order, multiple .

scattering contributions, are discussed, The principal aim is to delineate the energy range in which
this interaction {at least its reactive content}, -approximé.tes well, the interaction between two
"nuclei. Recent studies?), have suggested that even at low energies (£ < 15 M eV/N } the “tp;ps”
interaction reproducés well the total reaction cross section. As we shall see la.ter in this Report

this is not so o account of the fact that several important reaction channels, not accounted for b‘.

the “4pip2” potential, whose ma.Jor reactive channel is smgle—nucleon knockout in both pro_]ectlle'

and target. nuclei, become increasingly important as the energy. is lowered,

The orga.mzatmn of ‘this Report is as follows: In Chapter II we present 2 deta:lled account

of the theory of oR- In pa.rtmular we .’ discuss several approx:matlous used for its eva.luatlon

We also genera.hze the one-channel theory of og to mu.ltlchannels In Cha.pter III we present a

summary of the multxple scattermg theory appropnate to heavy ion colhsmns The ﬁrst-order
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“tp1p2” interaction as well as the second order double scattering contributions are then derived
and anaiyzed. The imaginary part of the “tp1p2” interaction is then fully discussed in Chapter
IV. A very careful analysis of the Pauli blocking in the context of heavy ions is also presented
in this Chapter. Further, we assess the importance of using a relativistic Dirac formalism in the
calculation of ¢p. Caleulations of og for several HI systems is then presented in Chapter V, with
4 comparison with the data made for 12C +!2 €. The effect of the identity of the particles on aR
is also discussed. '

The role of peripheral processes, where the collective participation of several nucleons on thé
mutual excitation of the nuclei is discussed in Chapter VI. In this context, of great interest is
the excitation of giant resonances in intermediate, and high, energy collisions, which reveal new
aspects of the nuclear structure not accessible by means of other nuclear probes. As we show later,
the peripheral processes imply in a very peculiar mode of absorption of energy by the nuclei. The
absorption of energy in peripheral collisions at high enerpies will go preferentially to the excitation
of collective motions or to emission of a pair of nucleons, or clusters. As a brief account of this
subject, we shall particularly direct our attention to the reactions with radicactive secondary
beams, which is a subj Jject of increasing interest. Fi inally, in Chapter VII, our concluding remarks
are presented.

A number of appendices relevant for the discussion presented in the different Chapters of the

Report are collected at the end.




11. Theory of the total reaction cross-section

In this Section we present the full details of the theoretical structure of the total reaction cross
section. The relation between og and the underlying imaginary part of the optical potential is
most generally and easily obtained using the generalized optical theorem. This we do first. We
then turn to the discussion of o5 within several limiting cases and approximations, in particular
the eikonal expression for o is investigated.

Let us first consider the Lippmann-Schwinger Equation for the optical T-matrix which de-

scribes elastic scattering

T =V +vG\"ET (IL.1)

where Gf,’” is the free propagator or Green function, (E — H, + i€)™}, with Hy being the free
Hamiltonian. In Eq. (I1.1), V denotes the complex optical potential. \

b
We multiply Eq. (I1.1) from the right by 7~} and from left by V™! to obtain
vl=T"1 1+ G(E) (I1.2)
Applying the same procedure for the complex conjugate version of {IL1} gives
vi=Tt" 1+ 657(E) (I1.3)
Subtracting (11.3) from (II.2) results in the following
T vl vt Lo E - HY) (IT.4)

The last term in Eq. (IL4) is just the difference G5V (E) ~ G{(E). We now multiply Eq. (IL4)
from the left by TT and from the right by T to get, after using the relations T = vQH) and

Tt = Q¥ where 0 is the Méller wave operator,

T Tt = QW (V — VHolt) 20T E — Hy)T (IL3)

i

We are now in a position to derive the optical theorem which relates the imaginary part of the
forward scattenng a.mphtude to the total cross section. Indeed tal\mg the on-shell matrxx element

{ir plane waves) of (IL.5) leads, immediately to {k' = &)

Ty, Ton-shell (£,0°) = % <k| Q(+)'(V . V")Q("”J | kK > 1 2mipk / K | Ton- shell' 2

21 (2 )352 (k'.k, n.&!) i
(116
Using now the relation between T°" %4 and the elastic scatteriﬂg amplitude f,
f(k’ 6) ] luﬁ Ton akeii(k 9} e (I1.7)
we obtain
5 I £, 0) = o e ;Imvw‘“ > +[dsz | £(k,8) I (113}

which is the generalized optical theoreni we are seeking. Since on the right-hand side, ‘we have
the total cross-section, and [ dSt | f(k;®) [* is the angle integrated elastic cross section, we can
immediately identify the first term on the right-kand side to be just the total eaction cross sectioz
R-:‘bf ‘+’|:mvg¢‘+’ L )

In the above &érivation of op through the use of_ th;cal _theo;‘éﬁi,_ we did nc!:_'p_;_asr. ;c_xtte.ntic_m

to the.long. .ra.nge Cpulom.b interaction.. This, béwevef, poses nq. f_;;m.;la.rr_xgnt_a.l' prol?]:t;._m as on_é. can
generalize the optical theorem, is such .a_,. wzlay_a_s ﬁo have Im [}'(ﬁ)_ - _.ngu.;(O)]. on the lefﬁ-ha.ﬁd
side of Equat’.ion (I1.8) and fdﬂ.[l f(k 9) %2 — | f;z,‘m(k gy 2 as tilé ;econd germ__ori the right
hand side of the same equa.tmn In the above expressxons, f,qum(k 9) is the Rutherford scattermv
amphtude The first term, namely a'R (see Equatlon [II 9)), is unchanged For full deta.ds of the
above generahzatmn we refer the rea.der to Ha.ldema.n and Thaler 1) and Hussem et al. 5. For
completeness an alternatwe, more dn‘eci‘. derlvat:on of 7R usmg the usua.i Wronslua.n azgument is

presented in Append]x L




Equation:{ﬂ.g) can be straightforwardly partial wave eipanded yielding

aR=%Z(2€+1)T¢ o (11.10)

with the elastic channel transmission coefficients Ty, .given by

8“’“ Zdr | welk,r) ] Im V(r) | (I1.11)
where ¢(k,r} is partial wave, radial, wave funct;on, which is a solution of the radia.llolpticé.l

Schrodinger equation (Witfx the full V). Of course, the following relation holds between T} and the

elastic S-madirix

Te=1-| 8 |* (I1.12)

In the large-number-of-partial-waves limit, and under semiclassical conditions, one may replace
the partial wave sum by an mtegra.l and £ by kb — 1/2, with b being the impact parameter. Thus
Eq. (II.10) becomes ' a ’ ’

- f bdbT(h) = (I1.13)
]

In the application to heavy ion reactions, it has been customarily to introduce a strong absorption

radius R, 4. which would kimit the b-integral above in the sense that T{b) is represented as

TE)=0(R,, -b) - (11.14)

Eq. (IL.14) implies that the limit of infinite absorption (large Im V) for b < R,,. and zero
absorption for & > R, 4, a case hardly exactly met in physical systems. It does, however, constitutes
a reasonable first approximation for T(h). It is important here to remind the reader that R,. is

energy dependent to account for the Coulomb barrier restriction, Usually R, , is taken to be

' Ve 12
R..=Rg (1—%)- . L (I1.15)
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where Rp and Vg are the position and height of the Coulomb barrier, and E is the center of mass
energy. With (11.15}, og becomes

ogp =Ry (1 - %) (I1.16}

The above expression for o g, does account well for heavy ion total reaction cross section data
up to center of mass energy per nucleon about one fourth the Fermi energy {er = 37 MeV). At
higher energies, the data start dropping loﬁ' until an energy/nucleon of about 140 MeV (roughly
equal to the pion rest mass) is reached, after which o g rises again. This fact clearly shows that a
great amount of transparency is attained at intermediate energies, and the question arises as how to
relate the transparency to more fundamental physica_l_ quantities, such as the nucleon-nucleon total
cross section. The vehicle through which this is'accomplished is the explicit connection between
T(d) of Eq. (IL13) and the elastic channel optical potential, as Eq. (IL11) implicitly dictates.
The optical potential itself is constructed from multiple scattering theory as will be discussed in
Section III. ‘

In terms of the complex phase shift which specifies, S, namely § = exp(2i5), we may write

T(b) = 1 exp(—4 6;{6)) ' (I1.17)

where &7(b) = Im 6(b). Within the J.W.K.B. approximation, we have for the phase shift

e \/"2 - By
_f-,- dr'yf k2 — rj;

where 7, is the tuming point, and r, = (£ +1/2)/k = b. The imaginary part of é; is obtained

b = ( lim
r— oo

] ' (I1.18)

immediately

o [Tl T Frore e w(52)
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(1119}
where

LE+ 1)

rf?

- _
tand(r') = _i—‘: Im V(") [IJ - - %“; Re V(r’)l (I1.20)

At sufficiently high energies, in the sense of V/E <« 1, one may expand (11.19} to first order in

ImV, to obtain

Im V()

12p %,
= —-— d II
&1 337 ‘/; T (Ir.21)

which may be considered as a precursor of Glauber (or the Eikonal) formula, since with the use of

1/2

[k2 - BED 2 Re v(r')

cylindrical coordinates +' = (2',b) and ignoring Re V(r') in the square root, one may write

S2(b) = 12"/ &' Im V(5 + 27%)

~i5i ) (1122}

The above expression is to be contrasted with that given in Eq. (I1.21), in that the former involves

a free trajectory for the incident particle (using classical language) whereas the latter moves on a
trajectory determined by the combined Coulomb plus Re V{r) potentials.
We note that (b} should behave as a function of impact parameter, similarly to that of

Im V{b). In fact, if we make the approximation Im V = ~Wp O(R r'}, we obtain

5i(b) = ~=W, /B~ B B(R - b)

5E (I1.23)

The difference between (I1.23) and that obtained with a Wood Saxon form for e V is concentrated
at the surface region,
The transmission coefficient T(4), Eq. (I1.17) is then given by

Id

’ 26W,
T(b)=1-—exp ——EL R? ¥ (II.24)

11

It is clear from the above formula that the de.penc_iepc_q of T'(b) on E end copsequeml}; that

of op is determined from the .dependence of Wy on E. If W, E'/2, the energy depehdence .

P

of T{b) is washed out. On the other hand if Wy x EIIQJNN(E}, then the energy-dependence of
T(b) is exclusively determined by the energy dependence of onn(E), as will be fully discussed
later. Obviously, the above simple rule, changes as the energy is lowered, since an extra energy-

-2
dependence will emerge from the factor |k% — €41 — 28 ReV/(r)

in Eq. (1121}, Further,
nuclear medium efects, e.g. Pauli blocking, introduces further energy dependence. These questions
will be full.y addressed in the next section.

Though very schematic, the..expres.sion.obtained for T(b), Eq. (I1.24) using the square well
model for Im V{r), still serves to exhibit several :iﬂt:efesting features of op. Using Eq. .(11.24):'1:1'

Eq. (I1.13), we obtain for og(E)

(I1.25)

UR(E} = 1'rR2 [1 9 ]_'_(1 +2R’I,\) e—‘ZR/-\]-

(2R/A7

where A = E/kW, is the mean free path. This equation was first derived by Bethe '®). To correct

for the Couloumb barrier effect one merely replaces (I1.25} by!™

o [ 1= (14 2Rg/A)e2RE Vg
GR(E?—‘JTRE [1 2 — 2Rs/\)? ](l_f)

(I1.26)

where Rg = R+ 1/k.
Equation (I1.26) may be compared with the purely geometrical formula (IL16} and thus the
transparency factor, T, defined by

Vi
or=wRE(1-T) (1 - —E‘i) _ . (1127
can be immediately extracted
1-(1+2Rp/Aje 28/ -
7=9 o1 128e/M e (I1.28)

(2Rg/A)?
Figure {4) exhibits the behaviour of T vs 2Rg/A. 5

12




Eq. (IL.28) identifies the physical parameter that determines the value of T, namely 2ZRg/A. For
large 2HE/ A, namely A << 2Rg, we obtain for T,

T~ A2/2R% ' (I1.29)

and accordingly, the total reaction cross-section becomes proportional to the surface

AR Ve
et (1) (1- )
o A3

x (4 + 3y

.for nucleon — induced reaction

for ion ~ion collisions (11.30)

The above result is characteristic of strongly interacting systems characterized by short A such as
hadron-nucleus. On the other hand, in the other extreme, namely 2Rp/) << 1 (implying long

mean free path A compared to the effective diameter of the interacting system), we obtain

Tzl—g(ﬁ—ﬁ—‘), (II.31)

giving thus for the total reaction cross section the following form which is proportional to the

effective volume of the system

T -
or~ (T RE)/A
x4 _ for ‘a nucleon — induced reaction_.

o (AMS 4 41

The A-behaviour of oz in Eq. (I1.32)-is typical of weakly interaction probes with a nuclear target:

Examples are.electron and photon-induced reactions, The mean free path in these cases is quite:

long owing to the weakness of the underlying electromagnetic interaction. Accordingly,.the whole.

13

.. for_jon —ion collisions (I1.32)

nucleus is “seen” in the process of the collision, in contrast to hadron-inducing reactions, where
only the surface rucleons participate in the collision process. _

Clearly, the sbove picture depends on energy, in the sense that weakly interacting probes
behave, t higher energies, like hadrons (in the photo-nuclear case this js commonly referred to as
the vector-meson- dominance phenomenon 18, It seems obvious now that hadron-like processes,
such as the ion-ion collision d.i.scus'sed here, behave at intermediate energies, like weakly interacting
systems owing to the diminishing value, at these energies, of the total! nucleon-nucleon cross section,
the basic microscopic quantity for these systems. In the next sections we investigate, within more
realistic calculations, the behaviour of or and T as a function of the combined radius of the
heavy-ion system.

So far we have discussed the total reaction cross section within a one- channe] (optical) de-
scription of the elastic scattering process. In many instances, a more general description of nuciear
absorption, based on coupled channels theory, is called for. Thus, in the following we present suck
& description for the purpose of completeness and in order 1o develop a theoretical framework
through which improvements upon the multiple scattering calculation, presented in the bulk of
this i)aper, can be eventually made.

We introduce now the projection operators, F,, P and Q, which project out, respectively.
the elastic channel, the directly coupled nonelastic channels and the closed channels (fusicn), The
elimination of the Q-subspace and the energy average performed subsequently, results in an effective
Fy + P coupled channels. The aim now is to evaluate the total reaction cross section in F,.

The equation for the elastic element of the T-matrix becomes now instead of Eq. (IL.1)

P.TP, = P,VP, + P,V PGSH PTR, (I1.33)

which may also be written in the following equivalent form
PoTP, = Uppe. + B PGP, TP, (I1.34)
Uspt = P,V P, +EVPGH PY P, _ . (I1.35)

14




where PG\ P is the effective, exact propagator in the P-subspace.
Of course the discussion presented earlier following Eq. {IL.1) can be immediately applied to
Eq. (I1.34), with the only difference that the siructure of the effective optical poténtial operator

U.ps is now fully exhibited in Eq. (I1.33). Using Eq. (I1.35) in (11.5), which we write now as

Po(T = THP, = P PN ppe, = UL PP,
— 2% P, TP, §(E — H,) P,TP, {I1.36)

we have

P(T - TOP, = PO P (U, - UL PSYDP,
+ PP, (VPGHJPVPO ~(P,VPGHIPVP, )) P,

- 2miP, Tt P8(E — H,)\P.TP, (IL.37)

Assuming now that the PP coupling interaction is Hermitian Vip, = (Vpp,)!, which is &

reasonable approximation if we consider that the effect of the averaged out Q-space results mostly

in an imaginary contribution to the diagonal terms, Uy, p, and Upp {which appears in I1.34}, we

have. for the second term on the RHS of Eq. (I1.37), the following

PO P VP (PG(‘”P — PG P) PVE,QMP,
=P VP [—zm‘z (el scwl |
P

+P, G P(Ugps — Ujpl)G“"P] VP E, (I1.38)

The above result is a consequence of an identity satisfied by the Green function PGP, Using

the fact that the Méller operator defining the channels P is

13

PQtP = PGHPYPQPP,

(I1.39)
we can now w.rite for P,,(T — TH)P,, Eq. (IL.36), the following expression
PAT = TP, = P Py(Uppe — U P,)PDQ(“P,,
+ PO P(U,p - U, ,,,)Psz<+>P
— Omi ZP QP VP IS > 5B — Hp,) < 457 | PVEQME,
- QWZPOT*P,,:S(E — H,)P,TP, (IT.40)

The derivation of the total reaction cross section can now be accomplished using exactly the

same steps followed in deriving Eq. (I1.9). Then

op= Ei;‘ <y Im U el > +Z <P ImUE (e >l o (141
where op represents the direct reaction contribution 'to ¢g and corresponds to the third term on
the RHS of Eq. (I1.40). The first term in the above equation represents absorption i the P, and
P channels owing to coupling to the closed channei subspace and thus corresponus to fusion. The
above general expression for the fusion cross section has recently been used in discussing heavy jon
fusion at low energies where coupled channels effects seem to be important 18-21}

Clearly Eq. (I1.41}1is, in principle, equivalent to Eq. (IL9), as long as the optical potential
used in the latter represents the exact interaction in the elastic cha.nnel The decomposition of
og into the distinct terms, namely o and op is, however, quite ufseful in discussing the reactive
content of mi'c;'oscopically:' derived optical potentials. The “tpypo” interaction analysed fully in
the following Chapters represents but one term in op. This may well be the dominant term at
intermediate and high energies. However, at lower energies, we éxpect that o and the othérterms
in op such as inelastic channels, to be by far:the dominant. terms in og- : The derivation of the

above result using the Wronskian is presented in Appendix:l.. o
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To.the end of this Chapter, we comment briefly on the possible need of using a relativistic
description of heavy-ion elastic scattering especiglly at Eq pr /4 > 200 MeV, where recent research
in proton-nucleus scattering seem to indicate the starting point in such a déscription in the optical
Dirac equation with a combined scalar and time component vector potentials employed as an
interaction 22}, _

Our aim is to assess the iﬁ:port&nce of the relativistic effects on or. For the purpose we
have evaluated og for proton scattering.on **Ca and 28 P§?%). . The details of this calculation is
presented fully in section V. Qur results indicate very little difference between the relativistic and
non-relativistic ¢5. We therefore reach the conclusion that a non-relativistic calculation of oy for
heavy ions at energies up to Eg s /A = 800 A1, éV, should be quite adequate. In Section IIT we

discuss in detail the non-relativistic “tp1pe” interaction.

17

II1. Multiple scattering theory

IT1-1. The proton-nucleus “p" interaction

In this sub-section we discuss in detail the microscopic nucleon-nucleus optical potential. We
do this for two reasons. The first one is that this interaction has been the subject of intensjve
theoretical investigation for more than 25 years, which resulted in a quite satisfactory status, and
the second being that, in principle, the nucleus-nucleus optical potential, can be defined in terms
of the nucleon-nucleus interaction through 2 folding integral (single folding). Of particular interest
is the discussion of the reactive content of the mucleus-nucleys interaction, given the structuze of
the underlying nucleon-nucleus optical potential. This is important for a better understanding of
the nature of the total HI reaction cross section at intermediate energies, which has received great
attention recently.

A simple, first trial, guess at the form of the nucleon-nucleys Ppotential is the classical relation

Ury = /dr' p(e') Vir,r)

where Vir',r}isa properly antysymmetrized projectile (nucleon}-(target nucleon) interaction and
p(r") is the single particle (classical) density of the target nucleus (obtained from e.g. Hartree-Fock
c:alcufation). Clearly the above expression is not entirely correct since, ﬁrstlly, U is real whereas the
optical potential must be complex to account for the non-elastic processes, and secondly, V(r,r')
cannot be used as it contains sing'ula.r ;:omponents (tke "hard core”) at v < 0.4 fm. What is used
nstead of V(r, r') is an appropriate effective potertial, (or G-matrix) whose hard core is smoothed
out, in favor of density dependence {absen.t m V{r,r')).

An apparently different method, usually applied at higher energies is to formulate the problemn
within a multiple scattering framework. Here one has #s an input, the nucleon-nucleon t-matrix
{generally off the energy shell). In this paper, we use this latter approach, both in nucleon- and

nucleus-nucleus scattering. For the purpose of completeness, and the presentation of a general
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framework, where correction to first order approximation may be constructed and discussed, we
present. below the essential ingredients of this approach )

The Hamiltonian for the projectile (nucleon}-{target nucleus) system is written as,

Ho=— Wi EL =V (IIL1)

Im
where Hy is the target nucleus Hamiitoman and V is the interaction between the incident nucleon

and the target nucieus, which can be written as a sum of individual nucleon-nucleon interactions

4.
V=3 v (IT1.2)
The solution of the scattering problem is represented by the full nucleon-nucleus T-matrix

1

T=V4+V —0—g—r—T ' (II13)

E_(H-V)+ie

where E is the C.M. energy. The solution of (IT1.3) is facilitated by the decomposition

T=" miE) nilE) (I11.4)
with
1
Tpi = Vpi + fo E -~ (H - V) ¥ ic Tpi {IIIS)
Substituting (111.4) into (JI1.3) gives
1 = '
wWE) =1+ g vy i > il E) my(E) (111.6)
i

The set of equations (IIL4) - (IIL6) constitutes the basis of the multiple scattering series which

results in the following

T= Zr,,,u: -E-Z‘TP,(E)

W HilE) £ - (IIL.7)
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At this point it is important to empiiasize that T5; aré not two-body projectile-micléon tn;:iz-lsition
matrices; the propagator 1/{E—{(H -V}+ i¢) = Go(E) contains the full nuciear Hamiltonian H »
(see Eq. (IIL.1}) and consequently 73, is a (A+1)-body cperator.

The usual procedure is to replace 7, by the corresponding nucleon-nucleon T-matrix in free
space

tpi(B) = Vpi + Vpi t(E) - ©(IILE)

-1
E+ET +ie
The corrections to the replacernent T — ¢ resides in corrections to the free Green functmn - the
replacement of .an (A+1) operator by a two-body operator, and to the use of t.he C.M. energy of
the p+1 system in the p-N system (w}nch is reasonab]e if A7l << I}

The state is now set for the obtention of optical potentzai operator w}uch is formali) deﬁned

by the equation

22 -1
T= v+v[ (E+F‘2V —KA) ]T (IT1.9;

where Py =| ¥y >< ¥g |, is the projection operator onto the target nuclens ground state, and K 4

represents the kinetic energy of the C.M. of the nucleus. Then

v—T(E)' T(E) G.(E) T(E) +

—Zt(E +Zt(E)w~——.—t,-<E) +

(II1.10)
iH# Ha

The ground state matrix element of V gives us the optical potential for elastic scattering, via

V(E) =<k, n',0| V| k,0,0>
= (207 (k' +n' — k) V(K k, E) (FI1.11)

where ' is the center of mass momentum of the target nucleus, and k is the momentum of the

projectile. The first order potential obtained from Eq. (IIL.20) reads
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(11112,

| dpi A
v‘“(k'-;k;E)=.~1/{—,,% ®olP1 + q;py) k), k3 E')

where ¢, is the target nucleus density matrix, which is relac_ed to the density by

p(q)-=.f(g—f:)% (P +q5p1) (II1.13)

a=k'~k, k;—-k--—(k+p,)
k=K —-—(k’+p1)

E=E- (k+pl)2/2(m +m)

The next step is to set Pr =0 in t, which results in the “tp” expression

= A p(q) #(k., ky; E)
A Ap(q) t(9 =_0";E)

VK k. E)
(I11.14)

The last form 1gnores off-shell effects. It has the advantage of suplying a model mdependeut Pro-
cedure for cuscussmv nucleon-nudeus ela.suc scattenng The reactive ontent of V(’), as is known.
is quasx-;.ree knock-out -1_3’. It is to be expected that the :mpulse approxxmatxon form of V(”
‘Eq (III 14 womd be vahd at mtermedlate proton energles (E ~ 100M eV). At these energles.
the nucleon-nucleon scattenng is pracr.lcally purely elastic (except for very small bressfrahiu.ug
= 140MeV). This is

clea.rlv seen from Fig, (1) snowmg the total feaction cross section for the free nucleon-nucleon 8ys-

emlssmn) At higher energtes, pion product.lon becomes i important (EC M

tem. Clearly medium effects modify this picture to some extent (e.g." shifting the pion production
threshold to lower energies). Further,  these same nuclear medium effects® like Pauli blocking and

Fermi motion of the target nucleus, bring about changes in-the form of Y1) {validity of impulse
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approximation) as well as make higher order corrections, related to nucleon-nucleon correlations,
more important.

Among the numerous corrections required for a better treatment of the scattering process, the
second order, doub]e-scattering, effect seems to be the easiest to estimate,

This term looks like, in momentum space (using the free nucleon-nucleon i-matrix as basic

input) 28)

<K,0{V® k05 = zzzf(,, 7 <Kl K o

=1 i o

<Ka|t; k0> (I11.15)

- 3
E~ K2 E‘ +ie
Several approximations are usua.lly- employed to simplify the above equation. We use ap average
nuclear _excitation energy in the free Green function, E, — E, = E, employ closure to get rid of
the E'#u =3,

the Green s function. Introducmg the twe particle correlal:io:; function

—10>< 0} and employ the eikonal (bigh energy approximadion} in evaiua:

Pu)(r’s l') = rA)drl AR G‘I‘A

1 A
A(4-1) /‘/’:(‘"h‘ A DN 6 i - T5)%a(ry, - -

=1 j¥g

(IT1.16)

one can then write 2n approximate form for the doubie scattering contribution, which in coordinate

space looks like

V‘z’(r) (II1.17)

e —

7
E- [ (1!{7‘}] RCO,A{;
where V“_) is the first-order “tp” potential and RF“”‘_' is the two-particle correlation length, given
by .

1A
%]

e e

N
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Reorr. = /m [f(f-’(—’—i) - 1} d(r ') (111.18)
o plriplr) - Joe—ep ‘

where a further assumption on the quantity P'?) [pp has been made, namely that it depends only
on the relative separation between the 1wo nucleons and not on their individual Il)ositiong. In the
absence of two-body correlations, Reorr. = 0. In general, it 15 expected that PRy’ r) would
approach the no-correlation form at separation larger than of the hard core radius (~ 0.4 fm}. At
smaller separations P® = 0. Thus Reger. = —0.4 fm.

The estimate given above for Reprr, is very crude. A more refined, treatment of Beorr, presented

by Ray?® that it is actually composed of four distinct contributions

Rcorr.. = Rpguii + Rspp + Resn t+ Reo.om. (III].Q)

where, following Boridy ‘apd Feshbach?™, Rp.ui is related to the Pauli exclusion principle cor-
relations, Rgrp is related to the short range dynamical correlations and Rpsr is conuected to
a combination of Pault and short-range dynamic term. Finally Rc_ . arises from center of mass

correlations. We give below the approximate expressions for these four contributions to Reorr,

derived by Ray®®

ﬂRP“,,:ll_P_Jri 1
2p 4 4 10kF(r)1+aBk )
o= 315+ ] V¥ s
-3 3] 5 (00-8) 7 o2
-Rom. = (1 - % + ?) I (F11.20)

where the parameters A, kr(T), B, b, L, are the target mass number, local Fermi momentum, finite

range parameter of micleon-nucleon elastic t-matrix, short-range dynamical correlation parameter
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and the effective “correlataon length”. respectively. " We should mention that B exhibits a non-
negligible energy dependence: 0.66 at Epap = 100 McV and dropping to about 0.1 8t Epap =
2200 MeV.

We have evaluated Reorr., tccording to Eqs (III'19) and (III'20')'.fo'r the system p +1% Cat
several proton laboratory energies. The results are preseated in Fig. (5). As can be seen in this
figure the dominant contributions to Reorr. BIise from the Pauli and center of mass correlations.
Further, the values of the caleulated Reorr. Over a wide range of proton energies approximates
closely the very simple estimate for Reorr. given earlier, namely ~0.411 fm.

We see clearly from our approximate form for V12 Eq. (IIL.17) that the multiple scattering
series is an expansion in order of the correlation radius. The third and high order terms, wouid
depend on three and many body correlations. No simple expressions is found for these terms. In
the next sub-section we shall employ the above theotetical developments for the calculation of the

jon-ion interaction at intermediate energies.

111-2. Nucleus-nucleus. “tpypa” interaction

Once the nucleon-nucleus potential operator is constructed, the corresponding nucleus-nucleus
potential can in principle, be r.ﬂ:ntza,ined1 w1th due care to antlsymmetnza,tmn by' a foldmg procedu.re.
In dlscussmg heav Y ion reactions at low energ1es it ha.s been customary to employ the double
folding prescription in cenju.nchon with an effectwe nucleon-nucleon mt.erachon (G—matnx) whlch
contains most of the nuciear medmm effects. A more thorough. discussion of ti’us ha.s been ngey
by Satchler and Love %), who wnte for the ion-ion real potennal the followmg

ReV = [drl fdrz p1(r1) Plz(i‘z) Virp=R+12+ T1) . ' _ .(_I.II._?l)
where V is given by the M3y -

e—iriz o2

v(r,g) = 6315 S - 1061 5

“+ Jno_- é.(1'12)
2
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with

- oo = —81 M_e_:V fm®

The last term m .the :a.boxfe expre-ssio.n for V takes into account the nucleon exchange effects. No
energy aepenaeﬁée is iarésenr. in'the above ex-pr'ession. Of course at higher énergies, the proce-
dure above s.hé)uld'be- répl.a'.(.':éd"by the more hpprdpriate 'nucieoh-m}cledn G-"of [‘.~mhtrix, 'whidi',
when ihserﬁed'in the double foldi'ng' iﬁiegfa.l ‘abave, would determine the energy dependence of
the resulting, complex ion-ion potential. Thus, following the discussion of the previous section we

write

Vi 0= 05) [ @ 5, (0) gy vy

E , gt s
= —4y = Funi(d =0, E‘)/_d;-,__pAl(r_) Pa,(r—r') (II1.22)

where fay is the nucleon-nucleon scéttering amplitude, with the § ip of the optical theorem, we

may now obtain the imaginary part of V4, (r)

E . 4 I 14 ‘
Im.l_is:da(r) -—_.—-_F_UNN(E)/pAI{r}_pA,(r—-r)dr . (II1.23)

whis is clearly just the proton-nucleus Imaginary interaction folded onto the projectile density.
The real part of Vj,_-ll’ 4,(T). which would correspond to the intermediate energy version of the

double folding interaction; can be obtajned from the systematics of Re fun. One usually writes?6)

Re fyn = o Im fryy

Im fNN_ = (ka'gN/@r) exp [—a,wv ng (1I5.24)

The parameter o depends on the nycleon ERErgy, attaining the value of 0.06 at Ey 45 = 800 MeV

and becoming negative at £ > 1000 MeV. In table I we present the values of the physical

25

parameters that determine fyp at several laboratory energies. As a consequetice of Eq. (IIL24)

and table I, the real part of Vf:l)Az at B/N o~ 1000 MeV should become attractive. We turn now

& 2
vfizl)Aa(r) = _41'.5 Rcorr [/(vah(r - l")) ,DA,(I") dl‘_'

- / (VNA,(r—l"))szl(r')dr'J : (I11.25)

where Vﬁ}h (r) is the nucleon-nucleus {4y) “p” type optical potential discussed earlier.

We evaluated the second order‘ {double scattering} correction ko the “torps” potential, accord-
ing to Eq. (IIL25), with Reorr. given by Eqs. (IiL.19), {IIL.20) for the system 12¢ +12C at the
following laboratory Snergy per nucleon 100, 200, 300 and S00 MeV. In igures 6 and 7, we show the
radial distribution of the second order correction to the optical potential for the 2 +32 C’ systems

at the above energies, For comparison, we also show the contribution of the dominant, “toroe”,

- DF, potential at 100 MeV/N. The range of the second-order pot.entia.l is appreciably shorter than

that of the first one owing to the highorder density dependence; “(pr ) 2py” vs. tp1)pe™®®, 1t
Is interesting to note that the imaginary part of optical potential changes at 10 MeV/N uamél}-',
W2 is regenerative whereas at the other cited energies it js absorpti.ve. We should stress, though,
that the summed contributions of W) gng Wl g guararniteed to be absorptive. The above be-
haviour of W2 ig 5 consequence of the folding formula {I11.25). Using explicitly the form of P(1}
Eq. (I11.20), we have

E

Re V¥ . 5 { Reore | a a—fp <pf,lp,h +pfhp_41 > (r)
E .

Im v(” = E l Rcorr ! (a2 - 1) 0’% < Pz_q_lPAz ‘f‘,oz_.lz,ﬂ_p(l > [i") (III.26}
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< P Pas T Papa > (M) S /p%;t’r — ") pa (!

+/Pi,kr—r'}-pm(r')dr' . (IFL27).

Therefore Re V(2 being linear in Re fnx \and correspondingly in the parameter «) is atractive
in the energy range 100 MeV < E < 800 Mel™ and repulsive at Epap > 1000 MeV . In contrast
I V) behaves as (az.—— 1) and thus is regenerative at those energies where & > 1 and absorptive
at the other energies where o < 1 and absorptive at the other energies where o < 0. The sum
T V) 4 Im V@) is guaranteed to be always negative { (absorptive) as unitarity requires.

In our caleulation of the jon-ion optical posential to be described later, we have used Pauli-
blocking corrected nucleon-nueleon total cross sections. The full details of the structure of Im (VB 4+
V@), which is used later for the calculation of o g, are given in the following section. IHere we
may mention that owing to the fact that the volume integral of V(@ is 0.3 of that of Vit is
expected that the effect of V_("” on o is small. We have verified this by evaluating, within the
JWKB approximation discussed in Section II, the total reaction cross section of 12C +'2 C using
V1) & YA for an optical potential and have found that V2 has a less than 10% influence on
og with respect to the calculation with only V) included. In our calculatlon, to be described
fully in Section IV, we nave included the Pauli-blocking effect mentioned above, and perforined an

appropriate average over the Fermi motion of the nucleon ini the pro jectile and target.

IV. The imaginary part of the “tp, p;" interaction

In this Section we develop further the theory of the ifnaginary part of the ion-ion potential
discusscd in the previous Section. In particular we mvestlgane the effect of Pauli blocmng on. the
potentml and the consequent effect on the mean free path. Other medJum ef'fects such as the
binding energy, off- shell effect.s and the non- ioca.ht). of the potennal w111 also be bneﬁs a:scusqen.

As we have seen In the prevxous Section, the 1mag1na.n pa.rt of the “ip Apg mte_rac_mon. _can

be written in the following form

W(Er)= —EG¥N(E)fdr’ pale—1') pa(r) (Iv.1)

where E and &y are the energy and momentum per nucleon, respectively, and ok i the nucleon-
nucleon total cross section. The Pauli blocking is mcludeci in the above expression for W. by
modifying (reducing) ok According to Kikuchi and Kawai?® this entails substituting o

above by an average cross section given by (for the case of proton-nucleus scattering)

PRI

where it is assumed thit ky is the momentum of the.p'réje.ctile'nucléon, k F ;15 the Fermi momentum
of the target, ky is the momentun of  target nucleon, df¥' is the element of solid angle that defines
the direction of the final relative momentum k': k is the initial relative momenguem, and onpnik, k')
is the differential NN cross section. The integrals appearing in Eq. (IV.2} take into account the
Pauli blocking through the restriction imposed on | k2 |< kF and on QY. Assuming an isotropic

angular distribution of a(k,k Y=L o % n(k), one is then able to derive for 7 C’NN» the following

simple expression 3"’

FYN(E) = afN(E1) P(i—f} . (IV.3:

with

27




[

1=

P(X)= { (V4

ot
IV A

[y NPT

In obtaining Eq. (IV.3}, it is assumed the.xt the free nucleon- nucleon total Cross section is iﬁdepem
dent éf :_énergy, w};uch is a reasonable assumpt'ior_x at ehergies above 100 MeV., Assuming an energy
dependénée which i.s ﬁmportional té the inverse .of the cnergy, P(X)} attains the following form:
PXy=1-¢x. '

Fﬁr the nucleug—nucleus_ interaction, Eq. (IV.1), the incorporationrof the Pauli blocking eﬂ'e{ct
into.i.{,.\. i§ involved since bath projectile and ca.réec nucieons are Pauli blocked, No simple
expressions for P{X} is obtained in this case and only through numerical integrations is one able
to obtain 5. The pertinent formulae as well as the details of the caleulation are given in
Appendix IV, ' '

The above consideration of Pauli blocking is made in nuclear matter. [n actual finite ﬁuclei.
we invoke two straightforward modifications on the resuits obtained so far: the local density

approximation, which renders kp dependent 6:1 the radial distance, through krip(r)),

3 1/3 '
krp = [Efrzp(r)J : (IV.3)
and secondly, we use an average nucleon-nucleon cross section. For nucleon-nucleus scattering we

have

<77 >= ({A —Z)0Nn + ZEN}:} /4 : (IV.e,

where NV refers to n or P according to whether the incident nucleon is proton or neutran, respec-
tively. In the absence of Pauli blocking, one expects from Eq. (IV.6) that generally < FEN > s
larger than the free PP or n-n cross section. Of crourse for N=Z nuclei,
NN —Nn | N
<. > =35 +577)
Loow N Er. PP
25("7’?”""’??)1’(—5)- {Iv.r,
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The svinmetrized 73N relevant for nucleon-nucleus scattering has the form

< E#’N >=

"

2122 + (Ar = 2))( Az - 2y)

. 51(A ~ Z3) + Zo{ A, - 2y FF
Ajds T

A4,

Since within the iocal-density approximation ¥ and < 70" = are r-de endent, the expres.
! Y app T T P P

sion for W, Eq. (IV.1), becomes

E
W(E;r) = —Ev-jdr’ palr—') pg(r') <z » {E kR(ror'); "1‘?(?')} (IV.8;

To take a better account of the surface, we have also corrected kp{r) to become 32

(kr(r)” = (grzpe(r)) 2/3 + g(zpf—i) ZE . LIV

where € is of the order of 0.1. The above form of kp is the one employed in the calculation of
W Eq. (IV.8), The Fermj momentunt of each nucleus has been determined using Eq. (IV.9) by
dividing the space occupied by the nucleus into three regions, internal, central and surface,

Using the above as well as the results of Appendix IV we have calculated the Pauli blocking
modified N-N cross sections, In figures 8 and 9 we present the behaviour of Opp and Tnp Vs, k.
Also shown are the free space cross section. Different values of the Fermj momenturn of the target
nucleus, kg, kpa, were used for the purpose of comparison. In figures {10) and {11) are shown the
effective oy p appropriate for nucleus-nucleys seattering, for different values of the Fermi momenta
kry and kr; of the two ions.

From these figures, one can see clearly that the Paul; blocking reduction in the values of the
ONN Is greater in the nucleus-nucleus systems than that in the nucleon-nuclens systems at. higher
energies. At lower energies the situation is inverted quite drastically. In fact at kX < kp, the
nucleon-pucleon cross sections in the nucleon-nuciens case approaches zero. On the other hand, ar
these low energies the nucleus-nucleus Fnp and g, is non-negiigible. ‘This is so due 1o the increased
role of the surface nucleons that still have enough energy owing to Fermi motion which enables

them to scatter nucleons into the Pauli allowed anguiar region.
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It is commonly assumed that the total nucleon-nucicon cross scction in free space is slowly
varying function of energy and is consequently replaced by a constant. Such a procedure is used.
e.g. to derive the Pauli-modified cross section, Eq. {IV.3). However, in the energy region of interest
to us, the energy dependence of the free cross sections is quite strong and has to be taken inte
account, as we have done here.

We are now in a position to calculate W. In figure (12) and {13) we present cur results for
two systems. Also shown is the W evaluated with the free ok, for comparison. Clearly Pauli
blocking reduces greatly the strength of W at lower energies as expected. At intermediate and high
energies the Pauli blocking effect is reduced in importance, and W approaches.the one with free
ok n- We should mention that at low energles other reactions mechanisms besides single nucleon

knockout come into play rendering our calculated W with Pauli blocking certainly smaller than

the W extracted from adjustment of the total reaction cross section. This we discuss fuily in the’

following sections. To take into account the effect of these other mechanisms, one has to have a
model for W which accounts for the excitation of collective suriace excitation, as well as for fusion.

Before proceeding with on caleulation of og for several systems, it is relevant to assess the
importance of another effect, which is completely alien to the formalism developed so far, namely
relativity. By relativity, we mean the actual relativistic treatmentof the particles involved and the
use of the Dirac equation. Therefore, we dedicate the next section to this question and consider

spéciﬁcally p-nucleus scattering.
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V. Relativistic, Dirac, form of the total reaction cross section -

The discussion and calculation of og presented in this paper was based on non-relativistic
scattering theory. In recent years, it has become quite clear that proton -nucleus scattering at
intermediate energies is more correctly descnbed b) a relativistic Dlract optlca.] equation. In
particular, spin polanzatlon and rotation seem qu.lte clearly to requu'e, for their deseription, “such
a relativistic theory®3%). One would also like to check whether such a relativistic theory will
influence o r. In this section, we present the relativistic formulation of o and apply it o proten-
nuclear sc.atter'mgz'“") . . . .

The Dirac equation that describes the elastic scattering of a nucleon, treated as a Dirac
particle, from a spin-saturated nucleus, 1s usua.l]y'written in the form, using a time-dependent

description,

[&'-p+ﬁ(m+vs)+V0} v=Ey (v.1)

where it is assumed that the average, complex, nucleon:nucleus potential is a sum of a scalar
component, V;, and the fourth (time} component of a vector potential, V,. The matrices & and
and B are Dirac's, and 9 is the four-component vector wave-function.

Let us wnite V, and V, as

V, = Ua - iWJ
Vo= U, —iW, (V2)
Eq. {V.2) can be rewritten as
WE V)= -p = (m+ V)] =0 (v

obtained from the usual relations, 1Y = 1 &, 14 = 8. We now perform the usual manipulations of
multiplying Eq. (V.3) from the left by % = Yty and constructing its conjugate with the subquent
multiplicaﬁon from the right by t, to obtain finally
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vﬁ[(‘u‘(E—Vx)—i’r'-'i’".(m+1ﬂ)]¢=0 (V4

fonE-v-dp-mavlo=o ()
The ysual Wronskian argument used in Appendix I now supplies us the continuity equation
.2 ‘
A S G AR SN A (V.6}
with
i=ipFe )

_the badronic current.

Integrating Eq. (V.6) over a large volume and using Gauss's theorem, gives us

. 2 '
—f_]-dA:E<¢'(+)lWo+’)’4Wa|¢(+)> (V8)

where the integral is over 2 surface surrounding the potential, in a region where the potential
has completely vanished, and describes the net inward flux due to absorption (W, # 0, W, # 0).
Dividing this flux by the incident current v/l — (v/¢)?}'/? = vy (assuming that ¥+ is normalized

to unity), gives the total reaction cross section

. 2
TR = _[/ j:'A]IIU'Y = m < !l’('“ | W, 'if')‘4Wa E'w[',-) > (V9

We remind the reader again that ¥} is a scattering vector wave funiction.
Eq. (V.9) can be further reduced to a form more convenient for numerical evaluation. We do

this by explicitly writing 1,6“') in terms of its upper (la.rge) and lower (small} components,

!!{(‘”:‘ (E+m}1/2(A;':p)rus (V.10)
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where A = E +m + V, — V,, and v, satisfics the reduced Dirac equation

((5-p)%(&‘-9)~E—m—V,-%)u..=0 (V.11)

With Eq. {V.10}, or, Eq. (V.9), becomes

7R = hv'ym

Udr(wo+w.)uu.—{w W)(%s.pu,)*(j_ia-.p;,)] (v12)

Using the fact that (W, — W,}/ [ A |?= (A7 - A}
by parts and using Gauss’ theorem on the second term on the RHS of Eq. '(V.12), write for op

- /2%, we can, after performing one integration

the following surface integral

R__lﬂ/d,q[ (—a’ pu,>+(§A—ﬁa p)fu;] _ - (vag)

which reduces, in the appropriate s ~ co, where 4 — E4 m = (1 4 4)}m, to the final expression

1

Op=———

muy

dA Re (u “RF-p u,) _ o (Va4) .

s—o0
Eq. {V.14) could have been obtained directly from the first part of Eq. (V.9) namely from the
idehtiﬁcati(:;n op = —( oo TA -j) / yv. Qur derivation above serves as a check of the correctness
of Eq. (V.9). In the following, we evaluate Eq. (V.14) in the eikonal (small-angle) limit.

The eikonal approximation to ¥{* ar u, of Fq. {V.1) or (V.I1), has been recently discussed
by Amado et al.>*). Here we derive an eikonal form from. o R: _st&ting with Eq. (V.14). We follow
the notation of Ref. (57).

Within the eikonal approximation to u,, we have, as r — co.

—

P, mu yiu, ’ . (V.15)
: r— 00 . .

Using Eq. (V.15) in Eq. (V.14), we obtain
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"f*‘f diul i fu, (V.16)
o B

Since S 1s any large surface surrounding the interaction potential, we may take for it two planes

perpendicular to the z-axis at z = toc, We then have

og = /dzb[| U, ]2 (b, z — oo}~ {u, |* (b,z = +20) (V.17)

Eq. (V.17) exhibits very nicely the physical meaning of in terms of the probability densities | u, |
(b,z » —oco) and | u, |* (b, z «+ 4c0).

Using the usual sabstitution for the upper component

uL‘i‘J) kT t,‘l'.‘i'(:-} s (V18}

where x, are Dirac spinors and S(r) satisfies the differencial equation
k-VS(r) =m{V;:(r)+V;o(r) [&'-rx k—ir-k]} {(V.19)
In Eq. {V.19) the central, V.{r) and spin-orbit, V,, interacion are given by (see Eq. (V.11)

VHr) - V()

Vilr) = Valr) + 2V, () + 2 v20)
Vieolr) = 2:”1 : ;r( Vo(r) - V.(r)) ' (V21)

and k = }(k + k'), the average of the initial and final momenta.
Defining the z-axis to be along the direction of k, the eikonal phase S(r), can be written as
i S(r) = -—-TE- f dz'{VC(b, )+ V,D(b.z')[E “bxk- z'kz*] } (v.22)
—o
Using Eq. (V.22) in Eq. (V.18), we can write down immediately for | u, |2 (b, z) the following
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Jua P (b,2) = x! exp[—? Im S(b’,z)] X . (V.23)

we remind the reader that S is an operator in spin space.

Let us introduce the quantities

FoEV(byE) e e e (v

Nem—Vibz) (V.25)

Then Eqs. (V.17), (V.20) and {V.21) give us

Udzb( e°“))] Xy (V.?G%

where
$(b) = $e(b) — $ua(b)F - (b x k) - (v.am)
and .
$o(b) =ﬁj_ GIRNEEY T v
Bro(b) = b f_ g % Im [Fi—N:—T(l«w N)] ' (i?.29)

At this point it is worth mentioning that the quantities ¢.(b) and ¢,.(b), are related to the
thickness functions, £.(b) and t,,(b) of Amado et al. 3% defined by

. RN )
)= e )%f dz(N F+E M)_ L vy
—ib 118 -
too(b) = f & 5 F+ ) (V31)
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Thus

9e(8) = 2 Re () : (va2)

$20(8) = 2 Re 1,,(b) (v.33)

Going back to Eq. (V.26), v;re note first that we can write it as

og =yx! [fdzb(l — gPel®) gmdes a'i"i)]'x,

=yt U dzb(l — ) Cosh Goa(b) + 7 (b x E) eP<) . sin qs,,,(b))] Xa
0 4
=2 x! [ bdb(l -~ g%} coshq&,o{b})} Xs

=2 f b (1 ~ e?e(® cogh d:,.,(b)) (V.24)
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The term involving &-§ x k does not contribute to the b-integral due to symmetry about the z-axis,
Eq. (V.34) can also be written as (Egs. (V.32) and (V.33))

-]
o= 21r/ b db(l — ® e teld) gogp, [2 Re t,,,(b)]) (V.35)
o
Eq. (V.35) is the principal result of this section. It expresses og in the usual form of an impact
parameter integral involving “relativistic” transmission coefficients given by
T(b) =1~ € Re*®) co5h [2 Re t,,()] (V.36)

It is clear that the exact form and details of T(b) would be irrelevant if the nucleon-nucleus
scattering is dominated by.a black disk-type absorption. In such a case T(b) would be representable

as

T(b) = ©(b - R.) S (V.37)
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where ©(z) is the step function, and R, is a characteristic absorption radius. If Eq. (V.37) is used

or becomes the situple geometrical lmit,

CR=T Rg (V.38)

If the above were true, not too much physics would be extracted from o . Luckily total reaction
eross section data of proton-nucleus systems at intermediate energies exhibit major deviations from
the black disk result Eq. (V.38). Nucleus become quite transparent to nucleons at intermediate
energies 2), and the quantity that measures this nuclear transparency in details is given by T'(b) of
Eq. (V.36). Therefore detailed evaluation and discussion of T(b) and the resulting o is clearly
called for. This has been done using the conventional non—reiat:v:stxc theory by Dlglacomo, DeVries
and Peng ?). In the following we present our result for and discussion of o within the Dirac-eikonal
treatment presented in this section.

Before presenting our results, we warn the reader that t.(b} is ill-defired for proton scattering
because of the presence of the long range Coulomb potential Whlch is present i ¥,(r). This
difficulty can be dealt with easily by some appropriate modification of the integral involved. The
details are glven in Appenchx I of Ref. 23), Here we only cite the final Coulomb—m_odiﬁed, bt

finite, ap

op=2m f bdb-(_l—e2 Re t(8) coshi2 Re t,o(b)]) S (V39)

2EZ, Zpe?\
! ze) " (V40)

. - [ '
ifhy=._"* N? 2 2 _ o2 sEirZpe”
(8) 2(ke)?k _/:co dz( FEHE —m r(b, z)
" Finally, a word about the optical theorem and its generalized version for charged particle

scattering. For neutra.l particles the usual form of the optical theorem

\ _
o= %Im F(k, k; E) - / | Fik, K" E) £ ang, (VA1)

should yield the correct expression for og. In fact, w1th the elastic scattering amplitude F(k, k’;
E) derived by Amado et al.3536),
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Flk. kK Ey=F +6-/F ~ = 7 (V.42]
F = —ik / db b Jo(qb) (efc“” cosh {ta0lb)] — 1) {V.43)

= —k[ db b J;(gb) e“® sink [t,o(5)) (Vg

q=| k=X |, and Js and J;, are ordinary Bessel functions, Eq. (V.42) results in exactly the
expression for g given in Eq. (V.35).

Tor charge particle scattering, Eq. (V.41) yields infinite values for both terms on the RHS.
Howerver, a generalized opticel theorem can be derived from this purpose and.it does supply a

means of calculating og,

o = i‘-]&’irm [F(k, k; B)—F.(k. k; E)]

- f [I Pk K E) [~ | F IS E) Blan  (v4s)

where F. is the point Coulomb scattering amplitude. In a way, the procedure we employ amount
to basically calcujating the difference F' — F, in the form of an irnpact-parameter integral, which

yields completely convergent results.

Numerical results

In what follows we present the results of our calculation of og, Eq. (V.39), for p +*® Ca and
p+2%% Pb, in the proton energy range 10 MeV < By, < 1000 MeV. We take for the proton-nucleus
optical potential, the impulse-approximation Diract optical interaction for spin-saturated nuclei

has the general form 3%34)
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ik
<K U | > = —e Fy(q) pala) +va Frig) pv(q-)]

= V,(a) + Vola) : (V.46)

I Eq. (V.46), F, and Fy are the scalar and vector pieces of the Lorentz-invariant N-N
amplitude, respectively, and p, and py are the scalar and vector form factors of the target nucleus,

given by

pa(g) =< 0] €m0 L (v

pr{g)=< 01> vievv 0> (V.48)
The above densities can be better visualized when written in conﬁgurahibn space.

ace.

pa(g) =< 0L M 8r—r) [0>= 3 da(hbalr)  (V49)

. L ack. - R o
pr(r) =< 0] Y §r—r){0>=) vl(r)pa(r) ) (V.50)
i o
where we find a-sums are over occupied single pa,rtic]e. states. Writing in terms of its upper and

lower components.

Yo = ( wz) yo %= (ab”a,—zﬁLa) - ' (V.51)
we can express pg(r) and pv(r) as .

occ @cc,

po(r) = 3 BYr) P 3 FoE(r) P2 pulry=pi(ry T (Vi6D)
pr(r) = Y 198G P+ | $E0) P= pult) + putr) (Vs
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Therefore, the difference py(r) ~ ps(r), measures the strength of the lower component density
2p(r), and accordingly, the degree to which the optical potential is relativistic.

The potential calculated by McNeil et 2139, is obtainea by setting Fslq) = Fs(0) and Fy(g) =
Fy(0) in Eq. (V.46). In this limit, which is quite, rea.sona.ble in the energy range considered,
the Fourier transform of Eq (V 46) yields a local potential in conﬁgurat:on space, with its -

dependence complete]y spec:ﬁed by pg(r) and py(r) We therefore write
V() = V2(B) )= (zor-w@) o) (v54)

Velr) = VB el = (U:(E) SWE) ). v
whére jg and v -1eprésent the shape'of the densities and they are both normalized to unity in the
cental region. ' McNeil et al.3%) presented their results for U E), WY E), US(E) and WD(E) at a
radius where pg and py are both 0.16 fm—3. These values of the densities, correspond to a ﬁna.l
momentum, kg = 1.37 fm—1, It is found that W{'is negative, implying, using our convention, Eq.
(V.2), ‘that the scalar interaction is tegeneratwe whereas the vector one is absorptive. Their values
come out comparable; with W (E} a bit largéf t}ia.'n Ww2. Al of these results are in accord with
phémemenoclogical findings. The ‘above results were also conﬁrmed by Horow:tz“) in h.ls nuclear

" matter-calculation of We and Wy, ' ' '

‘Armed with the above facts! wé eva.hiated a;}',"Eq'. (V.39), usiilg the results of McNeil et
al.,, as presented in their figure 1. For the density shape of 2*Pb we have used Saxon-Wood
forms with- parameters fixed in- accordence with resiits obtained from electron scattering, which
basically: supplies gy for protons. We have, however set ps(r) v (r) for all r. The radius, R,
and chfuseness @, parameters for ¥ Pb, are %) : o C

R= 6624fm,--a.—-0549fm :

The deusxty shape of ‘“’Ca. is usually pa.rametrxzed as
-1 : .
Bcase(r) = (1 + wrZ/Rz) [1 + exp(r — R}/a] (V.56)

4

with w = 0.1017, R = 3.669 frn, a = 0.584 fm.

The results are presented in Figures 14 and 1538). It is clear from the figures that the
comparison of our g in the energy range 100 MeV < E < 1000 MeV, with the data 2, is as good
as the one obtained with the nonrelativistiv theory. This finding convinees us that our calculation
of o for heavy-ions presented in this paper, with the conventional nonrelativistic “tpyp2" potential

should be adequate,
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VI. Calculation of oy for several heavy ion systems

Having obtained the microscopic ion-ion potential in the previous Sections, we sre now in a
position to test it insofar as its reactive content is concerned. Further, the range of dominance
in W of inclusive single-nucleon knockout at intermediate energies can now be assessed. In this
Section we present a detailed account of our calculation of the total reaction cross section, oz, for
several heavy-ion systemns. In particular we discuss the degree of transparency in these systems and
how this is related to the mean free path, as discussed qualitatively in Section II. Another related
question which is addressed here is the dependence of ¢z on the effective radius of the system and
how this dependence changes with energy. In our calculation, we also include the second-order
double NN scattering potential discussed in Section III.

The expression we use for o is the WKB one given in Egs. (I1.13), (I1.17) and (11.21), ramely

oR = 21r/ b db [1 — exp[—46(8)] (VI.1)

with 67(¥) given by Eq. (1119}, and evaluated for the 1p; p; potential discussed in the Section ITI,
with the Pauli blocking effects fully incorporated as done in Section IV.

The expression we use for o contains the eflect of refraction arising from the real part of
the heavy ion interaction potential®}. It also contains an improvement over the treatment of other
authors in that we include, besides the usual nuclear medium corrections, the second-order double
scattering component discussed in Section IIL

We have calculated og for several heavy-ion systems, ranging from light, such as the very
extensively studied 2C +'% C, to the very heavy 6 Pb 4% Pb. Our aim in this, is not so
much the reproduction of the existing data, but rather to pin down the energy region in which
the “£pp” interaction approximates well the complex ion-ion potential, with its reactive content
being predominantly single and double nucleon knockout {single knockout and double knockout
being respectively associated with the imaginary parts of the single scattering “¢p; p2” and double
scattering “(£p; )}’ p2” interactions). As we shall see, at low energies,' where Pauli blocking greatly

reduces the strength of the imaginary part, as we have seen in the previous Chapter, the calculated
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total reaction cross section, .act':é)rding to Eq (VI 15 becomes” much smaller than f.he d'é..ta., ‘as it
should, since no account is taken of nuclear surface inelastic exc1tat10n fusion and other | pmcesses
which dominate o at these energies.

Ins figure {16) we present the result for 12 +2¢C. The full curve .représent.s. the resﬁ[tndb_té.in'ed
with Eq. (IV.1}, including the Coulomb and the real part of the nuclear .potenfia.ls... In thelenerg'f
range 100 MeV < Ec . < 800 MeV/A the a..g'.réemént. with the data is reasonable. At lbwé.r
energies, however, our caleulation underestimates the data by a factor which could be as large as
2 at Ecpr. ~ 10 MeV/A. The: dashed cu:ve'repreéenf ‘the result without Vi and Vg and with
no Pauli blocking. The fact that this curve approximates very well the data is clearly fortuituous.
The crosses shown represent the result ‘of nuclear matter calcilation réported by Faessler et al. 4,
This calculation seems to come close to our calcﬁl@tiqn_w_hen Pauli blocking is talen into account,
but with no Vv and Vi (shown as dashed-dotted line). It is iiﬁporta.nt to notice that both Pauli
blockmg a.nd nuclea.r -+ Coulomb refractive effects are quite insignificant at higher energies. Thus
it 15 in the low energy regime-that the theory gets. its major check.: Of course it is exactly at, these
energies, .W].Zlert_: other nuclear processes, not aceounted for. by the “tpp” interaction, start coming
into play, as already discussed. These processes gradually fill in the gap between the calculated
microscopic o g and the data. Of these, incomplete fusion and deep inelastic processes, are probably
the most important at 5 MeV < E < 15 MeV/A, followed by complete fusion.. Inelastic and
transfer reactions as well as other quasi-elastic processes always contribute with varyi_ng_v;teights,
depending on energy. ' :

We have also calculated op for other systems.  In Figs. (17)-(24), we shoﬁv.ot_lr result: for,
1200 140 0 900 440 Cq, 120 490 Zr, 92y 4% Zp, 120 1208 pp 400, 4 208 pp 907, L 208 py
and 2% P 2% P}, These systems were chosen to represent different mass regions..- In some cases
few data points exist, in other, none. In all cases, we see the clear drop in op (full curves) as
the energy is lowered, indicating the-approach to the threshold-of the processes described by the
“tp1p2” interaction. Further, the small d:p in op close to the effectzve threshold for smgle pion
production in the nucleon-nucleon scattenng becomes less . conspwuous as the mass of the heaw

1on system increases.

Having caleulated mlcrosplca.lly the total reactlon cross section from t.he “£py py” interaction, it
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is now possible to evaluate the degree of transparency in the different HI systems at intemmediate
energies. Before doing this, it is useful to establish first the connection between our calculated

results for op and the geometrical formula given by Eq. (I1.16).

op =ni? (1 - i) (VI2)

Ec.m.
We have considered the following systems 12C 208 Pp, 49Cq+ 208 pp, 90 71 208 Py o d 208 ppy 208 py
at E¢.pr./A = 10,200,400 and 600 MeV. To reproduce the theoretical values of og with Eq. (V.2),
we were forced to use the following small values of the radius parameter rq (R =ry (Ai/ 41 ),
1.22, 1.26, 1.26, and 1.26 fm, respectively, for the four systems mentioned above,

" These values for ry are considerably smaller than what one might expect if the geometrical
limit of ‘o5 has been reached by these systems. Such limii is usually specified by the strong
absorption radius which gives for ry. = 1.5 fm. In‘fact to reproduce the available 2C +12 € data,
shown in Flg (14) at Ecp.fA > 5 MeV, we need to use ry = 1.57 Jm. 1t is therefore clear
that. these systems do exhibit & large degree of transparency T (Eq. (11.27)) as was suggested by
several authors. However, one has to be careful when assessing this {ransparency since there is a
strong dependence on the value of rg- used.: For example according to Bohlen et al.®®) there is a

12% transparency in 12C +12 ' at ‘Be pm:fA = 12 MeV whereas De Vries et al 2} predict a zero

value for T. Such a discrepancy stems from the fact that these authors use different values for the-

strong absorption radius parameter in Eq:- (VL2).
We.present now our calculation of T, based- on ‘our theoretical results, which ‘we compare to

the following equation -

'b'R=1rRzé (1_ Va )'(1—'T) L

with a.radius parameter rq, of about 1.5 fm, For the 12C +12 C system this parameter is slightly
larger (r.'o = 1.57). In Table (II) we show our results.fc;r 2otz 120y 208 .Pb, WCa 4% Ca and
208 pp, 208 pp, at Feo e [ 4 = 50,100, 2060 300 and 5ﬁ0 M eV. We see clearly that the transparency
factor ranges in. value from about 50% for the lightest system to about 27% for the heaviest one.
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(V1.3)

In our calculation of or presented so far, we did not take into account the effect of statistics
in the identical projectile target systems. We now discuss this point, and present estimates of the
effect. ’

The elastic scattering amplitude f{#) should be written as

@) = f(®) + r(—)"~* fx —8) (VI4)

where 7 = +(~) for boson (fermions), and I is the intrinsic spin of the partners and s degotes the
channel spin s = 0,1,2, ... 2L In what follows we take the case of two bosons with I=0 (e.g. 12C).

Thus, through the application of the optical theorem to £(6), and with P,(6) = (Y Pen —8), we

obtain
7R = :_2 DAL+ (-) T, (VL5)
€ .
which can be written, in the impact parameter representation, as
Fr(E) = 27r] db b[l + cos (kb — 1/2)} T(b) (VI.6)
0
where we have used (—1)! = coswf and ¢ + 1 =kb
Let us now evaluate the above expression in the sharp cut off model, namely
T(8) = O(b: ~ b) (VLT)
where b is the Coulomb modified sharp cut off radius. Then
TR(E) = oR(E)+ A ptar., (VI8)
or(E) = b’ {(VI.9)
b, . 1 '
ACgtar. = 2w - sin(kb; — 1/2) + el cos(kb, — 1/2) — cos{1/2)]} . (VI10)




In the above expression Ao,ga, represents the correction to o g arising from the identity of the
particles.

In table III we present the values of Ag,y,, for several identical heavy ion systems at several
C.M. energies per nucleon. We see clearly that Aoyear contributes &t most about 5% at these
energies. At higher energies the effect is even smaller. Thus. for all practical purposes, we can
ignore Ao g, The use of the move realistic T(b}, in Eq. {VL.1) does not change appreciably the
above conclusions.

In the next section we turn our attention to the case of exotic {neutron- and proton-rich) nuclei.
The study of these nuclei has intensified considerably in the last several years and a summary of

some relevant facts is in order, particularly what concerns the total reaction cross-section.
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VII. Resctions with radicactive secondary beams

Some puclear fragments originated from heavy ion scattering at high eneréiés ‘are formed from
a piece of the projectile nucleus that has not been scraped off by the target. Such fragments tend to
keep various properties that the projectile nucleus had before the collision. For example, they have
almost the same velocity as the beam veldcity. Iﬁ regard to the neutron-to-proton ratio {N/Z),
heavy-mass projetiles such 2% P81 contains more nentrons than protons (N/Z = 1.6 for U). On
the other hand, the stability line of nuclei extends along N/Z = 1 for light nuclei. Therefore',.
light-mass projectile fragments from U beams tend to fill the unstable neutron-rich region.

Following this idea, severai new neutron-rich isotopes were discovered for a short period of
time at the BEVALAC. accelerator®®~#1). Ope interesting application: of, these. isotopes:is: their
usage as. secondary beams. Since the velocities of these isotopes are: almost. equal: to. the. beam
velocity, high-quality secondary beams aze expected.. Recently, a japanese group*?). has: extensivel}".
investigated and measured the interaction cross sections of secondary beams. at’ the: BEVALAC,
following this technique. Such experiments have also been performed at GANIL with intermediate-
energy beamst—14),

In this chapter, we make a brief analysis of the reaction-cross sections: invoi\.fiﬁg': i'adioacti\-é‘
secondary beams. An important motivation for: these measurements is to determine: the: size of
neutron-rich nuclei, - - _ T R T PO

By a comparison of the experimental data with the g.eometricalarea..o‘ = n(R%+RE); with
Rp(Rt) equal to the projectile (target) radius,. one finds that*?} the radii of 1 Li, 1* Be and-14 Be
are much larger than expected from the standard formula R; = 1.2 A* fm. Sato.and Qkuhatatst
and Bertsch, Brown and Sagawa®® have shown that these reaction cross sections for light nuclei
can be calculated quite well with approximations of the Gl_a_uber model, which e.g. for a zero-range

nucleon-nueleon interaction is given by (eqs’ Vi1 and In.23)

o =2v [bas{1-exp|-amn [r 000 i00m b} iy
where p, is defined by 2:(r)} = f dz p(v/r% 4 z%): The densities are determined from: the' Harties
Fock single-particle wave functions combined. with. the shell model occupation. probabilities®®).
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The result of this calculation is shown in figures 25 and 26, where the isotopic dependence of og
is shown. The energy dependence of ox for the cases shown, namely Li and Be is completely
determined by that of oy, as already emphasized earlier in the report.

The situation complicates if the target is a nucleus with a large Z. In this case, the Coulomb
interaction between the projectile and target plays an important role. In fact, Coulomb excita-
tion of giant resonances is a relevant part of the reaction cross section already for intermediate

7). Bertulani and Baur*®) have studied extensively the implications of

energy nuclear collisions*
the Coulomb interaction in high energy coi‘lisi_ons.' For relativistic energies the cross sections for
Coulomb excitation of giant resonances maybe even larger than the geometrical cross sections.
Since the giaﬁt resonances decay mainly through particle emission, or by fission, the relevance of
such processes to the computation of total reaction cross sections is obvious.

But, not only the coherent action of the Coulomb field becomes important in high energy
colisions. Also, the coherent action of the nuclear field leads to new effects in peripheral collisions
at high energies. Among others, the effect of emission of correlated nucleons was studied in refs.
4% and 50.

We shall not enter into the details of the effects of the coherent action of the nuclear and
Coulomb. fields in peripheral collisions at high energies. But, due to their large contribution to
the total reaetion cross sections, it is worthwhile to show examples of their applications. Being a
rapidly-growing, field, the reactions with radicactive secondary beams offer a good opporiunity to
this (see ref. 51).

Besides the measurements of the reaction cross sections with radioactive secondary beams,
another intriguing experimental result Is related ta the momentum distribution of the * Li fragments
originated from the reaction *Li + Target — °Li 4+ X. These fragments result from peripheral
reactions and give information about the nuclear matter distribution near the surface of the 'Li.
isotope. The perpendicular momentum distribution of the ®Li fragments shows a “two-peak”
structure*®, .with-a narrow peak on the top of a wider one. Thé widths of gaussian'fits to these
peaks are given by oyiz. = 95 + 12 MeV /¢ for the wider peak, and 0pgryg0 = 23+ 5 MeV/c for the
nazrower one. Such structure has also been found in the reaction ¥ Be -+ Target —12 Be + X. In

the case of ! L{ it is known that the separation energy of the last two neutrons is 5, =0.1940.10
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MeV, while the separation energy of only one nucleon is as much as Sy, = 0.96 + 0.1 MeV.

Hansern and Jonson®?) have argued that it is the strength of the neutron pairing which is
responsible for the differences in the separations energies of ' Li and of other neutron rich nuclei.
This pairing makes the bond between the two loosely bound neutrons much stronger than the
respective bonds between each of them and the *Li core. That is, the 11 L{ is much like a cluster
nucleus with a di-neutron system bound to the *Li core. It is the aim of this paper to show that
both the widths of the momentum distributions as well as the total cross sections can be explained
by assuming & simple cluster-like structure for 11 Li as a di-neutron bound to a ¥Li core. But we
also show that analogous results can be obtained by considering the excitation of & soft vibration
of the protons against the neutrons in ' Li. The preseatly available data do not unambiguously
distinguish between the two models.

Due to the small energy necessary to remove the neutron pair, the reaction process is of
peripheral nature. The fragmentation is then originated by the nuclear field when the tails of the
nucleonic distributions just touch each other, or by the Coulomb field even when the nuclei pass
several tens of fermis far from each other. The scattering angle 8 is therefore very sﬁzdl, and the

momentum transfer in the reaction Ap is related to energy transfer by

Ap=ppeosh-pz 2 - wny
where v is the projectile velocity. Since the energy E* transferred in peripheral processes -a.r.e
typically of order of few MeV, it can not be absorbed by 2 single nucleon. The nucleon woulci .ca.rry
2 momentum ~ v2mE*, which is appreciably larger than that of eq. (VIL2) for v ~ ¢ However,
sucﬁ energy could be absorbed by a nucleon pair, or a pair of clusters, which can have high
kinetic energy and smail total momentum, when the nucieons move approximately with opposite
directions. The relation {VI1.2) can also be satisfied if collective excitations, like vibrational modes,
are eicitecl_. | . .
Let us assume that the energy E* deposited in the nucleus with mass number A leads to its
fragmentation into two pieces which fly apart with opposite momenta with the same magnitude p.

If one of the fragments have mass number a, the following relations holds
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. p . p? . '
E*—e= WA a)mn + Cy— . . {(VI13)

where m is the nucleon mass and ¢ is the binding energy between the two clusters. The momentum

widths of the fragments is obtained, after an average of (VIL.3), as

a4 —a)

2
< > 2 < K >
P TN A

(VIl4)

where < K >=< E* > — < € > is the average kinetic energy of the fragments.

This formula is very much like the one obtained by Goldhaber® for the momentum width
of a fragment of mass number a in the fragmentation of a nucleus of mass number A. No wonder,
because both approaches rely on momentun and energy conservation. Goldhaber assumes that the
momentum width results from an average of the net momenéum obtained by adding the individual
momenta of the nucleons inside the fragment at the exact moment it flies off the nucleus. This
procedure relates < p* > to the Fermi momentum Pr of nucleus A. The final result (.which assumes
< E* >~ 0) in equation (VIL3) with 2my < K > replaced by P2/5.

Since the transferred energy depends on the specification of the target, as well as on the
beam energy, then by means of a varjation of these parameters the measurement of < p* > yields
precious information about < € >. In the case of 11Li — 9Li+ (2n), the narrow peak with width
V< > =23+ 5 MeV, gives < K >= (117 + 0.08 MeV, while for the wide peak with width
V< P2 > =95+12 MeV/c one obtains < K >=2.9+0.8 MeV. Since the binding energy ¢ of any
pair of neutrons in *1Z: can not be larger than some MeV (one could imagine that at least one of
the neutrons come from the inner part of *! Li, where it is more tightly bound), the above results
show that the energy E* transferred in the process can not be larger than some MeV, too. This
means that the dissociation is very soft and occurs at very large impact parameters, probing the
tail of the nuclear matter distribution in ' Li. The average kinetic energy < K > associated with
the narrow peak is of the same magnitude as the binding energy of the loosely bound neutrons.
Then, it may give information about the correlation distance between the di-neutron system and
the ? Li-core, within the cluster-like hypothesis. On the other hand, the wider peak reveals that a

more tightly bound neutron is taken out of }'Li. An analysis of the dissociation cross section as
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a function of the relative finel momentum of the fragments confirm the above hypothesis, as we
show next.

Assuming that the 1! Li possess a binary cluster structure (di-neutron +°Lz), one can make
simple estimates of the cross sections for its dissociation. Using a deuteron-like wave function for
the pair of clusters and & strong absorption model, simple-expressions were obtained in ref. 34.

The nuclear contribution to the differential cross section, in the limit that ¢ — 0, is obtained as

doy 2

— = Rp o3, . VILS)
e (Y1L5)
where g is the relative momentum of the clusters after the d1ssoc1at10n Rr is the ta.rget ra.chus ;
and § = /Zuefh, with g equal to the reduced mass of ther clusters.
The Coulomb contribution to the differential cross section (ta.kmg; only the El-ml.ltupole con-

tribution) in the same limit, is given by

dd'c 128 Zl A2 - A] Zz ) ﬂq4 ( vz
(n? 6

Ge=y Bl P (R o | — 53 (VILS)

where v = (1 = v2/c?)71/% is the relativistic Lorentz factor, §-= 0.891 and hw = R*(n%+ ¢*)/2u.
Ai(Z;) refers to the mass (charge) number of cluster i (4 == Ay + 43) and R= Rr + Rp. '

The above expressions reveal that the spread in ¢ is of order of < ¢* >2 5%, This means’
that the relative. kinetic energy of the clusters after the dissociation is on the average of same
value as their binding energies. This is indeed what we obtained above for < K > associated
with the narrow momentum component. Therefore, the narrow momentum component can be
interpreted as originating from the removal of two neutrons weakly bound in ** Li. The root mean
square radius for 1 Li, supposed to be a deuteron like system, is V< r? > = 1/v/2 # ~ 5.8 fm.
The experimental value *? for the r.m.s. radius of the °Lé core is about 2.5 frn.. Therefore, the
di-neutron system forms a neutron helo around the L core.

As has'been pointed out by Tanihata®®) the amount of kinetic energy associated with the broad
momentum width (~ 3 MeV) is related to the binding energy of neutrons in the ? Li-core. Asin the
case of Y Li 4+ (2n) described above, a pair of neutrons in ? i core can also absorb the transferred

enérgy in the reaction with their final relative momentum and energy obeying eq. {VIL2). In this
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case the decay constant p in eqs. {VIL5) and {VIL6) can be related to the average binding energy
of neutrons in the *Li core as n = \/Minye/h. Taking e, ~ 3 MeV. this yiclds & r.m.s. radius of
about 2.65 fm, which agrees very well with the r.m.s. radius of °L:.

Neutrons coming out of the *Li core can also have their origin in the' collective excitation of
it. The most effective way of creating such excitations is by means of the Coulomb interaction; It
gives the same "kick” to all Z protons inside ?L;, leading to their collective motion. For collisions
with impact parameter b, this kick leads to an energy transfer which can easily be calculated
as® AE; = 2Z(Zre?)?/mnb?v?, where Zr is the target charge. But the protons are not free
and they pull the neutrons together. This leads to a movement of the whole nucleus, and the
Coulomb recoil that one obtains by assuming that the nucleus with mass number 4 is a rigid body
is AB; = HZZ7e?)*/Ampyb*v?. The difference between these energies goes to the vibration of

the Z protors against the N neutrons, and is

NZ (Zrety?

* o E— = .
B = A - Al = T

(VILT)

If we assume that only the protons and neutrons in the *Li participate in these vibrations (N =
6, Z = 3), and for 11 L{ beams (08 GeV /oucleon) incident on Pb, one finds E* = 0.26 MeV in 2
collision with b= 15 fm. This energy is far below the excitation energy of giant dipole resonances
{ GDR) in normal nuclei, which means that the excltataon cross sectmn of a giant dipole mode in
the 9Lz core is sma.]l _

Indeed a.ssummg that this chpole resonance excited on the 9Li core can be accounted for i in
hhe same way as a norma] g:a.nc d.\pole resonance positioned at EG R a.nd using the TRK sum rule,

one ﬁnds for the total Coulomb cross section

=2z2aEp SR KoKy i K? - K2 vII
TOR= F e EgrMev [P0 (K= )J ) (ViT8a)
with
N
S.R. =60 TZ . (VII.8h)

where all modified Bessel functions, K, are functions of ¢ = Egﬁ R/’yﬁz}, and N, Z and A refers

to the neutron, charge and mass number of the YLi core (6, 3 and 9, respectively}. Assuming that
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the resonance lies in the energy range Egr = 10 — 20 MeV. and for beams with 0.8 GeV' /nucleon
incident on P5, one finds ogg =~ 50 — 400 rmb.

One could think about other vibrations modes in '' L:. like all protons vibrating against alj
neutrons, or a *Li core v.ibrating against the di-neutron systemn iSuch tvpe of motion has been
recently studied by Suzuki et al®7), what they cailed by a pygmy resonance). For the former case
(N =8,Z =3nand 4 = 11) we ind E* = 0.20 MeV., while for the latter case one makes the
substitution of Z by ZZ/(A — 2} in the equation for AE; and obtains £* == 0.02 MeV. From these
values one sees that it is very unprobable that the latter vibration mode could be excited. It is
much more reasonable to think that another possible way for the ' Lt to absorb energy is by the
excitation of vibrations of a.il protons against all neutrons in it. Due 1o the existence of the neutron
halo, one might think that the protons move almost freely inside the "' L; and that the excitation
of such dipole vibrations will occur at very small energies {soft dipole mode).

Recently, Kobayashi et al®®) have measured the total cross section for the d.issocia.t.ion of 11L:
linto %L 4+ (2n)] incident on several targets (Pb, Cu and C) with 0.8 GeV/nucleon beams. We
shall refer to their particular result for Pb targets which has the advantage of having 2 large Z,
and induces a large Coulomb cross section. They obtained the vajue gc = 1.31 2 0.13 &. In the
°Li + (2r) cluster model, the total cross section for direct Coulomb dissociation is obtained by an

integration of {VI.6) which results in

(VII.9)

- 2
gcp = 4?# Z}a? (E)2 i Ly — A2y )2 ;11_ [E vhy v ]

o}~ —
1 ‘i’ 3|

For the reaction cited above it gives ogp ~ 1.44 %2 b, where the uncertainties are due to the error
in the binding energy.

The nuclear contribution to the direct break-up cannot be obtained by an integration of
{VL5) because it was based on the impulse approximation, neglecting the interference with an

eclipse term. Including such effect the cross section is well described by the Glauber formula®®

TNDp = g( éﬂg— l)RT

5 (VIL.10)

In addition to this (diffractional) dissociation one has to account for the absorption of the (2n)

system by the target {stripping). The cross section for this process was obtained for the deuteron
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}, For other cluster-like [a + {4 —~ ¢}] nuclei one has

by Serber5®

(Vi)

one T Ry
NS =g .

LR

For the reaction " Li+ Target — %Li+ X one obtains onp = UTDf;gO mb and ans = 1657182 mb

respectively. One then sees that the Coulomb dJssocmtlon accounts for the main part of the

measured cross section, although the nuclear contribution is not negligible. At this point we obsene
that the Coulomb-nuclear interference in these reactions may be neglected for the following reason.
The nuclear contnbutlon to the total cross section can at most come from those impact para.mel;ers
{from bmin t0 bmas) for which the neutron halo of !* L7 touches the nuclear matter dlstnbutlon of
Pb. The contribution of the Coulomb field to the total cross section from this interval of impact

parameters is, percentually, given by

_ gn(bmaz/bmin)

= Tn(ahw 6ebmin) (Viriz)

Using typical values of by, 2 10 fm and by.; ~ 13 fm, one finds A ~ 5%. This means that
only about 5% of the Coulomb contribution should interfere with the nuclear contribution. The
reason is that, although the fragmentation induced by the Coulomb interaction maybe small in a
single collision, the interval of impact parameters contributing to the total cross section is very
large, up to somé hundreds of fermis. Therefore, we can write Fyrar o on + o¢. Adding the
Coulomb dissociation, the nuclear diffraction dissociation, and the stripping cross sections one can
reproduce quite well the experimental value of Kobayashi et al®® for the total cross sections for
two neutron removal from secondary beams of 1! L7 incident-on Ph.

If we now restrict our study to the Coulomb contribution to the dissociation, which is the
dominant part of the cross sections, we find that the excitation of giant resonances as described
above can also lead to great values of the cross sections. In fact, if we assume that the energy of
excifation, EgR, of a soft vibration mode in %'Li is of order of 1 MeV, and that the contribution
of this_soft mode to the sum rule SR is of about 10%, we find (using N =8, Z =3 and- A = 11)
ogr =~ 1.3 b. Due to its low binding energy, one of the main channels for the deca._y of this resonance

must be the emission of the two neutrons. This indicates that the excitation of this soft dipole
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mode is a.nother poqmb}e mechamsm to exp]mn the N&ITow mornentum component in the data for

NLi ——* Li + X as well as the total cross sect:on for the fragmcma.tmn

From the present available dat.a it cloes not seem to be possﬂ)le to know 1f the fragmentataou
Np, .9 Li+ X in secondary beam reactions proceed via the direct break-up of a two-cluster
system or by the excitation of a so_ft_dipole mode._ But note that the t\r_\}o mechanismsrassum_er very
distinct structures for 11Li. The direct or_oa.k—up supposes that T..he protons are tightly bound to
the neutrons in the 9Li core, while the excitation .of the sof@ ruode a,ssuu-xes that the proi'.ons nﬁove
almost freely against a neutrenic ba.ckgrou_n(i. Since the Coulomb kick to the protons ‘does_n_o-t
depend in eithe.r hypothesis, only one of the two mechanisms could be responsible for the measured
cross sections,:. Pue to the large errors in the lmowleage of the binding energy of two neutrons in
Y Li, and also due to lack of information about the energy location as well as of tl.'{e strength of the
photonuclt:.a.r cross section for 1! i at the energies involved, precise theoretical calculations based
on either of these models are not-conclusive; and the agreement with the experimental data is not
unique. Certainly, more expetrimental results and theoretlcal discussions are needed in order to .
determine which of the miclear models are adequate ) '

In contrast to the simple models described above, converitional shell model ‘calénlations per-
formed by Bertsch and collaborators®?—54) were not able to rerpoduce the amount of electric dipole
strength in ¥ L necessary to explain the electromagnetic dissociation cross sections. As oouoluded
by Bertsch and Foxwell®?) it maybe essential to take cluster aspects into account. Nonetheless, the
failure of the shell model calculations to determine the enhancement of the electric a'i.pole.sirength
of ™ Li at low energies - which is needed to reproduce tlie experimental data - has lead those -
authors to argue if the eexperimental values of the eIectron;agnéﬁic 'd.i.ss.ociation cros.s sections®)

have been correctly extracted from the total cross sections.

Their point is that in ref. 58 one assumes that the noclear cross secf;ion scales as o =
2m{Rp + Rr) &, which is characteristic of a peripheral process concentrated in a- small ring widtk
A at the surface of the projectile (Serber Model). By adjusting the parameters of this scaling law
the "experimental” va.lues of o were obtained for other vargets, and the Coulomb contnbutxon
oc to the cross sect:on were mferred by substract.lon But. since ”Lz has a !ong t'.a.11 in 11:5 matter

distribution, such procedu.re is doubtful. -’&ssummg that the :a.rget is a ’black dzsk” the nuclea.r
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stripping of the outer nucleons in ! L7 should be

o = 2n(Rp + Ry} A P(Ry) (VII13)
where P{Rr) is the probability that the outer neutrons will be removed from ' Li. Due to long
matter tajl,‘ this probability depends on Rr. Actually it should be approximately proportional to
the area A of overlap between the target and the neutron halo in ¥ Li. From simple geometrical
considerations it is possible to show that A « Rp. That is, ey should increase like R"}', which
would result in larger values of "o};"” than that what was determined in ref. 58. This has as
a consequence that "o " should be smaller than the values determined by Kobayashi et al.5®.
Indeed, in ref. 65, an eikonal approach to the nuclear dissociation of 3 Li using the nucleon-nucleon
amplitudes as input has shown that a more apropriate parametrization of oy with Ay is
on = [ea}f* + 543 + o| mb (VIL13a)
with' - o _
a=98.7, b=2.284 and c= —25.89

. For large values of A7, the above equation results in an appreciable deviation from the AIT/ 3

scaling law®®), This is in fact-a very relevant point since the electromagnetic dissociation of neutron :

rich nuclei reveals important aspects of their intrinsic structure,
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(VILI3b)

VIII. Conclusions

It is quite obvious from our results presented in the previous Chapters, that the “tp;p;™-
interaction, corrected for by Péuh' blocking and higher-order 'multiple scattering effects, is only
adequate for accounting the absorptive content of the HI interaction, in & limited energy domain,
contrary to several claims *. This energy region is dominated by single and/or double nucleon
knockout processes. At lower energies the Pauli blocking, though slightly weakened by the attactive
nuclear.interaction, reduces significantly the contributions of these processes to the total reaction
cross section. This is also the conclusion reached when a nuclear matter, G-matrix caleulation is
performed 4.

To account for o at E/A < ep, several channeis, related principally to mean field effects, such
as fusion, incomplete fusion, deep inelastic, nuclear quasi-elastic and particle transfer channels, have
to be added to the knockout channel. This has been partially made by Faessler?). At relativistic
energies, peripheral processes play a relevant role, and Coulomb excitation of giant resonances (or
direct _Cou!omb fragmentation) dominates the reaction cross section, especially for loosely bound

nuclei.
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Appendix I - Dervivation of og from the Wronskian

In this Appendix, we supply & derivation of oz using explicity the optical Schrodinger equation

. _
—%vzw‘“ + (V- W)yt = pylo (A1)

where we take W > 0 to describe absorption. From (A.1.1) one can immediately derive the equation

for flux conservation,

h[V-jd3r=2<1,b(+)£W|¢f+)> (AI2)

where j in the probability current

s h = £y
j= %[d, Vi - (Voo™ )b | o (4.13)

Applying Gauss’ theorem to the LHS {A.L2), we have then

—[jjdA=%<¢(+)|W|¢(+)> (A.L4)

where the integral is over any surface surrounding the interaction, in a region where the potential
has vanished. Eq. (A.L4) simply says that the net radial flux is not zero because of absorption.
The total reaction cross section is defined as the net inward radial flux given by the LHS of (A.14})

divided by the incident flux | ¥(*+) {2 v, where v is the asymptatic relative velocity

-fj-dA 2 <D | W[y >
W 2y e TSN

oR = (A.1.5)

If we choose the normalization of ¥} to be | $*) 2= 1 we obtain our expression for o Eq.

(1L9)

2 k
oR =< #H W it »= B < pO | W ) » {A.L6)

58

We lcave it to the reader to convince himself that Eq. (A14) can be written in th¢ more familiar

optical theorem form,

5;5 Im f(0) - / 1 F(8) gﬁ. a0 = -z: < ¢_<+> [WigptH > (A1)

where the first termn is the total ctoss section and the second the total elastic cross _sectiori. Clearly
(A.1.6} is consistent with (A.L7).
The extention of the above considerations to coupled channels is straightforward. Instead of

Eq. {A.I1) we now have to consider the following. -

—5p VU (Vo — W = Bl = 5 Vot o (AL8)

J#0

(+)
(]

where W, represents the absorptive potential in | %" >, in the Limit ¥,; = 0.

Gauss’ theorem then gives

. 2 2 .-
- f jdA=Z< P W) > +3Im < ¥ | VoGV, | P > (ALY

The second term on the left hand side represents the contribution to [j-dA arising from the

channels j, coupled to the entrance channel. This termn can be further decomposed; as wis shown -~

in Chapter II, info a genuine open channels contribution and closed channels contributions (fusion):

In fact, taking V,; to be Hermitian, we havel®) -

Im < 359 | Vos G50 | 9l > =< P | V40m GSPV, 9P > _
=3 <yfP| V.,,-(—rr |44 >< zi)f,-_}) | Vie [ 95+) >
5
t
—< ¢,£+) i Vg_,-Gf,-H W_,;G_S,»+)T/}° | ,‘b‘(’+) >
== [ 1< 97 1% LD 5P doy

=3 <l Wy plP> (4110
J .
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Accordingly, (A.I.6) becomes now

k ,
a1 S AT S TAT S

%0

where op describes the direct channels contribution.
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Appendix II - Coniparison beetween 65.“.".3’ and §Fkened

In this short appendix we present a comparison between the imaginary part of the nuclear

elastic phase shift caleulated within the eikonal approximation, Eg. (11.22),

=12 [ aew ET) . (AdL1)
with the more precise one obtained within the WKB approximation, Eq. (IL19)
6;-%&'/ [(E———-—U(r)) +W2(r)] smg(T”l
(A.11.2)
tan #(r'} = — we')

(E —EB/r2 U(r’))

for several cases, involving the 1"C’ +12 C system, using U(r') = 0 for sunphclty A Woods-Saxon
form was employed for W(r

-1
Wir) = - Wo{! +exp(r— Ro/a)] (A.IL.3)

with a =0.6 fm and R, = B0 fm. W, was varied.
"The results are presented in figure (28). Clearly, the higher energy is, the better agreement one
obtains between the two expressions. In the application described i this paper, we have always

employed the WKB expression with the real part of the potential taken into account.
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Appendix ITI - Pauli blocking effects on the nucleus-nucleus total cross section

1. Calculation of ¥y for nucleon-nucleus scattering

In the first part of this Appendix, we review the calculation of Ty n in nucieon-nucleus scat-
tering. Although this has been discussed extensively by several authers, we feel that a review is
necessary as a preparation fo-r the calculation of Tw v in the nucleus-nucleus case, presented in the
second part of this Appendix.

The average cross section of two nucleus, one of which is found with momentum k; is given

by

1 -

F=
VFz Vi,

dk; o7 " (q.q') (AIIL1)

where Vi, = 2nk}, is the volume of the Fermi sphere representing the target nucleus (labeled

here by 2), and a'i"! N (q, q'}) is the free nucléon—nuclédn cross section, which depeﬁds on the rélative

momenta q = k; — kg and ¢’ = K] - k}, before and after the collision, respéctivély, where k; is

the incident nucleon momentum.” When using Eq. (A.IV.1) one normally employs for N an
empirical form, which is valid for fixed target nucleons. To correct for this namely for the fact that

k # 0, one inserts a transformation factor, | ki — k2 | /k1, giving thus -

ro k[ kel

ATIL2
VE, 1 ( )

Clearly, Pauli blocking enters through the restriction, | k'y | > kg, [K'2 | > kg, or K> 2k%.
Thefore, when expressed in terms of the differential cross section, Eq. (A.JIL.2) takes form, in the
energy region where o7 = [ dQ do/dQ,

1
Vr,

7= j""" “‘lkﬁ / dﬂj—g for KiP4kh' > 2kd (AIIL3)
i
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Using now energy acd momentum cotiservation, we can recast the above equation into the following

form

Ak —k kP bk =k d .
o = 1 f dks Ik —ka | dQ §(q - q) dq' o= (AJII4)
Ve, ky EALRESPEL S TR
After integrating over ¢', we obtain, assuming de/dQ = o y(g)/4m, the following
1 PRI+ B 208 | o
T= dk ilg AJIIs
k’lt"FQ -[ z | k; + k2 l NN(Q) ( }

where the lower limit of integration, obeys, k¥ + k3 > 2kg,.
It is usual practice to assume that ok ;(g) is a constant, oq, which results in the following

simple expression for Ty

[BEHE)

2 2 =\
69[1—§(—3)+§—:¢(2—g§) ] 8 <

1

2
k > 2%,
T=

(A.II1.6)

which are nothing but Eqs. (IV.3, IV.4)}, mentioned in Section IV.

In the application we envisage in this paper, we shall use the empincal énergy-dependent'
ok n(g). For this purpose, a more convenient form for the evaluation of Ty is the following,
equivalent, relation

—_ .1 "{N(Q)
o= m‘;’jdkg |k1 - kz l 4—1?' dﬂ (AIII.?)

Pauli
where the restrictions imposed by the conservation laws and Pauli’s principle are contained implic-
itly in the solid angle integral. The above form of @y is the one which is most easily adaptable
to the ion-ion case.
In the calculation of the integral [, . d, one resorts to geometrical arguments. Pauli block-
ing, within the Fermi gas model used here, implies a restriction on the lengths of the vectors k'y and
k‘é, as visualized in_ figure {26a). The momenta k; and k; define the total momensum 2p = k; +k»

and the relative momentum 2q = k; — kj, with p specifying the center of the scattering sphere
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and q it radius, as indicated in figure (26b), the conservation of linear momentum implies fixed p.
From energy conservation, we also have kj -'k; = k', - k' and q.== q', which implies a constant

radius for the scattering sphere. Im_posing now Pauli blocking, gives

Ky | =ip+d 1> ks
(K2 |=lp-q|> kn (A.II1.8)
which implies that the amount of solid angle not allowed is as indicated in figure (26c) by the
dashed area. Thus f,, ..dQ = 4r — ,, which when inserted in Bq. (A.IILT7), yields the closed
expression, Eq. (AIIL6), if a con.sta.nt afN(q) is used. The solid angle portion £, is given by
(cbtained directly from Eq. (A.IIL8)) o

(44— 202,)

T (AIIL9)

Q, =dn —2n

2. Calculation of Ty n{E) for nucieus-nucleus scattering .

In the mucleus-nucleus case, the caleulation of Ty y(E) involves the considerations of three
si)héfe's;‘ the two Fermi spheres répresenting the projectile and fargét nucle; and the scattering
sphere; determined by the momentum and.energy conservation laws and the Pauli principle, in
close analogy with the considerations presented in the first part of this Appendix. ..

; - The starting. expression for Fxn{E) in the nucleus-nucleus case is

1o o 2 ohale) ' -
dk; dk; =2 _r_VN_/ 4 ‘
VF.,VFz_/ VI Tar feeun L (AJII.10)

Fynlk, ke, k) =

where Vp, = $rk}, and Vp, = §nkl, being the Fermi volume of the projectile and target uuo;;!ei,

respectively and 2g =| k; < ke + k | with. k:denoting the relative momentum: spheres alluded to
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sbove. Using similar arguments as those discussed in the first part of this Appendix, leads us to
conclude that the region net allowed by the Pauli exclusion principle in the nucleus-nucleus case,
is the one shown as the shaded region in figure (27b).

The restricted solid angle integral is

f dsl = QPaufi(eayah 6)
Pauli

=d4r — 20, —2Q, + (A.IIT11)

where {2, and (2, are the solid angles specifying the excluded cones and  represents the intersection

area of the two conical sections. The solid angles (2, and Q; are easily determined.

Q, =271 —cosf,)

Ay = 27(1 — cos 8y} {(A.JI1.12) -
where
2 __ 12
cosf, = P +q’ —kfy
: 2pq
2, .2 12 . :
Prae-k
and
Zp=ks +k+k;
2q= k2 —k—k]
b=k-p (A.JII14)
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The evaluation of &I is tedius but straightforward®). We give below the pertinent expressions.

Two possibilities arive

1) T=2000,8.,0)+2Q(r—6,8..8)), for 0+8, 46 >x

2

where the angle # is given by

kzhpz__bz

cos § = 20

The sclid angle £2; has the following values,

5

—cosf, cos? [

and

e} Q:=0, for 8=0.+6

cosfy — cosfcosf,

N =20:8,60..6), for 8+8,+G<w

=2 4{ecois?
. { [sin #,+/cos? 8, + cos® 8, — 2cosbcos b, coshy

cosf, —cosfcosdy

+ cos™! [

cosfy — cosBcosd,
sinf sin @,

cosf; — cosd cos 95] }

-1
—cosfy cos - -
[ sin @ sin &,

for |Bb—9a|5953a+95,

) =9,
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sin 8 /cos? 8, + cos? 85 — 2cos B cos 8, cos by

for 6, <8,,0<]{8 —0,|

(A.IIT.15)

(A.IIT.16)

(AIITAT)

(A.II1.18)

(A.IT1.19)

(A.TII.20)

Cd) =0, . for 8,58, 0<|6—8, ! (A.ITT21)

The first case above represents the situation where no intersection of the two conic éectiohé, a and
b, occur,
We would mention that it may happen in some cases, for several values of p, g and kp,, the

cosine functions above attain unphysiéa.l values (> 1). These cases are

1) pt+q <kg, for cosf, <-1°
2y jp+a] > kp, . Cfor cos 8y :> .{1' .
3) pt+g <kp s for cosfs < —1

4) |p—gl|> kg, for cosfy > 1

Under the conditions 1 and 3 we merely set ;I'Pau 1; 982 equal to zero, since the scattering sphere in
this case is situated inside the Fermi sphere of either the target or projectile nucleus. If, on the

other hand, cos, > 1 and cos > 1 (conditions 2 and 4) then two possibilities are considered

Cfpreg—oR.=0 . )
=gl kn {p < ¢~ Rpouii(da, 65, 8) =0 (4.11rz3)
lb—ql>kr {a < a4 = Qpaurilar 5, 6) =0 (A.1112)

The cases §2, = 0 and Q; = 0 represent the situation when the scattering sphere does not intersects

the Fermi spheres. -
In Eq. {A.IIL.10) the average nucleon-nucleon cioss section Tx v cleatly depends onthe Fermi

momenta kr, and kg, which are related to the matter densities according to 3%

)= (g”f‘ﬁ("))m o3 (%)

where the second term amounts to-a surface correction with £ about 0.1.

(A.JT1.25)
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(AII1.22)




In our calculation of Ty i, we have u"-cd the above express:on for Apx and kp, in Eq. (A 111.10),
which was evaluated numerically. Simple a.na.lvtlc expresszon such as gwen in Eq. (IIL3) for the
nucleon-nucleus case, was found, even in the hmﬂ.mg case of constant frec nucleon nuc]eon total

cross section.

68

References

2)

3)
4)
5)
6)
7)

8)

9)

10).

11)

12)

13)

P.J.Karol, Phys. Rev. C11 (1975) 1203.
R.M. de Vries and J.C. Peng, Phys. Rev. C22 {1980} 1055:

see also N.J. Di Giacomo and R.M. de Vries, Comm. Nuci. Par:. Phys. 12 (1984} 111.
D.M. Brink and G.R. Satchler, J.Phys.G. 7 (1981) 43. '

A Faessler, L. Rikus and S.B. Khadkibar, Nucl. Phys. A401 (1983) 157.

J.C. Peng, R.M. de Vries and ’\TJ Di Giacomo, Phys, Lett. 98B {1981) .244.._

H.B. Bidasaria, L.W. Townsend and J.W. Wilson, J. Phys. G 9 (1953 L17. _
M. Buenerd, J. Pinston, J. Cole. C. Guet, D. Lebnen, J.M. Loisseaux, P. Martin, E. Monnand,
J. Mougey, H. Nifenecker, R. Ost, P. Pesridi, Ch. Ristori, P. de Saintignon, F. Schussler, L
Carlén, H.A. Gusfasson, B. Jakebsson, T, Johansson, G. Jénsson, J. Krumlinde, I, Otterlund,
H. Ryde, B. Schréder, G. Tibell, J.B. Bondorf and O. B. Niclsen, Phys. Lett. 1028 (1981)
242, ' ' '

A.J. Cole. W.D. M. Rae, M.E. Brandan, A. Dacal, B.G. Harvey, R. Legrain, M.J. Murphy
and R.G. Stokstad, Phys. Rev. Lett. 47 (1981) 1705.

C. Perrin, 8. Kox, N. Longequeue, J.B. Viano, M. Buenerd, R. Cherkaoui, A.J. Cole, A. Gamp,
J. Menet, R. Ost, R: Bertholet, C. Guet and J. Pinston, Phys Rev. Lett. 49 (1982) 1905;
H.B. Boblen et al. -Z. Phys. A308 (1982} 121;

S. Kox et al., Phys. Lett. 1598 (1985) 15.

R.M. De Vries, N.J. Giacomo, J.S. Kapﬁstinsky, J.C. Peng, W.E, Sondheim, J.W, Sunier, J.G.
Gramer, R.E. Loveman, C. R Gruhn and H.H. Wiemann, Phys. Rev. €26 (1982) 301.

W.0. Lock and D.F. Measday, Intermediate Energy Nuclear Physics (Ment.huen Co. LTD,
1970).

See, e.g., P. Braun-Munzinger et al., Phys. Rev. Lett. 52 (1984) 255;

R. Shyam and J. Knoll in proc. Workshop on Coinc. Parr. Ermis. from Contin. States in
Nuclei, Edit. H. Machner and P. Jahn (World Scientific, 1084 ) 582.

P.C. Tandy, E.F. Redish and O. Bollé, Phys. Rev. Lett. 35 (1075) 921

Phys. Rev. C16 (1977} 1924; v

69




14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

D.S. Koltun and D.M. Schneider, Phys. Rev. Lett. 42 (1979) 211.

J.E. Haldemann and R.M. Thaler, Phys. Rev. Lett. 14 (1965} 81;

Phys. Rev. 139 (1965) 131186. o S

M.S. Hussein, H.M. Nussenzveig, A.C.C. Villari and J. Cardoso Jr. -..Phys.' Lett. 114B {1982)
1; ' o

see also A.Z. Schwarzchild, E.H. Auerbach, R.C. Fuller and S. Kahana, Proc. Symp. on
Macroscopic Features of Heavy-Ion Collisions, ANL Report AS‘L—PHY-?’G-?.

H. Bethe, Phys. Rev. 57 (1940) 1125: )

see also 5. Feshbach, R. Serber and T.B. Taylor, Phys. Rev. 75 (1949) 1.

M.M. Shapira, Phys. Rev. 90 (1953) 171.

See, e.g., S.J. Brodsky and J. Pumplin, Phys. Rev. 182 (1968) 1794.

M.S. Hussein, Phys. Rev. C30 (1084) 1962;

M.S. Husséin, A.J. Baltz and B.V. Carlson, Phys. Rep. 113 (1984} 133.

T. Udagawa and T. Tamura, Phys. Rev. C29 (1984) 1922,

T. Udagawa, B.T. Kim and T. Tamura, Phys. Rev. C32 (1985) 124.

M.A. Nagarajan and G.R. Satchler, to appear in Phys. Lett. B.

See, e.g., L.G. Arnold and B.C. Clark, Phys. Lett. 84B (1979) 46;

L.G. Amold, R.L. Mercer and P. Schwandt, Phys. Rev. C23 (1981} 1949;

L.G. Arnold, Phys. Rev. C25 (1982) 936.

B.V. Carlson, M.P. Isidro Filho and M.5. Hussein, Phys. Rev. Lett. 53 (1984) 2222;

Proc. of the V Encontro Nacional de Fisica de Energias Intermediarias, Gramado, R.S.;

see also, R. Dymarz, Phys. Lett. 1558 (1985) &. _

A K. Kerman, H. McManus and R.M. Thaler, Ann. Phys. (NY) 8 (1959} 551;

For some reviews see: E.J, Moniz. in Nuclear Physics with Heavy-Ions and Mesons, Les
Houches, Session XXX, 1977, Ed. by R. Balian (North-Holland);

H. Feshbach, in Nuclear Physics with Heavy Ions and Mesons, Les Houches, Session XXX
1977, Ed. R. Balian {North-Holland).

J.M. Eisenberg and D.S. Koltun, Theory of Meson Interactions with Nuclei {J. Wiley and
Sons, NY, 1080). '

70

26)
27)
28)
29)
30)

31)
32)
33)

34)
35)
36)
37)
38)
39)
40)
41)
42)

43)
44)
45)
46)
47)
48)
49)
50)

L. Ray, Phyg. Rev. C20 {1979) 1957.

E. Boridy and H. Feshbach, Ann. Phys. (NY)'109 (1977) 468,

G.R. Satchler and W.G. Love, Phys, Rep. 55 (1979) 183, =~

R.A. Rego and M.5. Hussein, Phys. Rev. C33 (1986) 2003.

K. Kikuchi and M. Kawai, Nuclear Matter and Nuclear Reactions (North-Hollané P.ﬁi':»h'shi.ng
Company, Amsterdam} (1968) 37.

E. Clementel and C. Villi, Nuovo Cimento II (1955) 176.

See, e.g., B. Sinha, Phys. Rep. 20C (1975} 1; Phys. Rev. Lett. 24 (1982) 209,

B.C. Clark et al., Phys. Rev. Lett. 50 (1983} 1644;

J.R.Shephard, J.A. McNeil and S.J. Wallace, Phys. Rev. Lett. 50 (1983) 1449.

1A, McNeil, J.R. Shephard and 8.J. Wailace, Phys. Rev. Lett. 50 (1983) 1439.

R.D. Amado, J. Piekarewicz, D.A. Sparrow and J.A. McNeil, Phys. Rev. C28 (1983) 1663.
J. Friar and §.J. Wallace, Phys. Rev. C28 {1984) 2030.

C.J. Horowitz, Nucl. Phys. A412 (1984) 228.

The p+1? Ca and p +2*® Pb data were collected from several references. See ref. (23).

T. J. Symosns et al., Phys. Rev. Lett. 42 (1979) 40.

G. D. Westfall et al., Phys. Rev. Lett. 43 (1979) 1859.

P. B. Price and J. Stevenson, Phys. Rev. C24 (1981) 2101.

1. Tanihata et al., Phys. Lett. B160 (1985} 380; Phys. Rev. Lett. 55 (1985) 2676 and Phys.
Lett. B206 (1988) 592.

W. Mittig et al., Phys. Rev. Lett. 50 (1987) 1889.

M. G. Saint-Laurent et al., Z. Phys. A332 (1989) 457.

H. Sato and Y. Okuhara, Phys. Lett. 162B (1985) 217.

G. F. Bertsch, B. A. Brown and H. Sagawa, Phys. Rev. C39 (1989) 1154.

J. R. Beene et al., Phys. Rev. C41 (1990} 920.

C. A. Bertulani and G. Baur, Phys. Rep. 163 (1988) 299.

H. Feshbach and M. Zabek, Ann. of Phys. 107 {1977) 110,

C. A. Bertulani, L. F. Canto, R. Donangelo and J. O. Rasmussen, Mod. Phys. Lett. A4
(1989) 1315.

71




61)
62)

63).
64)

65

C. A. Bertulani and M. 5. Hussein, Phys. Rev. Lett. 64 (1990} 1099.

P. G. Hansen and B. Jonson, Europhys. Lett. 4 (1987) 400

A. S. Goldhaber, Phys. Lett. B53 (1974) 306.

C. A, Bertulani and G. Baur, Nucl. Phys. A480 (1988) 615;

G. Baur, Proceedings of the International Sympasium on Heavy Ion Physics and Nuclear
Astrophysical Problems, July 1988 Tokyo (World Scientific, 1988), p. 225.

I. Tanihata, Nucl. Phys. A478 (1988) 795¢.

G. Baur and C. A. Bertulani, Phys. Rev. C35 (1987) 836.

Y. Suzuki, K. Ikeda and H. Sato, Niigata University, preprint 1989,

- 'T: Kobayashi et al., Phys. Lett. B232 (1989) 51.
). R. Glauber, Phys. Rev. 909 (1955) 1515.

R. Serber, Phys. Rev. T2 (1947) 1008.

€. -Bertulani, Revista Brasileira de Fisica, 16 .{1986) 380.

G. Bertsch and J. Foxwell, Phys. Rev. C41 (1989) 1300, and erratum, to be published.
See ref. 46. : '

G. Bertsch, H. Esbensen-and A. Sustich, Phys. Rev C, to be published.
C. A- Beriulani, G. Baur and M. S. Hussein, Phys. Lett. B, to be published.

72

Table captions

Table 1.
Table 2.

Table 3.

The parameters of the NN amplitudg according to Eq. (IIL.24}. From Ref. (26).

The percentage transparency for 2C +12 C, 120 +208 pp 400y 140 0 and 2985 pp 208 pp 44
several center of mass energies. See text for det.ails.

The identical-particle correction of the total reaction cross sections of the systems 12¢' +12 ¢,

Vo 440 Og, 0 Zr 490 Zr and 298 Pp 4208 Pp. See text for details.
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Figﬁre captions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure T.

Figure 8.

Figure 9.
Figure 10.
Figure 11.
Figure 12,

Figure 13.
Figure 14.

Figure 15.
Figure 16.

The total cross section of the NN system vs laboratory encrgy (from ref. 11).

The aﬁgie-integra.ted one-pion production cross scction for the NN system {from Ref. 11).
The angle-integrated two-pion production cross-section for the NN system {from Ref. 11}.
The transparency factor vs 23/ K (Eq. (IL.28)).

The correlation distance R.,,.. vs laboratory energy for the p +'% C system. See text for
details.

The real part of the second order nucleus-nucleus potential at four laboratory energies: ldO
MeV/A (dashed curve), 200 MeV /A (dotted curve), 300 MeV/A {dashed-dotted curve) and
500 MeV/A (dashed-deouble dotied curve}. For reference. the usual double-folding potential
is also shown (full curve).

The imaginary part of the second-order nucleus-nucleus potential {same as Fig. 6). The
potential equivalent to the double folding potential, namely Im “tp, po” is also exhibited (full
curve).

The Pauli blocking-corrected total proton-proton cross section in the proton-nucleus system,
for several values of Rpz (the target Fermi momentum). Also shown is the free oT .
Same as Fig. 8 for the neutron-proton total cross section in the proton-micleus system.
Same as Fig. 8 in the nucleus-nucleus system.

Same as Fig. ¢ in the nucleus-nucleus system.

The imaginary part of the “tp; pp” interaction for 12C+?2C" a) with Pauli blecking; b) without
Pauli blocking,. )

Same as Fig, 12 for the **® Pb +2% Pp system.

Total reaction cross-section for p +*° Ca calculated with the relativistic, Dirac, description.
The data points were taken from the references cited in Ref. (23).

Same as Fig. 14 for p + 208P%.

The total reaction cross section for 1€ +12 € vs Ec M /A, Full curve includes Pauli blocking
plus refractive effects, dashed-dotted curve corresponds to & with ne refractive effects, and

dashed curve represents calculation with the free "’.EN- The data points were collected from
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Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22,
Figure 23.
Fi_g;ure 24.
Figure 25.

Figure 26.
Figure 27.

Figure 28.

Figure 29,

Figure 30.

the experimental papers cited'in the reference list (Refs: F-10).
16 for ¥ C +39¢ Py,
16 for 208 Pp 4298 pp,

Same as Fig-
Same as Fig.
Same as Fig. 16 for '2C +** Ca (no calculation with 7 is shown: see text for details).
16 for *°Ca +49 Ca.

16 for 2C +% Zr. -

16 for ¥ Zr +%¢ Zr.

16 for *Ca +29% P,

16 for ¥ Zr 4298 pp.

Same as Fig.
Same as Fig,.
Same as Fig.
Same as Fig.
Same as Fig. ;
Total reaction cross section for Li isotopes on 12C at E/A = 800 MeV. See text for details.
The date points were taken from ref. 42.

Same as Fig. 25 for Be isotopes. ‘

Total reaction cross section of 1L on-several ta;-rgéts at EfA= 800'MeV-. The data poinis
were taken from ref. 42. . ' .
The imaginary phase shift calculated according to the WKB approximation (full curve-) and
the Eikonal approximation (dashed curve): a) Eciar. = 10-MeVi Wy =5 MeV; b)-Ecjy. =
10 MeV, Wy = 50 Mev; ¢} Egar = 1000 MeV, Wy = 5 MeV; d) Ecpr = 100 Mel,
Wy = 50 MeV.

The geometrical realization of Pauli blocking in the nucleon-nucleus system: a) resirictions
on the momentum vectors; b) the allowed scattering sphere and c) the Pauli forbidden region
{(dashed area). See Appendix III for details.

Same as Fig. 29 for the nucleus nucleus system: a) the three “spheres” describing the scatter-
ing region in momentun space, and b} the Pauli forbidden region (dashed area). See Appendix
IIY for details.
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Table I Table 11
Eras U;’; : &pp app 0';-" . Gpn pn LZog2oe 12y 4208 ppt
{MeV) (mb) {fm?) {mb) (fm?)
EA nuMcfztn T EA n:‘:{:fr.‘:n T
100 33.2 1.87 0.66 T2.7 1.00 0.36
150 26.7 1.53 0.57 50.2 0.96 0.58 50 46,7% 50 34,4%
200 23.6 115 0.56 42.0 0.71 0.68 100 50,9% 100 32,.2%
325 24.5 0.45 0.26 36.1 0.16 0.36 200 49.0% 200 85.4%
425 27.4 0.47 0.21 33.1 0.25 0.27 300 47.8% 300 32,9%
550 36.9 0.32 0.04 355 -0.24 0.085 500 44,0% 500 25,2%
650 42.3 0.16 0.07 37.7 -0.35 0.09
800 47.3 0.06 '0.09 37.9 -0.20 0.12 *re =1,57 fm Trg =150 fm
1000 - 472 -0.09 0.09 39.2 -0.46 012
2200 447 -0.17 0.12 42.0 -0.50 0.14
4BCa +40 Ca* 2oapb +208 Pbt
E= m c.m e
A “ﬂ]eel;'n ) T E A n xi:;n T
50 28,9% 50 26,2%
100 _ 32.4% 100 29,1%
200 31,1% 200 - 98.9%
300 30.0% 300 27.1%
500 27,2% 300 25,5%
*ro=1,50 fm 'ro=1,50 fm
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Table III - " _ _ :

EL”/A 12C +l‘Zc W, +{0 Ca 9 7 +9(J Zr ’ ZOBPb +2OE Pb . ’ l i i I ! l li ll I i ! j ! _I_l I ' ] A
(MeV)
500
be Ag, b Ao, b Ag, b, Aag,
(fm) (fm?) (fm?) (fm?} (fm?)
2 5.5 -8.56 5.0 -4.28 5.0 -0.03 4.0 0.44
———
4 5.5 1228 50 2,24 5.0 -0.85 4.0 0.37 o)
. 100
] 5.5 1129 65 0.14 6.5 -1.29 4.0 0.27
8 5.5 7.97 7.0 -3.46 7.0 -0.61 6.0 0.44 = o
10 5.5 -3.4 7.0 271 8.0 0.52 8.5 0.74 b 50
12 5.5 -4.49 70 275 8.5 0.46 9.0 -0.69 |
14 5.5 6.72 7.0 2.23 8.5 145 9.5 -0.46
16 5.5 -1.07 7.5 -2.53 9.0 1.31 10.0 -0.69
18 5.5 609 . T5 1.15 2.0 1.35 11.0 0.48
20 5.5 211 75 2.37 10.0 -0.19 12.0 072 - ‘ T | | i |
2 5.5 46 8.0 089 100 12 150 054 40 bas NS N SIS S SR WL - )
2 5.5 3.8 8.0 1.45 12.0 -1.12 15.0 0.42 10 50 100 500 4000
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