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. ABSTRACT

A new type of diffraction effect, different from the standard semiclassical ones
(rainbow, glory, forward peak, orbiting), takes place near the critical angle for total
reflection ata curved interface between two homogeneous media. A theoretical treatment of
this new effect is given for Mie scattering, e, g., light scattering by an air bubble in water; it
can readily be extended to more general curved interface problems in a varicty of different
fields (quantum mechanics, acoustics, seismic . waves).

The relatively slowly-varying Mie diffraction pattern associated with near-critical -
scattering is obscured by rapid fine-structure oscillatons duc to interference with uareiated -
“farside” contributions. These contributions are evaluated and subtracted from the Mie
amplitudes to yield the relevant "nearside” effects, . _

A zero-order transitional CAM (complex angular momentum) approximation to the |

nearside amplitude is developed, The most important contributions arise from partial and.

total reflection, represented by two new diffraction integrals, designated Fresnel-Fock and .. ¢,

Pearcey-Fock respectively. The total refleciion contribution is strongly affected by -

. tunneling, giving rise toa generalized version of the Goos-Hinchen shift.

- Interms of short-wave asymptotics, in a generalized Huygens-Fresnel-type integral
representation, the new diffraction fea_mrc_§ arise from non-analyticity of the integrand. ...
amplitude function within the range of a saddle point..

Also discussed are the WKB approximation, a known physical optics

approximation and a new modified version of this approximation; they are compared with ...

the "exact" nearside Mie amplitede obtained by numerical partial-wave summation, at -

scatterer size parameters (cireumference/wavelength) ranging from 1,000 to 10,000 Itis.- -

found that the physical optics approximations lead 1o large errors in the near-critical Tegion,. i

whereas the zero-order CAM approximation is in good agreement with the exact solution,

accounting for the new diffraction effects in near-critical scauering. -



I. INTRODUCTION

The standard critical situations in semiclassical scattering, where primitive
semiclassicat approximations fail and diffraction effects become important, are associated
with near-forwand diffractive scattering, tainbow scattering, forward and backward glory
scattering, and orbiting, usually related with resonance scattering. 1 ’

In the present work, we deal with'a new type of diffraction effect, which takes
place in the vicinity of total reflection from a curved interface (a plane interface, for which
the theory has already been partialty déveloped, is included as a limiting case). The effect
was identified long ago by Pulfrich,2 who believed it to be connected with the rainbow,
through a sort of reciprocity relation. Pulfrich observed scattering of white light from a
cloud of air bubbles in water, rather than a cloud of water droplets in air. He saw pale
colors near the critical scattering angle 8, = 2cos™ N ar which incidenit light is totally
reflected, where N -is the relative refractive index (for air bubbles in water, _

N =0.75 and 6, ~82.8°). According to Pulfrich,” 8, would play a role analogous 1o the
rainbow angle. ' ' ' '

"However, allhough.-it is templing to draw analogies between the two phenomena, in
reality they are quite different, In geometrical optics (or classical mechanics), a rainbow
scattering angle is a caustic direction, concspénding"lo an infinite discontinuity in fhc
scattered intensity, while thie critical scattering angle is connected with a weaker singularity,
which one may call a weak caustic: a continuous scattered intensity with an infinite
discontinuity in slope. This singularity arises from the behavk':r of the Fresnel reflectivities
at the critical angle: théir slope shifts from vertical to horizontal, producing a cusp.3 The -
diffraction péttcrn to which this gives rise has a-superficial similarity with that for the
minbow: “supernuimerary” oscillations on Lhe total reflection ("bright") side, and rﬁpid ’

decay on the partiat reflection ("dark") side: Like the rainbow, the pattern is modulated by

much more rapid fine-structure oscillations, ari-sing from interference with paths that are
entirely unrelzted with the effect under consideration.

As a theoretical model, we choose light scattering by a homogeneous sphere with
relative refractive index N< 1, such as an air bubble in water, because the availability of
the exact Mie solution? allows us to perform precise num_g:ricaf tests of the accuracy of the
proposed approximations. The Mie solution is in excellent agreement with experiment, as
was verified in high-resolution observations by Langley and Marston 3

However, like the rainbow (but unlike the glory), the effect is structurally stable,

. being preserved even under large deformations, €. g., from spherical to cylindrical

geametry, Actually, observations with cylindrical "bubbles” were made both by Puifrich
and by Marston and coworkers (including photographs of colors). As will be pointed out
in the concluding section, the theory developed in the present paper can be carried over
with only wivial clianges for the cylindrical case.

The results also apply to nonrelativistic quantum scattering by a two or three-
dimensional square potential barrier {conceivably of interest in connection with quantum _
electron devicés). us well as to acoustic scattering by a homogenecus sphere or ci(linder. In
geophysics, effects associated with near-critical reflection are of considerable importance in
the theery of head waves.™? For a planar interface, results closely related 10 a limiting form
of those derived here (when the radius of curvature tends to _infmity) are known. 10

In the geometrical-optic approximation to the theory of light scatiering by an air
bubble in water,!! the cusp-like singularity of the Fresnel reflectivities is reproduced in the
scattering pattern at the critical angle. It is important to distinguish geometrical optics, in
which confributions to the intensity from different paths are added incoherently, from the
WKE zero-order approximation, in which due account is taken of the phases associated
with the corresponding geometrical-optic terms, so that interference effects are included,
The WKB approximation, also known as primitive semiclassicai approximation in the

quantum context, is the analogue of Young's interference theory of the rainbow.12 It plays



an important role in the present problem, because it allows us to define the near-critical

domain as the angular neighborhood where the WKB approximation departs significantly

‘from the "exact” Mie results. The departures, due to diffraction, are the new effects that

must be accounted for by the theory.

A physical optics approximation,!3.14 constructed by analogy with Airy's theory of
the minbow, predicts :lx Fresnel-like diffraction pattern in the far field modificd by
interference with direct transmission. It explains the fine-structure oscillations in terms of
interference with rays transmitted along a different path. In the domain of total reflection,
not very close to the critical scattering angle, it is in fair agreement with the Mie coarse-
structure pattern regarding the locations of maxima and minima; it also predicts the angular
spacing of fine-structure modulations. These features agree with measured intensity
paue-l:r;;.s In'ilie vicinity of the critical scattering angle, as well as in the partial-reflection
domain beyond i, the physical optics approximation does not agree with the Mie results,
substantially underestimating the scattered intensity.” Detai.lgd comparisons have been

hindered by the difficulties associated with removing the contribution from the

" superimposed (but totally unrelated) fine-structure pattern.

The near-critical region is also excluded from consideration in treatments based on

the geometrical theory of diffraction.l3 The physical effects responsible cannot be

determined from Mie summations involving a large number of partial-wave terms. Thus,
no satisfactory quantitative theory of the new diffraction phenomena in this region is
available.

In the present work, we employ CAM (Complex Angular Momentum} theory!6 to
deal with near-ciitical scautering, taking advantage of the ph},‘rsical insights developed in its
applications to both classical and quantum scattering problems. Recent developments in
CAM theory!7-18 have shown that it can yield extremely accuraie asymptotic

approximations o exact resulls.

Here, we do not aim at high accumcy, but ratht:r at a basic understanding of the
few d1ffractmn effect. Thus, we develop just the lowcst-order uansmonai asvmptotxc .
appmxunanon keepmg only dommant terms and dtsregardmg uruformny As a .
consequence, the domam of i!pplle!blilty of Lhc appmxlmauons is restncted 1) largc size . -
parameters and to a llmlled neighborhood of lhe cntical scatlenng angie Howcver, lhc
most sizable diffraction ef] fects are conﬁncd to this nelghborhood and no dlEF culty is |
anticipated in 1mpmvm J: !ht: accuracy and extending the domain of vahdxry of r.he results

Several shortcomings in the earliest CAM |:rr:atn1ent19 wefe corrected la.tt:r.z""‘-’fZ
yielding preliminary versions of results reported here. These versions have aIiSOIbeen
employed to derive an asymptotic approximation Lo il-1e scattering ambﬁmdés at e'x;actly.thc.
critical angle.23-25 . . “ . .

After introducing the CAM rcpreséﬁtatioﬁ. wé discués the effet.:tiv.e pc;len.t.i'm |
concept and its application to the selection and physical interpretation of dominant -
contributions (Sec. 2. in order to isolate the diffraction effe.cts.in near—étitical scaneting,.. 4
one must begin by removing the distractin g fine-structure modulauon Thxs is accomphshed
by subtracting out the mterfcnng terms (Sec. 3} o .

The first relevant conr.ribution, arisin g from pﬁa! 'rc.ﬂectio:n. is cval:idtcd isc 4
In Sec. 5, we evaluate the effects due to ransmission through the sphere, which yield“a“
relatively minor, but still nonnegligible contribution to diffraction. The meost significant
contribution, originating from towl reflection, is analyzed in Sec. 6.

It tuns out that the curvature of the scatterer plays two very different roles in this
problem. One is just to spread out the range of angles of incidence; when only this trivial
role is taken into account, while neglecting the effects of curvature on reflection amplitudes
at the interface, one obtains a "planar limit approximation” (Sec. 6). The results found in
this approximation are closely related to those obtained in the total reflection of a divergent

beam at a plane interface, 10 including the well-known Goos-Hiinchen shift.26 The spherical



a.naloguc of ths sh:ft appca:s as an angular dJsplaccmcnt that may be mtcrpreted asa
tunneling cffcct.

'l'hc CAM approxlmauon defined in Scc 7, mc!udcs the dynarmca[ clfects of
cunramn: whnch mod:fy the mtcrf.:ce n:ﬂcctlou nmphludcs kt comauns new defracUon
integrals, lhe Fresnel-Fock and Pearcey—Fock mtegmls In the p!anar limit, in a small
ncnghborhood of thc critical anglc, thc new diffraction conmbunons are appmxlmated bya
funcuon rela{ed to Weber pambohc cylmder funcuons

OLher appmmmauons dlscusscd in Scc 7 mclude the WKB appmxunanon the
physmal optics appmxlmauon and 2 modlﬁed version of this appmxlmauon wxr.h
improved feamres in the domzun of partial rcﬂccnon Numerical comparisons and piots of
the M.le results with all thcse approx:mauons are prcscmed in Sec. 8. It is found that, in
contrast w:r.h physu:al-opucs approxlmauons CAM theory fully accounts for the new
dlffracﬂon effects in near-critical scattering,

The main conclusxons and 2 physicat discussion of the results, including the
connections with genexal scmxc[ass:cal apprmumatmns and catastrophe thcory are given in
Sec. 9. Readers who are primarily interested in such general features may proceed directly

to this Section.

THE CAM REPRESENTATION

2.1. The Mie solution

The Mie scattering amplitudes 5, (perpendicular polarized) and S, (parallel
polarized) in the direction 8 for the scattering of a linearly polarized plane monochromatic .
wave with wavenumber & by a homogencous sphere of radius a and relative refractive

index ¥ (assumed real and less than unity in the present work) are given by 27

5,B8.0=13 {1-sP@)ucos O+ [1-5Bpcos)]  Gi=1zizh @
=1 ; - o

where f=ka is the size parameter; our convention for the time factor is exp(—iwr) .

The §-functions S{”, associated with magnetic (j = 1) and electric (j=2)

multipoics of order { , are given by:

(2} rFENRY ’
gy LBy I8P (B) - Ne, In” v (@) :
574B) C;‘”(.B)[ln’ OB~ Ne, 10" () )
where -
g=1, €= N2, a=Nj . _(2_3)

y, and {8 are the Ricatti-Bessel and Ricatti-Hankel functions, respectively, and In”

denotes the logarithmic derivative.

The angular functions are defined by

Po(x)=P, (x)
1-x* '

where P, is the Legendre function of the first kind (a Legendre polynomial when v =1/ is

px)= LX) = =xp, () 2V + 1P, (x) (2.4)

an integer),

The scattering data are the polarized intensities



- 4B.9)=[s,8.0 o G=1Y) @.)
and the phase difference
d=args, —args, . 2.0)
[ﬁstead of (2.5}, we shall mainly plot the gain fincrions relative 1o an isowopic scatterer,
given by12
Gi{B.6)=4i,(B.0)/B" @7
The G, are the ratios of the bolarized intensities to their limiting geometrical-optic values

for scattering by a totaily reflecting sphere.

2.2. CAM representation

The first step in the CAM method?8 is to apply 1o (2.1) the Poisson sum formula

Ef(f+a) Z(—) [, f@)exp(2imnd)dA @8

where the interpolating function f{A} reducesto f(I+ J,‘_') at the physical values of the

angular momentum A . This requires adding and subtracting a fictitious /= term, with
Polcos8) = g,(cos §) = §sec™(6/2)

fef. (2.4)], so that we get

5.(8.9)=1 i_(—)";j; di exp(Zr'n.mﬂ,)

X {[1 =5 (l.ﬁ)]tl_*(cos )+ [1 - S(‘)(l,,ﬂ)]pl_*(cosﬂ)}

+§sec2§{11~[s§“(ﬁ)+sg”(ﬂ)]—1} Gi=lZis) 29

where

(U(ﬁ)

and H,"™ 3 are the Hankel functions, with

{1,6} Ne, [cx}

. . L1 et p oyl e
{jz}=In H,f”(z)+5§ ; {z}Eln, J‘(ZJ+E (2.11)

In these expressions, we have employcd the re[ationships‘aﬁ;toﬁé Riéatti-léc:;scl and Rlcam-
Hankel functions and ordinary cylindrical functions. ' . .

As discussed in Sec. I, we want to evaluate only the dominant terms in the
asymptotic behavior of §; for large ﬁ and for ¢ bclongmg to the near-critical rcgmn

Taking i into account prcwous d.lSCuSSlOnS of the CAM mcthod for scattcnng by a pene.trablc

sphere, !9 this enables us to work with a constderably simplifi ed version of (2. 9) thmugh

. the following steps

i) We neglect the fictitious { =0 conuibution. Since ]sgf* I =1, thisermis Q1)

iti the nen.r-cnuaal region, in contrast with dominant cantributions that are O(ﬁ) [lead.mg o
G, =0(1} in (2.7)].

- (i) We keep only the m=0 termin (2.9). The dominant contributions! will arise

from integrals containing stationary-phase points (which are associated with geometrical-

optic rays) or from limiting forms of such integrals in the near-critical .regioﬁ'. Extra factors
exp(2imnA} with m# 0 remove the stationary-phasé points and introduce additional
rapid oscillations that render such contributions negii.gilfl'é relative to the dominant ones.

Physically, contributions with m =0 are associated with paths taking one or more

turns around the origin. While such paths may yield fmportant contributions629 for

N> 1, they give rise only to small correction terms in the present problem.
(iii} It follows from (2.4) and from the asymptotic expansions of the Legendre
functions30 that

I,y cos)s,  cos ) = O] lafsin o)'] ({Alsing > 1) @.12)



It will be seen below that [A]= (&) for.the dominant contributions in the near-critical
region, and we assume that both § and o are > 1. Thus, ierms in p, ; are Ol
as compared with those in 1, ' and will therefore be neglected. This approximation-
amounts to the neglect of cross-polarization effects,12 so that only magnetic (electric)
mulupoics conmbule for ] = 1 (j=2). _ _
For similar reasons, in Lhe last expression of (2 4), we can ncglccr. the ﬁrst term on
the r.h.s. with respect to the second one, employing the approximation
r;_*(cos A= ZR.Pk_§(co§Q) w ' 2.13)
(iv) Int (2.10), the last terms of (2.11) are O{er1} , whereas the first terms, as wilt
be seen below, are O(1) . Thus, we may neglect the last terms, employing the
approximations!? - .
{iz} =in"H, M) ={j] ,

" Finally, as  result of (i)-(iv), the CAM representation (2.9) is reduced to the much

{z}=In’J () =[] (2.14)

simpler form
5;B.6)~ [-5s¥@.plp,_ytcosO)adr (/=12) (2.15)
where S(’ ¥ is given by (2, 10), with the apprOxlmanons (2.14). 1t is interesting to note
that, in this appmxzmauon S, is related with the dimensionless amplitude f for scaiar
scattering by a transparent sphere treated in Ref 19by
5(8,8) = ~iB £(B.6) (2.16)
so that the results found for §, apply also to nonrelativistic quantum scattering by a square

potential barrier or to acoustic scattering.

2.3. Localization principle and effective potential

One of the most useful concepts iﬁ CAM theory is the localization principle, 19
according to which, in the shor-wavelength limit, contributions with angular momentum A
are associated with incident rays having an impact parameter

B(R) = Afk .17

Another basic CAM concept!? is the eﬁ’ecri;ve potential U_(%,r) for the radial
equation, obeyed, in the present case, by the Debye electromagnetic potentials.3! In terms
of the well-known analogy between optics and mechanics, at a given wave number & ,a .
transparent sphere with refractive index N <1 comesponds to a square potential barrier of
height (1-N*)&* (in units fi=2m=1 )extending out to the radius of the sphere r =a.
The effective potential is the sum of this barrier with the "centrifugal potential® A2/ (in
the Langer sense).! For magnetic polarization, as pointed out above, there is a strict
comrespondence with quantum scattering; for electric polarization, the boundary conditions
at r=ga are slightly different, but this does not affect the ensuing qualitative analysis.

As illustrated in Fig. 1(a), the effective potential for this problem is a rounded
potential step. In contrast with the situation32 for ¥ > 1 , it does not lead to any sharp
resonances, which immediately explains why the ripple fluctuations!227 that are ubiquitous
in Mie cross sections for N> 1 are not present for N < 1. Also shown in Fig. 1(a)
(where A is fixed) are four different values of k2 , at different heights relative 1o the
potential step: by the localization principle (2.17), they are associated with different impact
parameters. The corresponding incident rays are shown in Fig. 1(b).

Situation 1 (Fig. 1), with 0 £ 1 < & [cf. (2.3)], comresponds to angles of incidence
8, below the critical angle. The incident ray is refracted into ;he dropiet, where it
undergoes multiple internal reflections. The radial tuming point (classical distance of

closest approach to the center) for an impact parameter b isat r=§/N .



Situation 2, with & = & , corresponds to incidence at the critical angle @, , with
impact parameter b = Na . The incident ray is totally reflected, but we expect it to generate
evanescent wave.s; within the sphere. In terms of the effective potential picture {Fi'g. 1),
this corresponds to a tunneling effect. A similar interpretation applies to situation 3, where
a< A<, with the evanescent wave penetration dcpth_deﬁéasin g monotonically as 1
increases. .

In sitwation 4, with A= 8 , the "energy level” lies at the bottom of the step [Fig.
1(a)}, and the incident ray is tangential to the sphere [Fig. 1(b)}. Taking into account the
vertical wall in the effective potential at r=a , this situation is very similar to that found at .
A = J for an impenetrable sphere!8 and we expect the physical effects to be also very
_ similar: external surface waves ("creeping rﬁodes") are launched. The "edge domain”

- A -pi=0(p¥)
contributes significantly to diffraction within the penumbra region 0<8 < g7% ;
howeiver. for 8> ,6"“ . mﬂecﬁuﬁ becoines &omnént and this contribution can be
. neglected. We can also neglect cui;nt!ibul:ions fom A—pf:> B¥ | arising from rays that
pass outside of the sphere, far from the edge domain.: . R .

We conclude that, for the dorain of scattering angles of iﬁlcrest (neaf—critical
region), we may cut off the intégral (2.15)at ‘A = # . Furthermore, the resulting
contribution from the first lérm within the square brackets in the integrand, namely,

. I:Pl_*(co.se')l-dl o
gives rise .to the classical Airy forward diffraction pattern, '8 whi_ch is also- negtigible in the
domain of interest. Finally, we see Lﬁut, in lhe-ﬁf::ﬂtf-cl'ilical region, (2.15) may be replaced

by

58,6~ : s, B, ((cosIAd (2.18)

14
2.4. Nearside and I‘a.rside con;rihutibns

The asymptotic expansion®C of P (cos@) for |Vsind>> 1 sﬁows ;ﬁa-t it has. théu
character of a standing wave in § . We may decompose it into runaing waves by setl:in_g?*g
P, y(cos6)=0, U(cos8)+0, Pcost) (2:19)
where, for |A|sin8> 1 ,

exp{ZFi[AG —(=f 4)]}f
(2mA sin B)K L

0, (cos0) - teofasmdl)] - @20

so that Q,_ *(” travels clockwise in & and Ql_}m counterclockwise.
Corresponding to this decomposition, (2.18) becomes
5,(8,6) = 5:%8,6)+ 57(8,9) (2.21)
with
sEB.ey =— j : 5980, *Peos@)AdA (2.22)
where the supefscript () is associated with (*) and (+) with .

In applications of semiciassical scatteting to nuclear physics, the (—) component is
known as the nearside amplitude and the (+) component as the farside amplitude 33 The
reason for this nomenciature is that dominant nearside contributions arise from "repulsive”
paths, with negative classical deflection angles ® = —8 , conventionally represented by
incidence oﬁ the upper hemisphere (near side), whereas farside contributions arise from
“auractive” paths, with positive classical deflection angies, such as @ = @ , represented by
incidence on the lower hemnisphere {far side). Thus, direct reflection at the surface is a
typical nearside contribution, whereas Fig. 2 below illustrates a farside contribution.

The diffraction effects of interest in the near-critical region arise entirely from
nearside contributions, to be discussed in Secs. 4-8. However, farside contributions cannot
be neglected in this region: though appreciably smaller than nearside ones, they interfere

with themn to produce, in view of the large phase difference, the rapidly-oscillating



medulation of the angular pﬁuéﬁ:’ kriowa as “fitte strcture” {Sec. 1). Examples may be

seen in Figs. 3-6 below.

" tn order to bring out the relevant effects and to allow meaningful comparisons with

the numerically sumimed Mié series, it i§ essential to subtract out farside coniributions, o
as to eliminate, as far as possible; their obscuring effect on the pattern of interest. This is

the main purpose of the evaluation of farside terms undertaken in the following Section.

3. REMOVAL OF FARSIDE CONTRIBUTIONS

3.1. The Dcbye expansion:

Farside contributions arise from rays transmitted through the sphere after one or

more intemal reflections.’ In CAM theory, they are associated with terms in the Debye

multiple-internal reflection expansion!® of the farside amplitude. The Debye expansion of

the §-fuaction (2.10) is given by16.34

- . . P ) . . .. )
9.8y =5 B+ Y. SN B + ASTHA B, i=12 @1 .

pet

where P is the order of the last term that one wants to retain and

ol
S‘?_ (1.)_5_) H .("(ﬁ)

-l H"(’)(a) .
Ha) "

s p = (.,((g; AT B 4.

a5 By =5E B[ -pV 4.8 68

In the direct-reflection.term (3.2), Rg’ is the external spherical reflection

coefficient, given by (cf. (2.11}]

(28} Ne 20}

R By=— ‘ L
5 (1.B) (1B}~ Ne 130} (3.5
In (3.3), we have
iry (CC) i B
P By = ——-H Ola JRIAB) (3.6)

where RY! is the internal spherical reflection coefficient

H,7(8) “(B) RYA.B) . (3_2)'_

(p=12..) (33 '



{18} - Ne {1a} : .
(1B}~ e, (2] 67

The inwards and outwards spherical transmission cogfficients TZ{,‘i ' and T,(zfJ in

R, By =~

(3.3), respectively, are given by _
LA =1+RPA.B) T (A.B)=1+R{(4.B) (3.8)
The Debye teem (3.3) is associated with tmnsmission after {p — 1) internal refleciions,
and (3.4) represents the remainder after. (P — 1) internal reflections.
Substituting (3.1} into (2.22), we finally obtain the Debye expansion of the farside

“scattering amplitude

$4B,8)= —j:[sgf’(z,ﬁ) + is},"’(z.,ﬂ) +A5Q2.B) |0, [ Pcos6) A dd

p=l
=551(8.0)+ Y 5(B.0)+ ASS(8.9) _ 69
=l

3.2. Evaluation of farside amplitude

We want to evaluate the dominant asymptotic contributions to (3.9) for large values

of bothr B and a=NP , in a neighborhood of the critical scattering angle 0, ,

f,=n-20,=2sin"M , O =sin'N (3.10)
where 8, is the critical angle of incidence and
M=(1-N?)* AN

Under these conditions, as will appear below, the main contributions arise from values of
A well below ¢ , so that, for all Hankel fuactions involved in {3.9), we may appiy the

" Debye asymptotic-expansion’?
H. I (x)= (2/::)”(; -4 cxp{ﬂ[(}.’ —}lz) lcos"(l/x]—(:r/tl)l}» (3.12)

together with the approximation (2. 14), that leads to

0 - ) 3 7 :
{&ﬂlﬁ? Nl A Gl 8 13

ROGB] (B -H) +e (o =22)
where upper and fower signs cotrespond to the upper and lower reflection cqgfﬁéigng'
respectively, We may :lEISO cruploy the :lS)fl'.I.!plDliC c);p;insi;:n. (220) in. (3.9)...”

The dominant contributions to the farside amplitude arise from geometric-optic
rays, which, in the A-plane, are associated with SIationéi-y#jjha'sé poiats, i..e.. real ﬁdlc
points. 19 To look for such points in the various terms of (3.9), we set '

A= ,Bsmw, =asinw, 70 (.14}

with 0 <w, <m/2 along the path of integration. By the localization pﬁnéiple 217}, wyp

can be interpreted as the angle of incidence of rays associated with the represen!anon (3 %N,
while w, is the cormspondmg arigle of refraction.” 8

With the above approkimations and u:ins'fonn:iﬁons. the dominiant phasé factor in
the integrand of S%!  in (3.9) is found to be [cf. (4:10))

exp{—zlﬁ[coswl—(—mze—wl)smw,]} R 3 1%

Differentiating the exponent with respect 1o w,., we find that there-is:no stationary-phase-

point-within the path of integration {direct reflection is associated with repulsive paths; not
with attractive onés). '

" The dominant phase factor in.the integrand .of S‘f; )..is found-to be -
exp{2'iﬂl:( Np cos w1 - Np(% —w, Jsin w, J - cbs iél + (ig——g —-w, ]siﬁ w, ]} ' (3;16)

Differentinting the exponent with respect 1o w, |, we find that a stationary-phase point

w, =6, , w, =8, mastsatisfy the simultaneous equations -

20,F+{J(Jr-—262p)zir+0 . sing,, =Nsiné,, -

(p=12..) G.I7)
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With N <t , these equations have no solutions for p = I : all directly ransmitted
ray paths are repulsive. But there are solutions for p > 2. The lowest-order farside path

thatconmbutcs. p= 2 L i85 1lluslrau:d in Fig. 2.

The saddle—pom[ evalunuon of S(+l ylelds as the dorrunant term,

SO@.er=Cirp “'."”C”""’“"’ — | i
) ) ) 2_sml9(pciP—chp) (Ne-Cg,-'*'Cl,,)

[NEI%“QPJ "*P[?-rﬁ (Woeo=c,)]  (p=23.) @1

Nec,, +6,

where

Cop SC056., . s, ;=sind (m=12) (.19

and 6,, and 8, ,determined by (3. 17}!, are, respectively, _rlhe angles ot_‘ incidence and of
refraction of the farside geometrical-optic ray that emerges in the direction & after (p — 1)
internal reflections. l '

The result (3.18) represents the dominant contribution to the WKB approximation
of S8} Its modulus squared yields the geometrical-optic contribution!! to the intensity
from this term. However; the sum of several amplitudes of the form (3.18) goes beyond *
geometrical optics by taking coherence and interference effects into account.

The square root in (3.18) is the beam divergence factor Dp for a multirefiected
beam!2 and the two factors that follow it represent, respectively, T3y ‘and (RY)" |
whcre L ]‘"("J and R(’ ) are, respectwely, thc Eresnel wransmission and intermal -
reflection amphtudcs ata plane interface! associated with the angles Bi 8,, and
polarization j The phase factdr (~i¥*' represents the cumulative delay arising from the
crossing of focal lines.12 7

For p> 1 , we find that

, =8, - SM(G ”’] , ezpzfm(wj (p>> 1) (320)

9'l
r

where 8 | @, and M are defined by (3.10-11). It foliows that
R =1+ Nef(6, +6)/(Mp)]
so that one approaches to-tal reﬂccﬁoh when the number of internal n:ﬂecn'éns increases. -
This [eads to a relatively low convergence rate of the farside chyc terms for large p .
Indeed, at f= g, ,(3.18)-(3.21) yield
S0B.8,) = 2B¢;(N8, /M) exp(~2Ne,0,/M)
xexp[Z:,B(NB -M)|(i/p*) (p>1) (322
which converges only tike p™® . Note, however, that successive contributions differ in
phase by @2, so that corrections to !S}”] after p terms galike (p+2)~ | -
The corivergence is somewhat faster for polarization 2 (parallel}, as may be seen
from (3.21) with e, =N | This cffcct is enhanced, for & = 3{4 , by the accidental
proximity between @,, and Brcwstcrs anglc making the number of farside subtractions .

needed to remove most of the fine-structure oscillations from the Mie amplitudes much

smaller for polarization 2 than for polarization 1, as wiil now be seen.
3.3. Subtracted Mie amplitudes

We define

SB.6P) = 5,(B,0)~ ES“’(,B.B) | (3.23)

where S,- is the "exact” Mie umplitude, given by ¢2.1), and the subtracted terms are given
by (3.18). Note thart farside contributions are not removed completely by this subtraction
procedure, both because £ is finite and because (3.19) contains only the dqmina.nt
asymptotic farside contribution to the Debye term of order p (c. g., it does not include
higher-order WKB corrections). Nevertheless, we refer to (3.23) as the subtracted Mie

amplitude 1o order P .

ip>> 1) 3.21) .
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In Fig. 3(a), with N =0.75 , we compare the "exact” polarization | gain function
[ef. 2.7 G, .for f=1.000 and 75° 5 @£90°, with the subtracted gain functions
obtained from (3.23) to orders £ =2 (only one term subtracted) and P = 100. We see fha[
the fine-structure oscillations in polarization { are quite large, and that subtraction of the
p =2 farside term alone still leaves a ot of fine-structure "beats" to be removed. With

= 100, most of the fine structure has been removed.

Fig. 3(b) shows the effect of "peeling away" successive layers of fine structure
from Gy for f§=10,000 and 78° < @< 84° . We see that sizable beats remain even after
three subtractions, and a careful comparison between P =10 and P =100 still reveals
some differences. . N

- Forthe polarization 2 gain function G, ", plotted in Fig. 4 for = 5,000 aﬁd
BO° <0<86° , we see that the amplitude of fine-structare oscillations is a good deal
smaller (because of the proximity to Brewster's angle). Subtraction of the p = 2 farside
term alone already removes most of the fine structure , as illustrated by the upper curve in
Fig. 4 (note the different plot scale), and the main effect of going to P = 100 isto
introduce some additional smoothing.

Since both §) and § contribute to the phase difference 8 [cf. (2.6}, one needs
to go to large values of P to remove fine structure in this case. This is illustrated i Fig. 5,
which shows cosd for =100 and 40° < @< 130° , exhibiting large fine-structure
oscillations, some of which persist for P = 2 (upper curve, with different plotting scale),
but are practically eliminated for P = 100 . The farside sublractions reveal a dip around
106° that was masked by the fine structure oscitlations [cf. also Fig. 6((:)].

In Fig. 6, we compare the "exact” Mie resulis for G;, G, and cosd for
B=1,000 and 65° < @< 105° with their subtracted counterparts 1o order P=100. We
see that the disaacting effect of fine structure is indeed removed by the farside subuactions;
allowing us to proceed towards our purpase, the explanation of the much broader

diffraction pattern around the critical scattering angle that is apparent in these figures.

According to the abovc dlscussmn rhls pattern must arise cnu.rely from r.he rearside ternms

‘"( Vin (2. 7[) S0 1hut we now ev.:lu:m: these tcrms

]
tJ
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4, THE DIRECT REFLECTION SUBCRITICAL TERM

4.1. Subcritical and supracritical contributions

We split the nearside amplitude [cf. (2.22)] into two parts,
555,0)= 5, (B.9)+ 5;(B.9) CBY
where

s5;B.0=-{ s71.50, V(cost)AdA 4.2)

will be cailed the subcriical nearside ampiitudc and
5.0 =—[ 594,B)Q, ,PcosO)A dA @.3)

will be called the supracritical amplitude. The reason for these names is that, with the
substitution (3.14), the subcritical (supracritical) amplitude arises from incident mys with
angles of incidence wq below {above) the critical angle 6 [cf. Fig. T(b)].

The subcritical amplitude is associated with ray paths of the type iliustrated in
situation 1 in Fig. (b}, for which it is useful to separate contributions from varying
aumbers.of intemal reflections by applying the Debye expansion . Substituting (3-1), with

FP=1 ,into (4.2), we find

55(B.0)=55,(B.8)+ 5;(B.0) + AS;(B,6) (4.4)
where
< "H:L(z,(ﬂ) (5) 1
SiB.6) =~ () B0, Micos0)Adi (4.5)
is the direct reflection subcritical term,
- (B) i () )
siB.o=-2 (g T BP0 {*ﬂ, (-4 (cosOIRAE (45)

is the direct transmission subcritical term, and

(ﬁB J H«l (B) (1}(1 ﬁ)T(J](/ i

o 1, 0(B) 7
(.'J i T w : .
(A5 (HYw) .
x[l—pw(l.ﬂ)}H:(?’(a)Q*‘*. (cosd)AdR . - @D

is the remainder sitberitical term.

Each of these terms will be separately discussed. The supracritical nmphtudc (4.3}
is associated with rays that undergo total reflection at the geometricat-optic level [situations
2 to 4 in Fig. 1{b)1, for which the Debye expansion is not suitable, so that it requires a
different treatment. In the present Scétion. we discuss the direct reflection subcritical term.

In terms of scattering angies, we must also distinguisl; between the domain of
partial rqflécﬁon 8 < 9<S T, referred to as PR from riow on, and the domain of total

reflection 0 < @ <0, referred to as TR:

0<9<8,(TR), . 8,<8<m (PR)  (48)

The deviation from the critical scattering angle 8, will be measured by the parameter

e=4(0,-9) 3 4.9

4.2. Thé WKB approximation

With the approximations (2.20} and (3.12) and the substitution (3.14), (4.5}

becomes
—h‘!’,‘-l % .
Sfo(ﬁ.ﬂ)“—'-——w-—(zﬁ o '69 sz- siniw, } cosw, RYY
xcxp{—2iﬁ[ces W, — (%9 - w,,]sin wy ]}dwl . (4.10)

where RY) is given by (3.5), (3.14). Note that the phase factor in (4.10) differs from that
in (3.15) only by the substitution 8 — —8 .

The lmcbmnd of (4 10} has a saddle point at
w=0 =(x-a)2- - - S @D
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which lies within the domain of integration if € is in PR, and outside {beyond &;)if &
is in TR {cf. (4.8} In either case, assuming that the main contibution to the integral arises
from the neighborhood of the saddle point (i. e., from the neighborhood of the upper limit,

for @ in TR}, we expand the intcgrand around this point, as one would in the saddle-point

method, yielding
~ixf4 % : :
55(B.9)~ Z " ,Bx[sin—g-) cxp[—2£ﬁsin§-)
I Rg’(a,ﬂ)exp(-iﬁ sin%vz)dv @.12)
where € is given by (4.9), 4 is given by (3.14), with
Wy =W, +v ) 4.13)
and we have assumed that
B < 1 - @.14)

in the portion of the domain of integration that contributes significantly to the integral.

In the PR domain, sufficiently far from critical scattering, (4.12) should just yield
the WKR result associated with the directly reflected geometrical-optic ray. As was done in
Sec. (3.2), we may then employ the approximation (3.13) for Rg’ . From (4.12}, we see
that the range of the saddle point, i. e., the domain in v that contributes significantly, is

M= 0{[ﬂsin(9]2)l_x}
in order that the saddle-point method may be applied, the full range of the saddle point
(4.11) must be included within the domain of integration in (4.12). This requires
£<0 and [e> (MB)® (4.15)
where we have employed (3.10).
Assuming the validity of (4.15), the saddle-point evaluation of (4.12) leads to the

zero-order WKB result

26

sin(6/2) —e,[N? ~cos?(8/2)]"
sin{6/2) + ¢, N? —cos? (6/2)]

5(8.9) Q——%{ }c’xp[«-ﬁfﬁ's'iri(B/Z)] B
The expression within curly brackets is the Fresnel external reflection amplitude3!
associated with the angle of incidence {4.11), For j=1 , the result is related by (2.16)

with the corresponding result 9 for scalar scattering. The first-order WKB correction 857,

for both the scalar or electromagnetic3 case satisfies - . _ .

85 BO/SH (B, e)-s-o{ﬂ“[N" -cosi(afz)}"‘-} ER A PR T E
This correction does not become very large within the dém'aip (4.15), but it blows.'i;p' arthe
critical scattering angle (3.10). Thus, even though the zero-order WKB approximation
remains well-behaved as' @ — 8, , the divergence of the first-order correction signals the
breakdown of this approximation outside c.;.f the d'on:miﬁ (4.15), arising from the cu5p N
singularity it the Fresnel reflectivitics. We tiow deal with the hcar{ﬁﬁcal domain, where .

_ el = oj(mBy¥]

From now on, it is therefore assumed that Jej<< 1 . |
4.3. The Fresnel-Fock integral

It follows from (4.9) and (4.11) that, in the 4 plane, thc saddle poih:t‘ i =ﬁsm W,

is such that S . .
T - a = f[Msine - N(1 - cose)] = MPe +O(Be?) (4.18)

so that the saddle peint coincides with the upper limit of integration of {4.12) ;dt the critical .
scnttéring ﬁnglc and is close to the upper limit in the rear-critical domain. This invalidates
the approximations empioyed following (4.14) in two ways: o o

{i) The Debye asymptotic expansion (3 §2) that led to (3.13) can no longer be
employed to evaluate (1a) and {2@} in'(3.7)[cf. (2.14)]. Physically, this mians that
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the effects of the curvature of the spherical surface become important, so that the
reflectivities can no longer be appmximai:cd by their planar-interface Fresnel limits.
Correcting the reflectivitics eliminates the cusp singularity and the divergence at the critical
angle.

(i) Although the domiriant contributions to (4.12) still arise from the neighborhood
of the saddie point (in view not oaly of the usual saddle-point arguments, but also of the
sha_rp. peaking of the reflectivities at the critical angle), the saddle-point method is ro longer
directly app[icablc, because part of the range of the saddle pomt lies _qp!si_dc the range of
mtcgrauon . L . o - ) _ _ _
'I'hc most :homngh procedure to dcal with point (1) would be to employ the uniform
asymptotic expansions of the cylindrical funcuonsla. However. our goal is to find the
lowcst—ordcr appmxunauon that w;l[ allow us to expl;un thc new dlffracuon effects i in the
nea.r-cnucal region. Thus. we sacnﬁce uniformity and high accuracy, by employing a
!:ransmonal asymptotic approximation to the cyhndncal functions: the Schibe
approximation, which, to lowest order, 1% is . '. o '

H (5}~ 2cxp(nn/a)(z/x}“m[exp(izm/s)(z/x)*‘(x. x)] I2-x=0(x%) 4.19)

where Ai denotes the Airy function. Applymg ths to { 2al in (3.5) [but still employing
(3.12) for {18} and (2B} ), we find

1+ [N (A - a)]

Rg’ca.ﬁ)g B P ) (4.20)

where . : :
N (z/a)x o ' B @21

and we havc mtmduced the new notation o ) “
W N X] = e Ney /MY’ Aie K . (422)

Within the domain of applicabitity of the Schidbe. approximation, according to (4.20), the. .

deviation of ]Rg)! from unity (total reflection) remains O{y’) .

Réplacing v by
={Bsin(6/2)["v (4.23)

i (4.13), and taking (4.14) into account, we find that, in (£.20),
Y -a)= y'{ﬁ[cos(ﬂﬁ) - N]+[Bsin(6/2)]u— %cot(B/’Z)uz}

For 8~6, , by (4.14) and (4.22), we have
r 2
Yl ~(B¥M) < 1
so that the last term of the above expression may be neglected. Thus, substituting these

results into (4.12):33

X =0
S0(B.6) = 1:—4;5 exp(—Z:ﬁsm-—)J___ G{—?ﬁj—%]c@(—m’)m (4.24)_
where the lower limit has been replaced by - and
x = {Bleos(6/2) -]+ [Bsin(e/2)]u} @2
I the deviation £ from the critical scattering angle (4.9) satisfies jgfac 1 , we
have :
X= y’(M,B -+ NpBe? +mu)
As will appear below, |e]= O(ﬂ-"‘) in the near-critical region, so that ¥ e <« | can be
neglected in this expression. Thus,
X = v MB{\/MPe + ) 4z
so that the upper limit of intcgration in (4.24) corresponds approximately w0 w = —JM—ﬁe .
The integral in (4.24) resembles a Fresnel integral, except for the first factdr in the
integrand, arising from (4.20), which is si;nilar to that appearing in Fock-type fl.mctic_;ns.zg

We therefore call (4.24) a Fresnel-Foct: integral. For its numerical evaluation (see

Appendix B), it is convenient to proceed as follows:
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(i) In PR, where the stationary-phase (saddl€) point u = 0 falls within thé domain
of integration, we deform the path of integration to go from &"%=="to the origin (this
deformation is allowed), lhén from the origin to w along the real axis {where u=w is the
upper limit]. Along the fisst part of the path, the integrand has the fast Gaussian decay
chamctenistic of a steepest-descent path.

The second part is a definite integral along a piece of a stationary-phase path, so that
it has an oscillatory (Fresnel-like) character, but w remains of onder unity within the near-
critical region, so that the number of oscitlations is small. It is interesting to note that a
similar mixed steepest-descent-plus-stationary-phase path was useful in CAM
approximations to near-forward diffraction. !8 7

{ii} In TR, where the upper limit w is ncgati_vc, the path is deformed onto a straight
line from e***s 1o w, parallel to the steepest-descent path. The integrand is still
dominated by Gaussian-like decay at large {ul ; there is also some oscillation, but this is

rapidly damped by the Gaussian factor.

4.4. Discussion

The following physical effects are incorporated into (4.24):

(a) The Fresnel-like character associated with the existence of a stationary-phase
point within the domain of integration (PR} or cutside it, but close to its edge (TR);

(b) The incomplete character of the Fresnel-like integraf, since only part of the range
of the stationary-pliase point £2lls within the domain of integration (the il end of the range,

in TR);

(c) The deviation of the spherical reffection cocfficient . R.g) from its limiting
Fresnet value for a plane intesface, due to the effectof curvature. These features are
' missing in the WEKB approximation, as was discussed at the beginning of Sec. 4.3.

Although (4.24) will not match very smoothty with the WKB approximation outside of the

near-critical domain (because we did not apply uniform asymptotic approximmations), we
can employ it to estimate the angular width of this domain.
In the PR region, by (4.26), we require
[el = (MBy™* | . @2
in order for a subswntial part of the range of the stationary-pﬁasc-pdim u=0 of (4.24)to :

be included within the domain of integration. This agrecs with (4.15).

In the TR domain, since (4.24) resembles an incomplete Fresnel integral, weexpett

leUI to fall off roughly like

(\}Mﬁe)'l for 2 (MB)™ .
Deviations from the WKB approximation shauld thercfore bé smiall when'(4.27) holds, ©
We conclude that the angular w1dth of the domain where diffraction cffects are sxgmﬁca.nt

(ncar—cnncal domam), for thc dtrec:—reﬂecuon suberitical comnbuuon must bc of l.he ordcr

of a few times (MB) %

10



5. TRANSMITTED SUBCRITICAL CONTRIBUTIONS -

" 5.1. Direct transmission subcritical term: WKB approximation

The direct transmission subcritical term is given by (4.6). At the geometrical-optic

level, it gives rise to two angular domains: i an illuminated region, &< @, that coincides
with TR, singly covered by directly wansmitted rays; and a shadow region, @> @, that’
coincides with PR. For this term, the near-critical domain is a typical Fock-type

rra;rzs.rm:m.l6 associated with the disappearunce of one real ray,

- Well within the illuminated region TR, one may apply the WKB approximation,
u'e;anng s< hke sM m_ Sec. (3.2), . ¢., employing (2.20) and (3.12). Thus, the saddle

point is given by (3.17) for p=1,with 8 -0 (because Q, -im -0, _i(" ), yielding
7 = af1—2Ncos(6/2) + N*] *sin(8/2) (5.1)
provided that ¥ (a -3 ) > 1 ,in order that (3.12) with x =& may be employed. From
(4.9) and (5.1}, we find that, for €< 1 , this condition is equivalent to
gx ¥y (5.2)
The saddle-point evaluation of {4.6) yields, as its dominant term, the zero-order

WEKB approximation

$5(8.6)~ —fﬂ[zsin’; &.Sllecz)] (A::Zizz: % exp[~2ip(c, ~ Ng,)] . 8,—85 ¥ (5.3)
wherer

¢, =cosb, . 5, =sin@, (m=12} - (5.4)

and & and 6 arerelated to @ by . .

tan 6, = Nsin{6/2)/[1 - Ncos(6/2)], 8, =sin"'(sin 9; /N) (5.5)

[ S
FIy

allowing us!? to express (5.3) dircctly'in terms of 8 . The expression within square
brackets in (5.3) is the beamn divergence!2 factor Dy and the following factor is the
product of the internal and external Fresnci I:runs_mission amplitudes, so that, by (3.8) and

(3.13), the WKB resuit may be rewritten s

$5,(8.0) = —iByD; (1~ Jexp[-2iB(c,
We note that (5.3), if continued to the shadow boundary € =6, , would vanish there.

-Ng)}, 6-8>7y (56

The first-order WKB correction, 19 simi_larly to (4.17}, wouid blow up if continued
to the critical scam:ring.:m gle; the condition for it to remain small is equivalent to (5.2),

namely, 6,—8> ¥’
5.2. Fock-type approximation

Acconding to the above discussion, the near-critical domain where diffraction
effects are significant for the direct transmission subcritical term shoutd be giveﬁ by
e=0{(y) (5.7

Since the saddle point (5.1) would approach A= for 65 &, , we expect that the main

=0(1) , where the

Schibe approxmmtmn (4.19) may be applted forx=a .
Thus [cf. (4.12)], (4.6) becomes

. e-"x,'dﬁ}i a, . y " J ((I) -
556.9) :W u (sinw,) cosw1 Ty (I—J()Fn‘
xcxp{—zw[cos w, —(—E ;9 —w )s'm wl}}dw, (5.8)

where, by (3.8) and {4.20),

2

f’(a B)= 1+R"’(A B e ya e

(5.9
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with 1 =fsinw, .
By (3.7) and (3.8)-
H,"a). 21 4iNe; '
T (A By=— 5 (5.10
Hyar) o[ H, )] ({18} - Ne,{22}) :
where we have employed the Wronskian3 of #,, H#.% . Again in the Schibe
approximation, this becomes '
-2!!13N
(a) T(!]( ‘ﬂ) € ]’ (5.11)

2am{i- Y ¥[N:y(2 - a)]}Al"[e'z""’y’(l a)]
Since the ma.lﬁ c;)nlribution to (5.8) in the domain (5.7} arises from the

neighborhood of the upper lirit where the Schibe ﬁﬁproximalion is valid, we expand the

integrand around this point, setting |

‘ w=0-(, £=0(r") (5.12)

3o that (5.8) becomes, with the above approximations,

55(8.8) - e"MN_L( B )xcxp[—ﬁp(M—Ns)}

2zsin @
. ol ME sy
AP(e™r)[1- e (Ne, /M)y " Ai{e™)]
. where we have set
t=MyB{ (5.14)

and 7, >> 1 is the boundary of the domain that yields significant contributions.

n order to convent (5.13) into an integral with fast-decreasing integrand, we rotate
the path of integration to the straight line ¢ = ¢™"x . This is allowed, because the path
stays away from the Regge-Debye poles!? [roots of the imeérand denominator in (5.13)].

The final result is

33

55(8.0) = é""ﬂlN i [ B )xexp[ =2i(M - N&')]

M \2xsin @

xf Ma e (5.15)

AT

where we have neglected the 0(7 ) correction in the denomihator of (5.13) and, in view
of the fast decrease of the mtcgrnnd [dommatcd by a factoﬂ‘9 exp(——x"-") for x> 1 ]
the upper limit has been extended to infinity. Since the rgsult is valid within the dqmmn
(5.7}, no significant contributions a;'ise from .x »> 1, in‘ ;éﬁemcnt with thtt:. as#umptions
made in the denvauoa _ . } l
The mlcgml in (5 15) tsan mcomplctc Fock typc funcuon [cf refen:ncc 19 eq.
(5.85)]. The mtegmnd decays cxponenually with £ in !he shadow reglon PR ( £< (} ) and
grows exponentially with £ in the lllununaled reglon TR (&> 0 ) where l.he exponent
however, is limited by (5 7) to valuf:s of order umty Thus (5 15} mterpolates smmt.hly
(but not uniformly) between the 1llummated and shadow reglons associated wuh the
dlsappea:a.nce of the dm:ctly u'ansuutted my,as is typlcal for Fock ty-pe tlansmons 16 '
Compnnng (5 15) wnh (4. 24) W see that lhe dlrcct uans:mssmn contnbuuon in.
!he near-cnhcal region is O(ﬁ"") times smallcr than lhat of dlrcct mﬂecuon, wh:ch has thc
typical O(f) magnitude associated with gcometﬂca[-optxc terms. 'I‘hls suppression eﬂ'ect
has a simple explanation. The zero-ordér WKB appr'o'xirh.":tioﬁ goes 1o zero like (cosd, )x
as 8, - xf2 (€5 0).A factor cos@, arises from .T,‘;'" in the Fresael (planc interface)’
approximation, and an additional factor (cos®,)* arises from the beam divergence factor
Dy i (5.3). However, for a cuved suiface, T} does notvanishas @; =72 { wesce
from (5.11) that it becomes -O(Y’) , 50 that the -{cos 8; }* behavior is changed by the: . -

curvature into a behavior like T’_";_O(ﬁ“”) » exactly the suppression factor found..- . ..
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.-5.3. The remainder term

The remainder subcritical term (&.7")__ differs from (4.6) by the additional integrand
factor . ’ ) o .
| sap=papli-p ] G0
where p is gwcn by (3. 6) In the Debyc expansion (3 1), within lhe nea.r-cnncal domam
(5.7), a term of order p >2 ,in the WKB appmxlmauon, would have a saddle’ point %, ,
upﬁmaching A=« more an& more closely as p . increases [cf. (5 iO) with .9 —r -—9 ],
that .1 @ isan accumulauon pomt of saddle pomts for the Debyc terms. It follows that,
within lhe ncar—cnucal region, the dummam comnbuuons 0 @ should still arise from
the neighborhood- of A=cx. ' o
 We see fmn{ (3.6) thit o; contains the internal sphecical reflection coefficient
Rf{’ . wluch decays relal:vely rapxdly as the internal angle of mc:dence
_ =sin ‘(l/a)
decrcases from s lm-uung va!ue nﬂ Also wnthm the domam of vahd.xty of the Schobe

approxxmauon. along zhe same path of mte{._{r:mon:‘6 that led to (S 15) we find Lhat (5.16)

contnbutcs another fast—dccaymg factor {cf (3 6)]

H, (e P (@) = e Al(I)/Ai( uhy) (5.17
which decays like .exp(—s}x ) for x>»>1 .

For boih of these reasons, we expect that the contribution from the remainder ferm

(4.7) is substantially smaller than that from. 55 , givcn by (5.15). Numerical estimmates

confirm this expectation. Since the contribution from -5, - is already O(ﬁ ] Aimes smaller -

than that from direct'reflection, and s we are 'rciaining"only the ‘fowest-order dominant

contributions, we shall neglect the remainder teom (4.7) within the near-critical region.
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6. THE SUPRACRITICAL AMPLITUDE

6.1, The WKB approximation

The supmacritical amplitude § is given by (4.3), with 57 defined by (2.10).
Comparing these expressions with (4 SJ, we see that the only differences with respect to

the direct reflection subcnucal term are in the limits of i mtegra.uon and in the replacement of
RY by

_[2B}-Ne{a}
{18} - Ne,{a}

which, forreal A , is a pure phase factor. Thus, (4.10) is rcplaced by

R(i)(l.ﬁ}

e-c‘:r,uB;;. "ﬂ %
§Hp.8) = | :{sin
(8.9 WI" dwy {sinw,) cosw,

xexp{—zm[cds W, - (-’5-;—9 —w, )sin w,]+ 2:@} B (¥
If we can treat ¢ asa slowiy-varymg phase, the integrand still has a statlonary»

phasc point (saddle point) at [cf. (4.9), (4.11}]
W=l =(r-8)2=0_+¢ (6.3)

However, in contrast with (5.10), this point lies within the domain of integration if & is in

TR, and owtside if @ is in PR. The range of the saddle peint is still given by

|| = o{{ﬁsin(a/z)]”“}

_ (cf. Sec. 4.2): In order for it to be included well within the domain of integration in (6.2),

we musi have

e> (Mp)~ : o (6.4)
With || << 1, (6.3) yiclds :

= exp[2i, Mi)] G

e
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X-a=MBe
so that, when (6.4) hiolds, one can generally apply the Debye asymplotic approximation
(3.12)_ to-evatuate (6.1), with the following results:
(B XY -2 - )" ©5)
(B -2 +ie (22 ~a?)*

¢, =—tan” ( yfsin®w — /coswi) (6.6)

We sek ‘g (5 5) is the continuation of (3.13) to 1 > &, with
\ (a —l’) —) x(lz 4:.!2)"‘i

With A =Jsinw, , (63)'19 just the Fresnel reflection amplitude at a plane interface in the

R(J‘}(l’ﬁ)‘ -

total reflection donrain; and (6.6) is the we[l-known phase shift associated with total
reflection,3! for an angle of incidence wy .
Under these. condluons. applying the saddle-point method to {6.2) yields the zero-

order WKB approximnation
ip i s 8
56,6~ —%cxp[—lé' A 9)]cxp(—2:ﬁ sm;) | | (6.7}

where

2 gz
mn[ﬁi(fi):lzei 1/::05 (68/2)-N 68)

2 sin(8/2)
This result is the continuation of (4.16) to the TR region, and it has the same physical

interpretation,
6.2. The Pearcey-Fock integral
In the near-critical domain, the saddle point (6.3) is close to the lower limit of

integration of (6.2}, and the WKB approximation breaks down for the same two reasons

discussed in Sec. 4.3 (but interchanging PR and TR).
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We expand the integrand of (6.2) around the saddle point (6.3), just as was done
for (4.12), with the same notation (4.13) and the same assumption that (4.14} holds in the

relevant portion of the domain of integration. The result is

_:x4 S : : - E : o
S’(B 6) = o ﬂx(sm J exp[ -2ip sm g) _
' L‘R“ ’(A;ﬁ)éx’p(—iﬂsiri-g—\ﬁ)dv' oo (69)
where B s gwen by (6.1). _ -
] Employmg thc Schobc appnoxxmauon (4 19) w evaiuatc [a} and reuumng Lhe
Debye approximation (3.12) for {18} and (28} ,we t' nd [cf. (4.20)] '
1+iy @ [Ny (A —a)

, - 6.10
I~ir"!_),-_[1\_l:7’(1-a)} (©10

R(i,(ll-ﬂ) =

where fcf. (4.22)] o _ R B -
@, [N: X]=(Ne,/M)n’ Ai(X) (6.1'.1)_' -

' Again with the change of variable (4.23) and with the same approximations that led to

(4.24), we fnd that (6.9} becomes

-J“ ,chp(—Z:ﬁsm . )J

X=0

5B, 6) =<

- (14‘5?’:1: [NV X]

—ind . .12
luly"bl[N;xl)er( .‘u )du (6 )

where X is still given by (4.25) and the uppert limit *
[Bsin(672)]""6 ~~[MB8, > 1
has been replaced by s . In terns of the phasc angle ¢ defined in (6.1), this
approximation to RW co:_'rcsponds to . -
o mn-‘[('[sié;’/M)ﬂani(’x oo '5 (6.13)
The result (6._12_)_i_s the counterpart of _(4_1-724_), and its n_u_rqe;ica! _cya.l_L_la!:i_(?ﬂ .
{Appendix B} follows a procedure entirely simiiar to that outlined at the end _Q'f_S;c_._tl.".’n. -

with the roles of PR and TR interchanged:
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(i) In TR, where & =0 lies within the domain of integration, we integrate first

along the real interval [w,0] , where

u=w=[N- cos(9/2)][ﬁ/sin(9/2}]x <0
is the lower limit of integrarion in (6.12), and then from u=0 to € oo , an allowed
path deformation. This combines a piece of statig:.mary-phasc path having few integrand
oscillations with a steepest-descent path having Gaussian decay, leading to fast numerical
convergence. . '

(ii) In PR, the path is rotated onto a straight line from w (now >0) to € ™o
parallel to the steepest-descen[. palh; leading to Gaussian decay of the integrand {with a few
superposed oscillations) and agaih fast convcrgéncc.

_To discuss the physical interpretation of_ (6.12), it is convenient at first to introduce
additional (more restrictive) approxmmuons Sincé ¥ « 1 and it is assumed in (6.10)
that the main conmibution comes from X =O(1}, we may cmploy the further
approximation

9, = (Ne; /M)y AI(X)
With the new change of variable
u+{psin(o2)f e=¢ (6.14)
and the additional assumption .
<y . L (619).

(which allows us o neglect terms of orders. ¥ Be* and Be’ ), (6.12) becomes

2TERI4 Ry Lo T
5(8.6) = ; 7= Bexp[-2if(M = Ne)| -

J'o exp{v—z[gl —2&,|Bsin— C 2- ,1:1)’ 'Ai[?' _Bsing{,']]}dc_ (6.16)

In view of (6.15), wé can make the additional npproxlmauon sm{B/Z) M within the

square roots, ylcldm g7

7: L/

ﬂe)"’ Vr—ﬁexp

XJ cxp{—i[(z -xt - ;—zeiln'Ai[Zx f;ﬂ}d( (6.17)

where we have introduced the notations
x(B.e)=2(MB)'e (6.18)
¥{(B)=(4/My N¥ ¥ (6.19)

(—2iB(M - Ne)]

The reasons for these notations wilt become apparent later,

‘The integral in (6.12), as well as its simplified version (6.17), is a new type of
diffraction integral. We call ita PearcéyFock integral (the jusﬁﬁcalioh for this name is
given below). To clarify its physical interpretation, we consider the behavior of (6.17) in a

limiting situation, the planar reflection Limis.
6.3. Planar reflection limit and Gooes-Hinchen: shift:

If B is so large tl:af
Ji R (6.20)

" (6.19) implies that y<< 1 , so that, apart from a very smail portion of the range of

. In that case, 30
(== 1, Jarge| < =) : 620

integration, the argument of the Airy function in (6.17}is > 1

WAi(z) = —z ,
so that [neglecting the contribution from the domain where {6.21) does not hold] (6.17)

becomes

= ;ﬁ; Bexp[-2ifi(M - Ne)
xju— cxp[—i({z_ ~x{+ e,yﬁ)]d{ (6.22)

From (6.10}, we see that (6.21) amounts to the approximation

10



R(JJ(A,,B)=cxp1:—2zej—ﬁ1fz(l—a)] o (6.23)

and, with (A - a)fa << | | this i.s equivalent to (6.5-6). Thus, {6.22) corresponds to the
replacement of the true spherical reflection coefficients by those associated with a plane
interface at the corresponding angle of incidence w, in (6.2).'In this "planar reflection
fimit", the curvawre of the spherical surfuce is taken into account only through the spread in
the anglcs of incidence w, that contribute to the result.

With the change of variable { =¢* , we find37

5 (8.0)~ ;1;; B exp[—2iB(M ~ Ne)]

XL- exp[—i(r‘ -t 4, y:)]tdt - (624

The Pearcey integral P(x,y) is defined by38-40
Pay)=[_ exp[i(:‘ +x? +yr)]d: (6.25)
which explains the choice of notations in'(ﬁ.lB—l?}..We may reﬁ’xite 6.25)as
P(x,y} = po(x,y}+ p(x,~y) T (620
where we have defined the “half-ringe Pearcey integral”™
plxy)= J; cxp{i(r‘ +xtt + yt}]dt . 627
In terms of this .function, (6.24) becomes

g
S (B8 =2 =

where the star denotes the complex conjugate.

,Bexp[—Ziﬁ(M——Ns)]%% (-xey) (6.28)

Pearcey's integrai (6.25) is the diffraction integral associated with the cusp
catastrophe M a caustic resulting from confluénces of up to three stationary-phase points.
In.the present situation, only one stationary-phase point is relevant. From (6.24), we find

the stationary-phase condition

4

Pez-i (6.29)

This can be solved by iteration, if the fast term is a small correction. The result is, in terms

of the wy variable [cf. (4.13),(4.23), (6.3)]

W =8=6+ i = =ec+[1—-£——w2):e"]s : T (6:30)
(BT (MePB o
- It follows Lhﬁt , in this approxir_mtibn.- the refationship between the angle.of - - -
incidence 8 and the direction of observation 8 is L
o=x-20-86 o - (631)
where
eS0T em

represents an additional angular displacement undergone by the reflected ray (stationary-.
phase path), as compared with the geometrically reflected ray (Fig. 7). This displacement
corrcspc_mds to the well-known Goos-Hdnchen shift at total reflection.2642 Indeed, one can

readily verify that Artsnann's expression®3 for Lhe linear shift

2e tan
dxM = L1 6.33
! k;;sin’ 0, —N? ©33)

reduces to alSBf"l when @ =8, +£, |el< 1 . Physically, this shift arises from the

tunneling of light into the optically rrer mediom (situation 3 in Sec. 2.3 and Fig. 1), as an
evanescent wave. The linear shift is of the same order of magnitude as the penetration
depth,

The condition that the last term of (6.29) should represent a small comection,
assumed in the derivation of (6.32), amounts to

e3> N8/(MB¥) (6.34)

which; by (6.32), is equivalent to

42
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|59‘.5“I « £
ie, the angula.r shift must be much smal[cr than the deviation from the critical scattcnng
angle This condmon is wolated as 9 approaches the crmca.l anglc & .

To check that the displacement of the smuonary phase point (6.30) from its
geometrical-optic value (6.3) causes an angularrdisplaceg_lcm'ofzthe_ whole pattern, we
‘ct;n-mg.m:ed the smﬁonar}-ph;lée é;ﬁproximation .lo -(6."28) in the TR region £>0 . We
indeed found a Fresnel-like pattem, with-an angular displacement given by $86™(¢) at
each € satisfying (6.34). o

It should be stressed that the abovc dxscussmn is based upon the planar reflection
limit, in which the only effect of surface curvature is to spread the range of angles of '
incidence. The dynamicat effect of curvatire, which changes the reflection amplitudes from
lhelr .plana.r Fresnel values (6.23) t6 ﬂ.iéﬂ's'[;herical ones {6.10), is not included. Thus, for a

mofe scciirate quantitative expression, orie should go back to (6.12).

7. APPROXIMATIONS TO THE NEARSIDE AMPLITUDE

7.1. CAM and WKB approximations

The lowest-order,; transitional CAM approximation to the ncarside amplitudt;, is [cf.
@.1), 4.4)] =
S5$m(B.0) ~ 55(B,0) + 5,(B.0)+ 57 (B,6) (7.1)
where S5, is given by (4.24), §; by (5.15), and S} by (6.12). What is the expected
domain of validity of these approximations? _ -

" To begin with, use of the léwcsborder asymptotic approximations requires that
size parameters be restricted to large values. It has been assumed throughout that ¢ << 1 ;
thus, the numerical comparisons in Sec. 8 will be performed for B=103.

For the Fresnel-Fock integral (4.24), according to the discussion given in Sec, 4.4,

the angular domnain of validity should be C

-%
ldsof(mp)¥]
It is convenient to introduce the parameter

2:r E
n= Iy, ,B (1.2)

as a measure of the width of the ne.ar-criticat region. In termis of 17, the expected domain
of validity of (4.24) is given by S - .
IS/?]I = O(l) ) (7.3)
For the dm,u rransmission contribution (5.15), in the approximations that lead from

{5.8) to (5.13), terms of order | are neglected compared with unity, so (hat one

should have le|<< ¢ . Within the range of size parameters we treat, this condition is siill

compatible with (7.3). Actually, the accuracy of (3.15) is somewhat lower than that of the
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other two CAM terms in (7.1) [comparable 1o that of (6.17) as an approximation to (6.12)};
but this need not concetn us because, in the ncar—critica].region, direct transmission is
suppressed by a factor O(ﬁ"‘) compared to direct reflection, as we saw in Sec. 5.2.

Finally, for {6.12), the approximations are essentially the same as those employed
in {4.24), so that the domain of applicability is again (7._3). Tﬁus, the CAM approximation
may be applied for |efn|=O(1) . Within the somewhat more restricted domain [gf<< ¥* ,
one may replace (6.12) by (6.17), with some loss in :;1c:cu|rac:y.“4

The (lowest-order) WKB approximation to the total nearside amplitude is given by
' S5 B.0=5B.0)+5,B8.8) . 0<6, _
=SLB.9) .. g=8, (74)

where $5 isgiven by (4.16), §; by (5.3),and §] bg:/ (6.7). According to (4.15), (6.4)
and (5.2} [which, as noted above, is consistent with (6.4)], a nccessary condition for the
validity of the WKB approximation is
' ld= n ' B .5
One should remember, however, that the neglect of higher-order internally rultireflected B
nearside terms (Sec. 5.3) is justified only in the neacr-critical region; if one goes much
beyond this region , the WKB contribution from these tenms aiso has to be included.
According to-the above discussion, the domains of applicability of the CAM
- approximation and the WKB approximation are mutually exclusirvc and roughly
complementary. However, we cannot expect a smooth matching between them, because of
the transitional character of the present (lowest-order) CAM approximation. A smooth
maich and an extended domain of validity would require a tniform' CAM approximation
(possible improvements are discussed in Sec. 9).
Itis useful to extrapolate the WKB approximation (7.4) all the way 10 £=0. As
was noted at the end of Sec. 5.1, the direct ransmission contribution to (7.4) vanishes at

8= 6, , and it is readily seen that (4.16) and (6.7) approach a common limit, so that this

46

extrapolated zero-order WKB approxiniation is continuous at 8, . The geometrical-optc

cusp (discontinucus derivative) at 6; , however, is preserved.
7.2, Asymptotic near-criticai behavior in the planar reflection limit

The planar reflection limit of the CAM éﬁ;;m:;.iﬁmﬁoh..'iﬁ whlcthe sﬁhefical
reflection coefﬁc1cnts are replaced by the Fresncl onés, was employed in Sec.6.3to
discuss the physical mtcrpremuon of the Pcan:ey—Fock mlegml In the present section and
in the following one, we apply it both to the supracritical and the subcritical reflection
amplitudes. The motivation is twofoici_.::-(i'):_lf"dr: vcry large . and very smail id , the
resulting approximation is sirnpler tha.ﬁ the CAM app:ox:mauon and reasonably accurate;
(ii) For sthalter 8 or'larget 1dl , thoughi the errors get large; thie qualititive bétiavior -
remains similar to that of the CAM apprommauon ‘and is'much sxmplcr fo discuss. giving
considerable :ns:ght into the seriicture aud beliavior of the various CAM terms:

The combined reflection amp] itade in the CAM approximation, given by the sum of

. 24) zmd (6.12), can be written as

-ur,'4

SH+S8) = ‘J‘-Bexp( Ziﬁsm J _

-x[f__e"(”"”'_Rg}(v}a'v.+ [ e‘f'!':ﬁ!'-)',R("J(y)dv]‘ e (16
where we have sc':'::fu; Zv+w, with [5ce the Commients on Hurietical évaluntioﬁ'fd][bwmg
(4.26) and (6.12)]

w=[N-cos(82)[Bfsin(or2)]* 7.7
and RY and RY' are respectively given by (4.20) and (6.10), where

T X= y[,ssm(e/z)] v S (7.8)

Note that v=~w is the position of the WKB sr.atlonary phasc pomt and that

w =~ P



for small enough 14 [see (7.25)}.

We now assume that 3 is very large [condition (6.20) is satisfied], so that we may
employ (6.21} over essentially the whole refevant range of integration in (7.6). This

amoutits to taking the planar limit of the spherical reflection coefficients, yiclding
< o 2 @
- s_"" 5 = J_Bex = :ﬂsm-—

. | J _-_.(’“} [ ‘]dv+J" . _l(“w’.[ —ig, Jd a9
o +L}= ‘ I+IG",
- Nt o

where: . : : '
' cr,(v)— ;T[Sm(gﬂ)] v o ' - (710)

and whem we have rotated the pa{hs of integration so that they arc parallelto the steepest‘ ‘
© descent paths; leading to a Gaussian-like decay of the intcgrands for large M ..

Fhe expressions within the parentheses.in ll}:___iﬁtgg:jands_ of 7.9) are _
approximations to the: Fresnel reflection aniplitudes near crifical incidence [ somewhat more
accurate than (6.23) . Note that the below-critical amplitude is obtained from the above-
critical one by the replacement _ : o
Wo-ifif o v<0) e (ALY

Irra small ncighborﬁoodiof the ¢ritical scattering angle, the results are only affected by the
7 behavior of these Fn*._sne[ z:mplit_m_i;sclosq:_ o critical incidence, :wherc the reflectivities are

close to unity, so that

1-lo; =1-2i0, - 201+0({0'| )

o (Jo]= 1) | (7.12)

with a corresponding expansion for lhe ol.hcr mlegrand in (7. 9) Note that (7. 12) preserves
unitarity lo second onlcr in |cr I Since thc dummzmt contributions to thc integrals in (7.9)

- arise from a neighborhood of the saddle point v =-w , the condition for applymg (7 12)

is’
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|o(—w) = e, (2Nel/M)* < | (7.13
which restricts its validity to-a few degrees from the critical scattering angle for polarization
1 and an even narrower domain for polarization 2, But we do obtain the planar-limit

asymptotic behavior within the domain previously excludéd by condition (6.34).

" Substituting into (7.9) the expansion (7.12) and its analogue for the other

integrand, the first and third terms of the expansion give rise to readily evaluated Gaussian

integrals, and we _ﬁnd
| e B . @Y
55 +85; =—!-£-exp(—2!ﬁs.ma) -
N sin(6/2) 1% 4N, [sin(g/2) ¥
x{l—zx—ﬁe,l’(w){—l——%-/—)-] +We;w(e)[fi'-%%—)] (7.14)

where

in which the paths o_f_ integration have again been sﬁi._ﬁed back to the rea! axis-.
It will be useful to evaluate sepnmtely ihe contributions from subcnucal and
supracritical rcﬂecuon To order ,G' . they are, r_esp_ccuvdy.
..-'m R

55(8.8)= —Ecxp[—ﬁﬁsin EJ :’E

_x{]'_' et gy Zxr [Sm(eﬂ)] J gy ‘J_le—- } (716)

B
and

& !r,fd

\r

5;(8.6)~ —?ﬁexp( —2iBsin— QJ

ﬁ'

) l_l',. - y' B - N T _—
x{!g," e gy 2% i,—’i:_ie,-[m-—sm(em ] Joeter? _V{;duf---} @.in
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The first terms within curly brackets are Fresnel integrals. The second ones can be

evaluated in terms of the Weber parabolic cylinder function D, (z) (see Appendix A).
According to Eq.(Al), the results are
55(B.8) = —%iexp[ 2ifsin— ){T[F*( iw) . (—W)]
g IV [S"‘(e/ 2)] ""”D-x(‘ﬁ e"““W)*“"} (7.18)

S\ 2B

and

57(B.0) = —%exp(—m‘ﬁ sin g){% [Ft (o0)— p¢(\[§w)]

—e e e; "/M_l:—sing;/ 2)]%{ e';"’sz_x(ﬁ e"‘"wP—- . } (7.19)

where F(z) denotes the Fresnel integral 3
Adding up these results and using Eq.(A2), we recover the first term wﬂhm curly
brackets in (7.14) and we get, for the second one,
P(w)=2%e"™ exp{~iw?[2) D, (V2 e w) (7.20)
The cancellation between the w-dependent Frésnei integrals in the first terms of (7.18) and

{7.19) should be noted.
The corresponding expansion for the direct transmission subcritical contribution

(5.15) is obtained by expanding the exponential in the integrand into powers of &/’ and

integrating term by term, with the help of the integrals

- dx
— e =2z S (721
L A" %) e )

and (evaluated numerically)

e T xdx . . . : .
= —=r gy = 1.23599 — (0.369444( (7.22)
™ I AP (") |

The result is
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BT ek : 2 .
55(8,6) = e T ( -2 ) Tamy—+0 £ .
B RS exp| zﬁsm +m, 7 £ ?’-'2: (7 23)
Substituting (7.14)and (7.23) into'(7.1), we finally get the planar limit
appmﬁma:ion to S,H in the immediate vicinity of the critical anglc

S}}{(ﬁ.e)=—%exp(—2iﬁsingj{ 2*‘/_ P )[M}

AN , 5111(9/2 & zN
: er', )T Loty ﬁx (1+mo-y-;)} a2

According to (7.7) and (4.9),

w=—yMpe[t+0(e*)| = —2Zze/n 725y

which should be at most of order unity within the domni“n. 6f applicability of (7.24).
For iwi « I , we can apply the pd'wei' series expansion30 of Dy wobtain
- )
e Py _—[1+- +0 ] ——‘l ‘-"'f_-‘[ o
( ) ( .L) ( ) V,Ee w

i
—6-w:-’:+0(w-"'_)]- (7:26).
In pamcula.r at Lhe crlucal scaucnhg angic (w O) (724) ylelds T

S(J (,39) _ip —m;,s[ .'_‘2 &.m'\ﬁ‘f

IN (MY 2o Ne
0N Mef{ﬁ)+xf:?e Mxéﬂ] N

which differs from previous resultsZ3-25 in the coefficient of %, For N =0.75 , this
expression leads to values for G, and G, that agree with those obuained from the CAM
approximation (7.1), for 1,000 < ,B_S 10,600, within better than 1.5% and 0.5%,

respectively,

7.3. Discussion of planar limi approximation

Although the planar liniit approximation (7:24) is reasonably-accurate only for very -

large § and for siriall deviations from the critical angle {cf. (7.13)] such that i retoains
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of order unity, it is nevenhclcss msu'ucnvc to employ it to show ihc qualnauvc behavior of
the solution?5 even t.hongh cx:rapolzmng itto e - '
The asymptotic. behiavior of | P(w). for_|w}> 1 . follows from Eqs.(A3)-(A5):
P(W) = \I;[I +-1—-6-;2" + O(W_‘)] » w1 (7.28)
! i : - b : - B o
P(W) n:l h““"l 23{ 5 — =+ 16—2+0(W—‘)] ) s W ~1 (7.29)
Thc dommam term in each of these cxpresstons agrees wnh the rcsult of applying the
stationary phase method to {7.15). The continuation of the w >0 _expression through the

branch cut comesponds te the choice
o _ \F—mj’— (w<0). (7.30)

'I'hc func:mn [P(w)* is piotted in Fxg 8, together wnh \(_ Lits asymptouc limit
for [w]= 1 This Himit is appmached monolomca]ly and quite rapidly for w>0 .
whereas the approach is oscdlatory and stower for w <0, in agreement with (7.28-29),
Also plcmed is the magmmde of the ﬁrst term within curly btackets in(7. 19) This well-
known Fresnel pattem may be thOught ot' as the “Fresnel uansform" of the Heavmdt: step
function, when:as accotdmg to (7. 15), the function P{w) isthe "Frcsnel wansform” of
the square root funcuon wnh its branches defined by (7.30).

Subssiauting the asymptolic exp:m_Sions (7.28-29), as well as (7_.25), into (7.24),

we find, in the portial reflection domain,
S B0 = —%cxp[—Ziﬁsin%J{l = |£| + 4 elef

b g IEI] -Mpet } , <0 (PR) (7.3D)

1—
=5 ngx[ ™y )
The first three terms within curly brackets in (7.31) represent the expansion of the Fresnel

external reflection amplitude at the geometrical-opiic angle of incidence, up-to.second order

in the small parameter ;. [cf. (7.12}]. Thus, they are equivalent, to this order, o the .

Ln
[ ]

WEKB approximation (7.4); the fourth term {(Fock direct mansmission penumbra - .

contribirtion) adds a smatl ‘O(f7%) escillaory correction.

Similarly, in the total reflection demain, we find

S‘.“P’L(ﬁ.ﬂ)a-—'-—ﬁexp(—ziﬁsx;ng] 1-2%ie 1/—6 4—e 2+ ie NN —pr et
b 2 2 “Nu oM BMe)*

2 g2 Ne E 1 _impst .
+~J?e MKéH[“"‘O?J“ - >0 (TR) (7.32)

The first three tenins within curly brackets again represent the Fresnel total reflection
amplitude (unimodufar to second order in t_he. éxpansion parameter) at the geometrical-optic
angle of incidence, expanded as in (7.12); these terms arc.cquivajeni to the WKE
approximation (6.7). The fourth term, arising from the oscillatory termin (7.29), gives
oscillations (diffraction fringes) around the WKB pattemn. For the pola.nzcd intensities ar
gain functions, the oscillations have phase Mpe* (up to an additive constant) and

amplitude envelope

. 2e N : : _
.o ™ ——g'M;;ﬁ_y;M . _ . 7.3
where Iwl is of order uaity in the domain under consideration [see (7.25)}.'['hc direct
ransmission ccniribu_tion {last term within curly bmc.kets) is also osci]latbxy, ﬁm .si-rnila:
phase but much smaller amplitude. Because of its scaling fat_:lor B7% | the diffraction
oscillation remains sizable up to very large values of § .

The qualitative conclusions from (7.31-32) are that, in PR, the nearside WIirude
should rapidly rend towards the WKB approximation. In TR, the nearside amplitude
should exhibir diffraction ascillations around the WKB v&lue, approgaching it much more
slowly than in PR. The phase of the oscillations should be go;remed by the Fresnel .
parameter M Be® | and their envelope should be approximately given by (7.33), scaling

like B7% | and with-= N times larger magnitude for polarization 2.



These conclusions are already in qualitative agreement with the patterns tastrated
in Fig. 6 (for detailed comparisons, see Sec.8). In view of the asymptotic extrapoiation,
(7.31-32) cannot be expected o be quantitatively accurate.

Now consider the contributions from direct {partial) and total reflection (7.18-19) to

the total nearside amplitude. Beginning with the TR angular domain, and applying the

asymptotic expansions of the Fresnel intcgmlm and of the parabelic cylinder fi unction . K

{Eqs.(A3-5)], we find
. } . . e
57(8.8)~ -—%exp(—mﬁ sin EJ{I - 2"le E +ie; r-f(—m-
-uqa --‘Mﬂ:
_J—EVM_ﬁ_+O(E)} _ (in TR) (7.34)

JN g

55(8.8)= —%’qcxp(—h'ﬁ sin —g—){iel 2 BT

ettt g .
2-‘/_ WS_+O(E)} (in TR) (7.35)

These show that the dominant oscillatory term in (7.32) arises in equal measure from direct
(partinf) and total reflection contributions, However, the last tenms of (7.34-35) éon@in a
much larger oscillation, arising from the Fresnel integrals in (7.18-19), with a size-
independent amplitude that scales like 1/w , in contrast v\_rith (7.33). These terms, which
originate from the cutoff that separates subcritical and supﬁcﬁticﬂ contributions, cancel
each other exactly when (7.34) and (7.35) are added, to give (7.32).

Similarly, in the PR angular domain, we find
AN e'“""‘

N

-iafd-iMpet

e & ioe } (in PR) (7.36)

2 Ml

§(B.8)y= —igcxp[—zmsing){l—zxe e+
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Z«F ;}M,B|s } o {inPR) .. . (7.37)

When these two contributions are addcd borh lypus of o%ﬂlatory tcrms. [hdt fuund in o
(7.32) as well as the much larger Fresncl oscﬁlduons canccl out, leavmg only the WKB
terms in (7 31) [the small oscﬂlalory correcuon in (7 31) arises enurely Erom dm:ct
transnussmn] '

As will be seen in Sec. B, these qﬁalimtivc features of .t'h.e mﬂecliéh ampﬂtudes in
the planar !mut apptoxunauon rerain vuIld for the comespondmg terms in the CAM .

approxlmauon
7.4. Physical oplics a;')['J.roxi”t“naﬁ.ons
~ A Physical Optics Appmnmnnon (POA) to nea:—cnucnl scam:nng was dcnved by

Marston and Kingsbury!3.14 by a proccdurc reminiscent of Arry s theory of the rainbow. 12

The contribution from reflection, in the TR region, is found to be

s B, =] p&g"’)[ﬁ(\lg—?sin%]—_ﬂ—ﬂ] (TR 039

where the superscript R denotes reflection, 7,; isa phase!4 and F is the Fresnel integral

function. The only other contribution included is that from direct ranstission:

E‘I,A(ﬂ )= [i\/_(l—r )pr[( +y“)]ﬁ(5). N '- .. (7.39)

where the superseript T denotes transmission, r, ‘and D, “are'the expressions in (5.6),

and ¥, is another phiase.14 The Heaviside step function /(€ restricts the contribution

to the TR region, in agreement with geometrical optics.
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Although well-defined expressions are obtained for the phases ¥, and 7,;
Marston and Ki.ngsbu.ry. found!4 that the agreement with Mie theory is significantly
improved by replacing (-7, —¥,; ) iﬁ.thc TR tegion, by the WKB phase difference
betwccn the (oml reﬂecuun and transiission contributions: _

y,, - [ 5, (9) 2p sm(e/z)] L 2ﬁ(c‘ Nc, )] (7.40)
where t.he I‘xrst square. bracket contains the phnse ansmg fmm the hmt two phasc factors in
(6.7) and the second one is the phasc of thc last phase t‘ac:or in (3.3). Thls sull Ieaves an
overall phasc factor undctcmuncd as well as lhe quesaon of how o cxlend thc rcﬂccuon

cun!nbuuon to thc PR n-.gmn

Langley and Marstons choosc an overall phase factor such that lhc wansmission

contribution (7.39) is just the WKB approximation (5.3). They extend the reflection
contribution (7.38) o the PR regmn by _}usr. ormmng (hc total reﬂecuon phase shift —&,

from (7.40) (which is eqmva]ent to takmg the Fresncl rcﬂectmues at the critical angle).

W’Lh th&seadjusuncnts. the POA becomes? . 7
on @.0)= ""(3.9)+S§?'m108;9)_ N X))

where

$20.00= Lo 2psn? o -21150)
x “";;; [Fugémze]—n-«)] o (7.42)

SBGO=-p B (- )el-2Be - Mell ) 04

To establish a conection bctwecn the contribution from total reflection in POA and

CAM, let us apply the pl'mar reflection approxlmanon (6.21) 0 (6.16):;
5B = exp—2i}{M - Ne
@, V,— - Bexpl-2ifi ]
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where ()(el) corrections to the dast terrn in the imteprud phase have been neglected.

In the TR region, we now apply Marston and Kingsbury’s assumption that the
square root term in the integrand phase can be treated as slowly-varying and taken at the
stationary-phase point of the remainder of the phase,

= {ﬂsin(eﬂ)]xe
By (6.14), (4.23} and (4.13), f is just the peometrical-optic stationary phase point. In the
PR region, the stationary phase point falls outside of the range of integration; thus, the -
dominant contribution to the integral4® arises from the endpoint { =0 1in (7.42), so that the

square root term is taken at this point. The result is

5 wpon (5,0 = — %cxp(—Ziﬂ sing) cxp[-—iH(e)& J,(6)]

P Kfd "
x%—l:l? *{1 ’%Bsin%s) - Fx (—w)] (7.43)

where MPOA stands for "modified physical optics approkimal:ion"; 4, isthe total
reflection Fresnel phase shift (6.8); and. o(pe*) terms in the phase have been neglected,
consistent with the approximations made in (6.16);. _

Compaﬁné (7.45) with the POA res&lt (7.42), we find only two significant
differ;:ncesz the contributi;m from the: Fresnel integral 'terms is complex conjugated and, in
their argument, there is the substitution

\[Tﬁ sin(2€) — Mz")(z.s) (7.46)
While the arguments (7.46) agree for small let n] they differ greatly for larger values of
le/ti - the MPOA result (7.45) approaches the WKB tesult (6 7}, whlle the POA result
(7.42) does not.47

We will try 1 improve the POA by treating it a symumetric way the contribution
from the direct reflection subcritical term, which is neglected in the POA. Starting from
(412}, and employing the Fresnel approximation (3.13) to . RY | we again treat this

expression as slowly-varying (neglecting its rapid variation near the critical angle). Thus,
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we evaluate it at the geomcﬁ-ical'-()pﬁc statiohary p'hasi:'poirit (4.11}) in the PR region, and at
the endpoint (critical incidence, where RY' =1 ) in the TR region. The result is
S smor (5. 0) = —%cxp[—ﬂﬂ sint -g—)

X{H(e) +[sin(8/2)—eﬂIN1 —cos(8/2) :lH(_s)}

sin(6/2) +¢,/N* —'cos*(6/2)

x‘; [F*(—J%ﬂ si}ug s]-— F*(—m)]' ., (7.47)

In (7.47) we define H(0)=1/2 so that the expression within curly brackets becomes 1 at

the critical angle. Again, this result approaches th; WKB approximation {4.16) for
e<O . [efn>1 .
Taking the WKB approximation to the direct transmission contribution, as in the
POA, the MPOA is defined by .
S on (B:0) = 571000 (B.6) + Sjoacon (B:6) + 5764 (5. 60) (7.48)
whcn-: the first two terms are respectively given by (7.45) and (7.47), and the third one by

(7.43).
A qualitative discussion of the physical optics approximations in the near-critical

region, along lines similar to Sec. 7.3, can readily be given. At the critical angle 8, , it
follows from (7.41) that

Shn(8.8) = wa’ie"“"’ (7.49)

which differs by a factor of 1/2 from the dominant term in (7.27). The reason is the
oinission of subcﬁ(icai reflection (which comribulcs an equal amount at 6, ). Taking into
account the correction terms in (7.27), we find that the POA gain functions should be well
below the corresponding CAM ones at (and near) the critical angle, the difference

increasing with § and being smaller for polarization 2.

- For larger deviations from the critical angle, there is 2 close similarity between

(7.42) and the Fresnel-integral terms in (7.18), apart from complex conjugation [note that
F(-w)=~F(w} and that the arguments of the Fresnel functions are approximaiely the
same for {e} << 1 ].-Thus, the departure of (7.42) from the WKB approximation.in the TR
region has the same large-amplitude Fresnei oscillatory ch_aractér as the last term in (7.34).
In(7.32), this term was cancelled by the subcritical reflection contribution, but the POA |
misses this important cancellation:

The POA intensity oscillations in the TR region have an-envelope with amplitude -

Apop = £V (V7lwl) -

Apoa is not only larger thaii (7.33), butalso size-and:polarization independent, and it -+
decreases more slowly with the distance from the critical angle. Since the stationary phase g
point in the POA is the geometrical-optic one, the POA pattern should also be-displaced-- -
from the true one by the Goos-Hinchen shift. The differences should be smailer for
polarization 2, and should get worse as f§ increases. The POA (=WKB) contribution from
direct transmission (7.43) grows like €% and has the same Fresnel oscillatory chamcter,
so that it eventually becomes dominant at largér deviations from the critical angle. -

In the PR region, only (7.42) contributes to the POA, and the conwribution is again
similar to the Fresnel (last) term in (7.37), giving rise to a polarization-independent term
that decays fike w™ . Unlike (7.31),this does not approach the WKB result, so the POA
fails completely in the PR region; this is not surprising in view of its omission of subcritical
reflection.

For the MPOA, (7.45)-(7.48) yield, at the critical angle,
S eor (B.6)) = ~%e‘2""” =S50 (5.6, (7.50)

where the last equality follows from (7.4), and the contributions are evenly split between
subcritical and supracritical reflection. Since the correction terms in (7.27) are not included,

the MPOA gain functions will have values above the corresponding CAM ones; thus CAM
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is bracketed between the POA and the MPOA. Since the WKB approximation is expected
to fail near the critical angle, so also should the MPOA.

For larger deviations from the critical angle, the Fresnel terms in (7.45) and (7.47)
are almost identical to those in (7.19) and (7.18); respectively. However, while one of the
contributions is multiplied by a Fresnel reflection amplituc}e,- the other one has a coefficient
unity, so that there is no canceliation of Fresnel-like oscillatory terms. In the TR region, the
behavior of the MPOA resembles that of the POA, but, unlike the POA, it does approach
the WKB result atlarge valuesof £ 2 -0 o

‘The main advantage of the MPOA over the POA is that it also approaches the WKB
result for large. |l in the PR region, because it includes the _su.b_critical contribution (7.47).
However, the approach is oscillatery rather than monotonic, because of the non-

cancellation between the asymptotic Fresne'l "tails" arising from (7.45) and (7.47)..

8. NUMERICAL COMPARISONS

In the present Section, we compare numerically surnmed Mie results (see Appendix
B for computational procedures) with the various approximations defined in Sec. 7. We

always take N =0.75 and subtract farside contributions out to order £ =100 .

8.1. The WKB approximation

Comparisons with the WKB approximation: (7.4} are useful because it contains the
interference effects among all contributing tenms, evaluated at the level of geometrical
optics.. The main omitted physical effect is diffraction, so that this comparison helps define.
the angular domains where significant diffraction effects {deviations from WKB results)
‘occur. Small deviations, of course, may be a&ﬂbuted to omitted !ﬁgher—mder WKB
corrections. Furthermore, far enough from the critical scatiering angle, neglected higher-
order Debye coutribuﬁbns {beyond direct ransmission) must be taken into account.

Although the domain of validity of the WKB approximation was estimated to be
given by (7.5), we shall extrapolate it.a[l the way to the critical angle { £=0); as was
mentioned following (7.4), it wilt then exhibit 2 cusp at £ 0, inherited from geometrical
optics.

In Fig. 9, the neu'rsidc Mie results for 8= 5,000 are compared with the
commesponding WKB results. The cusp in the WKB data at 8 =6, is quite apparent. Note
that G, 4, (B, 9,) = Gy wn (3.8 =1 , in aprecinent with (7.I50), and that 8=8 — 17 is
approximately the position of the ﬁrsi peak in the gain functions, which gives another

interpretation of the parameter 17 |



We see that our estimate |8 — 6> 27 for the domain of validity of the WKB

a'ppmximat:ion [(4.9), (7.5)] appears o be well verified. Indeed, as anticipated in the
qualitative discussion in Sec. 7.3, the WKB approximation very rapidly approaches the
Mie solution on the PR sidé, within a distance 17’ of the critical angle; while the approach is
considerably slower and oscillatory on the TR side, where one'needs o go to an angular
distance at least 4-5 imes 17 for a reasonable merge. .

The grbwth in the amplitude of oscillation as one goes further away from 6, arises
- from interference between reflection and ransmission, as was first pointed out by Marston
and Kingsbury. 14 This requires, at large enough distances from 6, on the TR side, the
inclusion of higher-order near-side transmitted Debye compoﬁents, which we have not
taken into account. Thus, we restrict the comparisons to the first few oscillations, where
most of the diffraction contributions are concentrated.

In conclusion, we see that the diffraction effects that need to be explained in the

near-critical region occur within a distance of order 1 from 6, on the PR side, and

within a distance of a féw times 1 ;—EOVCﬁng the first few oscitiations, on the TR side.
82. The physical optics approximations

We now compare the subtracted Mie results with the POA [eq. (7.41)] and the
MPOA [eq. (7.48)]. Figure 10 shows this comparison for § = 5,000.

The geometrical-optic cuspat G, persists in the MPOA. It is not present in the
POAfor G, and G, , but it is present in the POA for cosd . These breaks in slope all
arise from the Heaviside step functions in (7.41) and (7.48), where one must remember
that (1.43)is O{e¥) as el . |

As expected (Sec. 7.4), the POA, because of its neglect of subcritical reflection,

fails completely in the PR region; it as much larger errors than the WKB result, which it
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does not approach at large angles, except for:cosd ., which'is =1 both for{7:42)and
{4.16}. In the TR region, again, the POA phase difference is chosen to-be identica: with tne
WKB one, 50 that they lead to the same results for cosd {Figs. 9(c) and 10(c)j. For both
G, and G, , the POA is better than the WKB approximation for the first and second peaks
of oscillation, but géts worse for the other peaks [Figs. 9(a,b) and 10¢a,b)].

While the inclusion of subcritical reflection in the MPOA lets it approach the WKB
result in the PR region, the approach is oscillatory, in agreement with the discussionin . .
Sec. 7.4, Thus, although it is distinctly better than the POA. in this reéion (except for cosd,
which is affected by the oscillations), it is worse than the WKB approximation, In the TR
region, the MPOA is generally betier than the POA, for G blul: without much of an
advantage. For' G, , the POA tends to be better than the MPOA, except for some of the

peaks at large €. Fina!ly,'fof cosd, the MPOA is slightly better, but the advantages are . .-

small.

In conclusion, little advantage is gained by going over from the POA 1o the MPOA.
In aécounﬁng for diffraction, both physical optics approximations improve on WKB just in
the region between the top of the first peak'and the second one; but the errors'are-still

considerable,

8.3. The CAM approximation

Comparisons betwéen the Mie results and the CAM dpproximation (7.1) will be

made for §=1,000 and "f = 10,000, Since we have 01'1.!y developéd the lowest:order

CAM approxifaticn; employing transitional (non-uniform) asymptotic approximatiois and

assuming that ¥’ << [, the lowest value of § for which it is reasonable:to make

comparisons is = 1,000 . The planar limit approximations of Sec. 7.2 begin to be

applicable around # = 10,000, in a very restricted neighborhood of @, .
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The results for- § = 1,000 :are shown-in Fig.11. The POA and WKB
approximations are:also shown. Between 6, — 1 and &,+7 the CAM approximation
provides a much. better fit to :G, -and .cosd’ than the other approximations. For: G, , this .
is also true, ekcept that the POA; on'the TR side, approaches comparable accuracy towards
6-n. e |
-~ For 8>8.+21 onthe PR side, the CAM resuits for G, and G, areless
accurate than the WKB approximation, showingr small residual traces of oscillatory.
behavior. The CAM resulis:for: cosd. also show some oscillation, followed by a dip near -
95°. It can-be. verified that.the Mie results.-for cosd show a similar dip (absent from the
POA and the WKB approximation) about. 10° further on (cf. also Fig. 5)-

For @< 8,— 17 on the TR side, the accuracy of the CAM approximation teads to
. deteriorate and to become comparable to (or worse:than) that.of the other approximations.
Thus, at A= 1,000, the CAM approximation accounts well for the diffraction effects
within: 2 band of width about. 217 centered on.. 8, , but it is not a sigrificant improvement
on the other appmxiﬁﬁons at-greater deviations from the critical angl_q.

The corresponding results for- = 10,000 are shown in Fig. 12, At this higher
value of f3, both the quality of the CAM fit and its range are considerably improved. For
G, [Fig. 12(a)}, the differences between the CAM approximation and the Mie result are of
the same order as the residual fluctuations int the Mie data, not eliminated by the subtraction
procedure, except at the high end of the angular range shown, where traces of oscillation
are still present in CAM. Essentially all diffraction effects (departures from the WKB
approximation) are accounted for. The same holds for G, {Fig. 12(b)], with slightly
tarper deviations at large distances: from the critical angle. Note, by com;ﬁariso_n with Fig.
11, that the POA errors become worse as- § in_c_reases.-in agr.eementwim the qualitative . -

discussion given.in Scc. 7.4, .

Forcesé (Fig. 12(c)], the CAM fit is excellent an the PR side. It appears 1o have
somewhat farger deviations in the TR region, but the corresponding relative errors are small
[the vertical scale in Fig. 12(c) has a large displacement from the originj.

We conclude that, ar = 10,000, the lowest-order CAM approximation aireacdy

accounts very well for the diffraction effects in near-critical scatiering.
8.4. Discussion of individual contributions

In order to relate t.hc results with the qﬁalitativc discussions giveﬁ in Secs. .7.3-7.4';
it is instructive to plot scparately the contributions from the various terms in the CAM and.
POA approximations. 50 as to bring out the role of interference effects, oné shouid plot '
amplitudes rather than intensitics, so that we define ) ' .

2/8.0)=4G,(B.6) (j=12) (8.1)
and we denote the Eonéspondin £ CAM contributions by PR (partial reflection), DT (direct
tnsmission), and TR (total reflection), respectively associated with the magnitudes of
(4.24), (5.15}, and (6.12). Similazly, for the POA, we denbtc by R (rcﬂccrion) and.T
(tran;smission)' the conﬁibution# to (8.1) respectively associated with the magnitmudes of
(7.42) and (7.43).

Al these contributions, for B= 1,000, arc plotted in Fig, 13(a} (for polarization [}
and in Fig. 13(b) (for polarization 2). The lefiward displacement of the TR curves with
respect to the R ones is immediately noticeable i these figures. This is 2 consequence of
the spherical Goos~Hciﬁckcn‘anguIar shift discussed in Sec. 6.3, or, equivalently, of the
tunneling of light within the bubble.

According to {6.32), the shift should be e,/e, =N?=16/9~18 times larger for
polarization 2, and.a comparison between Figs. 13(b} and 13(a) shows that this |

relationship is approximately satisfied. Numerical tests of (6.32) at points satisfying
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condition (6.34) aiso show consistency. In'fact, one can only expect an order-of. -mﬁgniiudc
agreement, for several reasons: (6.32) was derived by. comparing iwo stationary-phase
approximations in the planar limit, which requires large - and small € , tending to get
into conflice with (6.34); the CAM result is not a stationary-phase approximation; and the '
POA result also differs slightly from that considered in Sec. 6.3 for the stationary-phase
comparisomn.

The POA transmission contribution {curve T), equivalent to an extrapolated WKB
approximation, also differs considerably from the CAM result {curve DT), although they
tend to merge in the TR region at large € [the CAM Fock result (5.15) rejoins the WKB

| result, though not uniformiy]. In particular, the CAM transmission contribution has a tail
extending into the PR region, where the PO'A contribution is identically zero.The
contribution from pastial reflection (curve DR), neglected in the POA, aot only is dominant
in the PR region, but also has an appreciable tail extending into the TR rcgion.'-

Let us now connect the CAM curves with the qualitztive discussion of individual
contributions given in Sec. 7.3. The crossover between the TR and DR curves occurs near
& =48, , where they give comparable contributions. In the TR region, the amplitude of
oscillation of the TR curve is reduced by interference with the tail of the PR curve (Fresnel
terms). This cancellation of dominant Fresnel contributions is more noticeable in the PR
region, where the oscillations of the DR curve about jts mean are removed by interference
with a TR tail of the same magnitude. The cancellation is practically complete at the far end
of the curves in Fig. 13(b), leading to a strong enhancement of the DT contribution.

Fig. 14 shows corresponding results at 8= 10,000 . The Goos-Fliinchen shift isa
good deal smaller, as expected from its inverse dependence with B in (6.32): It shows ail
the quﬂitative and semi-quantitative features already discussed in connection with Fig. 13,
The Fresnel-like oscitlations about the mean in curves TR and DR, which cancel out
through interference between the correspending amplitudes, leaving only the considerably

smaller "parabolic-cylinder-like" oscitlations on the TR side (Sec. 7.3), can be seen quite

clearly (the envelope of the dampéd oscitfations in the DR curve should be compared witi:

the tail of the TR curve).
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9.. CONCLUSION

We have developed, in lowest order of approximation, the CAM theory of near-
critical Mie scattering. Already in this order, in spite of the transitional nature of the
asymptotic approxitnations employed, CAM theory accounts for the new diffraction effects
that are observed and, for the first time, explains their physical origin. In terms of the
effective potential, they arise from a smail neighborhood of the edge of the curved potential
step shown-in Fig. 1(a) (situation 2).

The lowest-order CAM approximation developed in this paper has-several
limitations: its accuracy becomes. high onljr at large values of J (several thousand), and it
does not merge smoothly with the WKB approximations at large deviations from the critical
scattering angle, restricting its angular domain of applicability. These limitations are not
inherent but are merely due to focusing an the donﬁnantconuihuﬁon;, neglecting
correction terms and employing vatious simplifying appmximaﬁc;ns, including the use of
transitional asymptotic expansions. However, it is known!732 that CAM theory, with the
help of uniform approximations, is capable of yielding extremely accurate and uniformly
valid results, with domains of applicabitity that extend all the way to size parameters of

- order unity, Thus, if required, it offers well-defined procedures for improving the accuzﬁcy
and domain of validity of the results, '

The theory as developed to this order would apply with only minor modifications to
a variety of other problems involving near-critical scatterin £ at a curved interface, As was
pointed out following (2.16), it applies to nonrelativistic quantem scattering by a square
potential barrier, as well as to acoustic scattering from a honﬁogeneous sphere. In
seismology, analogous diffraction effects must occur in the generation of head waves? at

a curved interface.

With trivial changes, the theory also applies to near-critical scattering by a
homogeneous circular cylinder. In the electromagnetic problem, for instance, the partial- )
wave scattering amplitude coefficients differ from the Mie coefficients only by the
replaccm«;nz of Ricatti-Bessel functions by ordinary Bgssel functions, 27 and of Legendre
functions by trigonometric ones, which agrees with the asymplotic approximations we have
employed 48 Thus, the diffraction effect is structurally smﬁle, remaining basicaily B
unaffected by the change from sphericai to cylindrical geometry; indeed, experimental
observations?6 were made in light scattering from cylindrical "bubbles”,

Initial attempts at interpretation? tried to correlate the effect with the rainbow, which
is also structurally stable, treating it as a "reciprocal minbo_w": In. terms of this "analogy",
the geometrical-optic treatment!! would correspond to the Descartes theory of the rainbow
and the WKB approximation to Young's interference theory1? ; the POA would be the
counterpart of the Airy theory.

However, the analogy is misleading; near-eritical scattering is a new diffraction
effect, entirely different fn-)m rainbow scatiering. At the geometrical-optic level, a rainbow
is a caustic ditection, with an infinite discontinuity in the intensity, whereas in near-critical

scattering the intensity remains contiruous: the critical scatiering angle corresponds (o an

infinite discontinuity in the sfope of the intensity, which we propose to call a weak caustic.

The weaker nature of the singularity leads to a better behavior of the WKB approximation.

Indeed, while the zero-order (“primitive semiclassical”) WKB approximation cannot be
employed in the rinbow region.. where it diverges at the rainbow angle,? it is well-
behaved in the near-critical region,- where it reproduces the geometrical-optic.cusp at the
critical angle. It is only the first-order WB corvection that diverges at the critical angle.
The diffraction effects in rainbow scattering?? are Spre;ld aver an aﬁgu[ar domain of:

order 8% and include; an intensity enhancement of order 3% ; diffractive changes in -

supemumerary interference oscillations on the bright side; and tunneling into the dark side, -

In near-critical scattering, diffraction effects spread over a brouder angular domain, of order .
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'3-)4 [cf. (7.2)]. There is no overall intensity enhancement The diffractive changes in™ ™
interference oscillations on the rotal reflection side (where tenneling is very important) and
to the intensity decay on the partial reflection side scale like 5%, so that they remain
appreciable up to very targe valuesof § .

Although direct transmission gives a nonnegligible coritribution, the new diffraction
effect arises basically from "a peculiar kind of refie:ction':. 1o paraphrase Thomas Young's
picture of edge diffraction.3 The new diffraction integral associated with the effect is the
combination of the Fresnel-Fock and Pearcey-Fock integrals.

The curvature of the interface produces two very different types of effects:

(i) I spreads the range of angles of incidence. If only t'his'rclatively trivial effect is
taken into account, and the surface is replaced by its tangent plane at the point of incidence
to evaluate the reflection coefficients, the probler is mapped into that of a divergent beam
incident on a plane interface, comresponding to the planar reflection limit. In this limit, the
new diffraction effects are described (as corrections to the WKB results) by the function
P(w) , related to the parabolic cylinder functions by (7.20), and dcﬁnéd by (7.15) as the
Fresnel transform of the square root function. Similar functions are found in the treatment
of near-criticat reflection of spherical waves at & plane interface. 18 The plot of IP(w)l in
Fig, 8 already shows some basic qualitative features of the new diffraction corrections. The
fatlure of physical optics approximations stems from their attempt to describe the results in
terms of the usual Fresnel pattern, the Fresnel transform of the Heaviside stép function: as
we have seen, subcritical and supmcﬁ:ical Fresnel contributions cancel each other exactly.
The planar limit spproximation is quintitatively usclul only for very large size parameters

and very small deviations from the critical angle.

(ii} A much deeper effect of curvature is manifested. in the effective potental,
through the inertial (cenaifugal) barrier, which also plays a crucial role in edge
diffraction.17.18.32 This is responsible for the difference between the planar and spherical

reflection coefficients, giving rise to the Fock-type effecis. The effective potential for near-
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eritical incidence, 1. e., around situation 2 in Flg E(a), may be apprommated bya ldeIly
rising potencial step Wthh cxpizuns the nppeamncc of Alry funcuons in Lhc new dxffmcuun
integrals. Taking into account thcsc dyna:mui cffecr.s of curvaturc leads wa cunsmcmme _
:mprovement in accuracy and extension of lhc domam of vahdlty of thc approxm:atmns

The next step beyond the transitional Fock—[ype theory mkes into account the curvature of
the potentml step and leads to the uniform dpproxmlau_on. ihat should further improve the |
accuracy and extend the range of applicabi!ily of the CAM thcozy Thus, the planar
reflection limit, the present traasitional CAM approximation and a umform CAM
approximation provide successwcly better and broader approxlmanons

In terms of the short-wave asymptotics of Huygens-Fresnel—type iﬁtcgrai
representations of wave fields, of the type :

f(B.g)=[AA e)expipO(R.e)}ar . BRCRY)
where B is large and both the "amplitude” A and the "phase” & depend on one or more
control parameters € , rainbows are associated with the fold catastrophe,*t where ® isa
cubic polynomial such that the ordinary saddle-point method cannot be applied. The
corresponding calastrophe. diffraction integraltl is the Airy function.

In spite of the appearance of functions related to Pearcey's integral (6.25),
connected with the cusp catastrophe (the next one in the hicrarchy*!), near—critical
scartering does not arise from this catastrophe. What breaks down in the saddle-point
method has to do-with the amplitude A rather than with the exponeat’ d* in (9.1 In the.
saddle-point method, it is assumned*® that A 'is single-valued and holomorphic within the |
range of integration. It is this asswmption that breaks down in nearcritical scattering. In the
planar limit, A goes theough a branch cree within the domain pf the saddie point: see (7.11)
and the remarks following (6.6). tn the exact CAM representation, there is no branch cut,
but A is piecewise analytic, i. e., it is represented by two different analytic functions in

differcnt parts of the range of integration: in the subcritical range, it is given by the first



term (3.2} of the Dcbye expansion (3.1) [cf. {4.5}], involving the spherical reflection
coefficient Rg] , while in. the supracritical range it is given by the fﬁll S-function [cf.
(4.2}, involving the total spherical reflection cocfficient RV

The gencralize& Goos-Hiinchen shift, whose presence and relevance are obvious in
Figs. 13 and 14, is a direct :ﬁanifestation of wnneling, Thus, the CAM teatment of near-
critical séattcxihg. from a curved interface reveals ihc imﬁérwht role :of ﬁnhcﬁng i-n this new
diffraction cﬂ'ect in semiclassical scmcnng. as hns aiready been found in forward
diffraction, rainbow scattenng, glory scattenng and orbmng,:‘_2 ie.inall semiclassmal

diffraction effects known so far '

Well-documented and tested Fortran programs for doing the computations reported
hcﬂ:ln are available from the third nufhordri'lBM or thintosh diskettes.
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APPENBDIX A.

THE PARABOLIC CYLINDER FUNCTION

The Weber parabolic cylinder function (in Whittaker s notation) D (z) has the

integral representation?

exp( /4)

FCv) fr""lexp(h-;—r”—zt)dr + Rev<0

DV(Z) -
where T is Buler's Gamma function. It satisfies the relationship??
V22D (i) =T(v+ )[e ™ ™D_,_(z)+e™D. vl 7)]
For [z} 1, |zl> |9 , its asymptotic expansion is given by

D,(z)=e""z ”[l - %}t—)+0(z")] v gz <3mia

D, (z)=eH z'[l - % + O(z“‘ )]— %e‘“

A +1){v+2
xe" Mg ‘[I+(—V_2}£+l+0(z'4)} » . wl4<argr<Smi4

D,(z)=e" z"[l ———-—v(;z: b + O(z“)]— ljf-_];)e“"’ _

't -y + .
xe' Mg ‘[1+W+O({‘)] .,  -Smfd<argz<—gf4

Al

(AZ)

(A3)

(Ad)
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APPENDIX B. COMPUTATIONAL CONSIDERATIONS

All computations reported here were carricd owt in 14-digit precision, and all

quantities were computed to an accuracy of at least 6 significant digits.

B1. Mie Theory

In preparation for this study, it was necessary to extend the Mie scattering
a]goﬁtlxms of Wiscombe3U to the case of refractive index less than unity. Considerable care
was exercised to do this correctly, because there is'danger of severe numerical ill-
conditioning due to the large size parameters and con'scquenr.ly long (up to 10,000 terms)
Mie series involved. The main concern was the recurrence for the Bessel function ratio
AL(VB), since this is by far the most important place where the refractive index M affects '
the Mie algorithm. It was found that, contrary to the N > t situation, it was'm.zvef possible
10 use up-recurrence for A, ; doing so led to disastrous errors. A, always had to be
computed by down-recurrence.

The only other issue in the Mie algorithm was the number of terms to take in the
Mie series. The formula used in Wiscombe0 was fitted to the N> 1 case but was found
to be entirely satisfactory for N <1 also. Adding 5% more terms than required by this
formula had no effect. Using 10% fewer terms, on the othér hand, had a big effect,
indicating considerable cancellation among the first 90% of the tcﬁns (at Icast near the
critical angle} and thus a preponderant influence of the terms in the tail end ofthe Mie
series.

Before devising the method of subtracting the farside contributions, we tried

averaging the Mie results over narrow angular bins to tame the Mie fluctuations, but this

was highly unsatisfactory. In generl, we have found that such filfers (even very
sophisticated ones) are of littlé value in smicothinig Mie curves; the Mie fluctuations are very
strange (appearing almost fractal in that there is structiwe within structure) and are definitely

not of the sort which are suscepiible to traditional smoothing dlgorithms.
BECAM calcalations: oo

The main ¢oncerns in computing the CAM #pproximation‘are’ (a) replacing infinite -
upper limits in some integral§ with finité values; (b) computing Airy functions.. Ai and Ai’
of complex argument; (¢} doing the integrals by numerical qu'ad.ramrc.

B2.1. Upper Limits
“The evaluation of the Fresnel-Fock integral (4.24) and the Pearcey-Fock integral

(6.12) is performed according 1o the proceduré definéd following (4:26) and (6.13), o thiat

fincluding the incomplete Fock:type function(5:15)] all CAM integrals with infinité upper”
limits have rapidly decreasing integrands—in some cases monotonically decreasing ongs,
int other cases oséillatory with a mériotonically decreasing envelope:

Since the monotonic decrease is-at least exponential [in-fact, faster than exponentialy
with power 3/2 for {5.15) and Gaussian for (4.24) and (6.12)}, it is possible just to-use

. ~
finite rather than infinite upper fimits without having to add in an estimate of the residual, as

fong ds large enough upper limits are uscd. Qur ériterion whs that doubling the valie ofthe’

. upper lirit should not affect the computed value of the integral to 6 significant digits. -

Regarding the finite pieces of stationary-phase integrals that contribute to (4:24) and
{6.12), as was poimf:d out following (4.26) and (6.13), the integrands, though oscillatory,
only go throvugh a small number of oscillations when € is in the near-critical region.
B2.2, Airy functions -
It is difficult 1o find aigorithns for computing Ai(z) and Ai(z) for complex z.

Algorithms for real z , based on Chebyshev polynormial fits (e.g. Prince51), are easy to



find bue not extensible. Sophisticated algorithms for Bessel functions of complex argument
- ¢including Airy functions) have been developed by Amos.?2 However, Amos computes
Airy functions in terms.of I and. K . Bessel functions of fractional order. To us, this
seemed excessively compiicated-and wasteful of computer time, because. the Airy functions
are entire functions without branch cuts and have simple power and asymplolic sefies
representations. We developed fast routines based ;entirg:iy_:on-mese seres. (Our
experience contradicts Schulten et al.,*3 who claim that the power and asympiotic series are
100 limited in range and slowly converging to be useful for moderate values of z).

The power series for both . Ai. and -_Air’ take the form (Re[e_rence 30, Eq. 10.4.2):

af(z)-c8(2)

where both f(z) and g(z) are power series. This becomes increasingly ill-conditioned as
It increases: either becauseme-shbu'actiohcauscs toss of significant digits (e.g. on the
positive reat-axis); or because: f(z) -and. g(z) contain large nearly-cancelling terms (e.g..
on the negative real axis). Butby using 14-digit precision and allowing a loss of up to '!_
significant digits in the computation, it is possible to reach up to |¢| = 5.4 using no more
than 23 terms (alt 14 digits ace Jost for [z 2.8 ). The number of terms necessary was fitted
as a linear function of - fz] . (4.75 + 3.3 {z] for Aiand 5.0 +.3.35 |7 for Ai"); thisallowsa
more accurate and efficient. sumnmation using 2. Homer's Rule factorization..

For |z} > 5.4 the Airy asymptotic series give equivalent precision (6 digits or more)
to the power series in 20.orless terms: The simpler asymptotic-series (Reference 30, Eq.
10.4.59) is used for almost ai! z ; however, it is not valid on the negative real axis, so
very near that axis [when Re(z) < -0.998 2| | the more complicated series 10.4.60 is used
instead. ‘The series is stopped when the final tenn added is below 1078 times.the leading.
term, provided that the series is decreasing at this point (which is always the case for [7}
>5). In no case is the asymptotic serigs summed to where the terms start to increase, which

occurs roughly atterm number = 201 where. { =273 ;_33/.2. The r_|umb_cr of terms necessary

is gotten from an empirical function of 1 so that a Horoer faciorization can be ased, as Jor
the power seties.

The accuracy of our routines falls from 2 10 sigmificunt digis w roughly 7 digits as
{z| increases from zero, or decreases from large values, woward 5.4. The only error
condition cccurs for very large [2] , when the exponental in the-asymptotic fortn may
overflow.

We checked our routines for Ai{z) and Ai’(z) against the routines of Prince3! for
teal z; along rays arg(z) = /3 and 2m/3, where Ai(z) and Ai'(z) can be expressed in
terms of Airy functions of real argument using Reference 30, Eq. 10.4.9, with z=r and
z=re¥" (r real); against Table VIIof Schulten, et.al.33 for lzl = 6 and arg(z) from O

to r insteps of 776 ; and against old tables of Harvard University34 and Woodward et

‘alss -

_ B23. Quadrature
The integrals were calculated using the Kronrod-Patterson method involving 2
sequénce of intcrlem.:ing 13, 7; 15, 31, 63, 127 and 255-point extended Gauss-type .
quadrature Eormu_lae_55 Since each successive formula employs all points used by its
predecessor, no integrand values are wasted when the order of the integration formula is.

increased; this is a considerable merit when the integrands are as complicated as in CAM

approximations. Convergence is defined to occur when the relative differences between the

magnitudes of two successive formulae are less than 1075, Tt was never necessary 1o go
beyond the 255-point formula, and usually convergence occurred much eardier in the
scquence. Since it is the mngnitudc of the integrat whose convergence is tested, it is
possible for the reat or imaginary part separately to bc poorly converged, if one of thcm 1s
orders of magn:tude smaller than the othcr one; in pmcnce this did not provc tobea

problcm
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B3. Transcendental equation solution

Acconding o (3.17), the following vanscendental equation maust be solved in the

computation of the p-th et of the farside sum:

£,(6,) =sin8,, - Neod(26,, — 8 - )f(2p)] =0 (81)
Fig. 15 shows f, for 8= 80° and various vaiucs of p . The curves converge rather
quickly to f,,(8;,) =sin 6,, ~ N as the single root approaches sin-l N. An examination

of many such curves for different ¥ and @ showed always this same behavior: between
0 and the critical angle there is always a monotone increase amd 2 single root, and the

curves always converge rather quickly to f,, as p increases.
The asymptotic zpproximation (3:20) to the root Bl p tums out to be excellent cven

for low values of p . Empirically, it always exceeds the true root. Typically it is high by

. 20.30% for p=2;afew percentfor p=3;and around 1% orlessfor p=4. By

p =30 or thereabouts, (3.20) is good to 5-6 significant digits. Empirically, (3.20)
converges monotonicall& tothe &uc rootas p increases, so-we stop solving the
transcendental equation as soon as (3.20) agrees with the root to 6 significant digits; (3.20)
“is-then used for the root for all .largcr valuesof p .

We routinely take terms up to p = 100 in the far-side sum (to ensure convergence .
to roughly 4 significant digits) and evaluate this sum at- {00’s ta 1000's of angles @ thus
the transcendental equation needs to be solved 104-105 times in 2 typical computation.
This clearly made manual inspection of each solution impossible, so a safe root-finder with
guaranteed convergence was essential.

Qur fitst choice for such a root-finder was the routine’ RTSAFE from Press et al.37
RTSAFE requires the root 10 be bracketed. It uses Newton's Method except when the
Newton step is either oo large or would place the next guess for the root outside the

brackets; then it reverts to the bisection method. Typically, RTSAFE required 5-6

iterations {independent of p) {0 corverge the ot to 6 sigificant digits. 0 and 772 were
used as the root brackets because it can easily be shown that
fpl0) <0 - and Jp(w2) > 0.

The criticaf angle was also tried as the upper root bound in place of- /2 , bt this actually
inhibits convergence by forcing more non-Newton steps.. 8.

We were able to reduce the number’ of foot-findiig iteradons required.to 2-3 by
making two changes to RTSAFE: ﬁrs'l..all-owing the-input of an-initial guess {which we
took to be (3.20)]; and second, using Regula Falsi. instead of bisection.(Regula Falsi

converges faster). This is almost a best-possible result. -
B4, Fresnel Integrals
The Fresnel integral F(x)} = C(x}+i5(x) occurs it the POA and MPOA results

(7.41) angd (7.48). The computation of this finction would not be remarkable, except that

the approximate fits given in Eqs. 7.3.32 and 7.3.33 of Reference 30 and employed in

.- References 5 and 14 have serious problems for small x ;" We discovered this in rying to

reconcile differences between our implementation of the POA formulas and some pablished
numbers.

Although it proved harder than expected to find Fresnel integral routines armong the
usual mathematical libraries—in particular IMSL. has none—we did find thern in the well-
known NAG library (see Cowell58). When we compared the NAG values with the fit
proposed in Reference 36, we found serious ermors in $¢) for x <04 4% at x=0.32,
25% at x=0.22, and growing catastrophically large for x < 0.2. Even where the fits
based on Reference 30 were good, their emors were never smaller than a few tenths of a

percent; this hardly seems sufficient for present-day computations.
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Figure captions

Fig. 1: (a) The effective potential Up(A.r)=(A/r?)+(1— N*)*H(a—r) , where H is
the Heaviside step. function. Four different- lcvels for k2, comresponding to differcnt
1mpact parametcrs. are shown. (b) Rny pnths assocxated with the four situations in (a) 1:

subcnncal mc:dence, 2: mncal mc:dcnce 3 supmcnncal mc:dencc 4 edge incidence.
Fig. 2: Lowest-order  p = 2 ) farside ray path; with 26, +2(mr~26,)=1+0 .

“Fig. 3: {a) Comparison of exact polarization 1 gain function &j(Mie) with subtracted gain
functions to orders P =2 and P = 100 yfor N=0.75, 8 = 1,000. (b) Effect on
G1(Mie)- of increasing number of subtractions, for ¥ =0.75, = 10,000. To avoid

overlap, the curves have been offset by varying amounts.

- Fig. 4: Same as Fig. 3(d) for polarization 2, with f =5,000. The curve for P =2 is

plotted at a different scale (indicated on the right).to facilitate the comparison.”

- Fig. 5: Same as Fig. 3(a) for the cosine of the phase difference , with § = 100. For

£ =2, adifferent scale (indicated on the right) is employed, to facilitate the comparison.

Fig. 6: Exact and subtracted { P = 100 ) scatiering data, with N=0.75 and = F,0X.
(@ Gy ;) G2 ;(c) cos & .

Fig.7: An il‘lcidéntmy AB with 8 > 8. is not geometrically reflected as the ray BE :

. instead, it tunnels tnto the sphere and travels the additional arc BC (associated with the

83

Goos-Hiinchen angular displacement 59?” ) before reemerging at the angle of reflection

& (ray CD).

Fig. 8: The function [P(w)| and its asymptotic limit || . A Fresnel diffraction pattern is

shown for comparison.

Fig. 9: Comparison between subtracted Mie. results to order P = 100 and the WKB
approximation, for N =0.75, f#=5000. The angular ﬁi‘dth parameter 77 is defined by
(7.2). @) G,{B.6} : () G,(B.6):(c) cosd(B,6) .

Fig. 10: Comparison between subtracted Mie results to order P = 100 and the POA and
MPOA, for N=0.75, B=5000.(a) G,(B,6} ; (b) G,{8.6):(c} cosd(B.6) .

Fig. 11: Comparison between subtracted Mie resuits to order P =100 and the CAM
approximation, for N =075, 8= 1,000, The POA and the WKB approxzmauons are

also shown. (2) G,(B,0) ;(b) G,(B, 8) (©) cos&(ﬁ 8) .

Fig. 12: Same as Fig. 11, for 8= 10,000.

Fig. 13: Contributions o g;(B,6) = 1{Gi (8.6) , for the CAM approximation, from partial

reflection (PR), direct transmission (D) and total reflection (TR), and, for the POA, from

reflection (R} and transemission (1), for = 1,000 (a) for f=hLE®forj=2.

Fig. 14: Same as Fig. 13, for § = 10,000.
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Fig. 15: Plots of £,(8,,} , defiried by Eq. (BI), for N =075, 6 =80° and various

values of p . For p — o=, the single zero of this function approaches @, =sin™' N .
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