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Abstract

In this work we analyse the pﬁase structure of the CP"! model in three dimensional
space time coupled to fermions, with specxal attention to the role played by the Chern
Simons term generated by the fermions.. A rich phase structure asises from the Ia.rge n

expansion.

.1 Present adress.
2 Work supported by PICD- CAPES Braail.

1. Introduction.

. The CP*"1 model in three dimensional space time has been considered long ago by
Aref’eva and Azakov!, who made an impérta.ﬁt- study, proving thai the model has two
phases:. In-the lower.phase the SU(n) symmetry.is broken to SU(n — 1), while in the
upper phase, the theory is SU(n) symmetric, with. spontancous mass generation .for th_e
fundamental bosonic fields, which however iu this phase are coﬁﬁned_ by a long range foree
arising from the gauge field interaction.

‘We shail show that the CP™1 model may be coupléd to minimal 01.' supersymmetric

fermions; the Chern Simons term?2-3+4

plays an important role plays an important roje in
modifying the infrared structure of the model. This modification depends on whetker the
fermion is massive or not. In the minitial cade the fermion mass is a parameter at our

disposal, that can be ﬁxed arbltra.nly and the cases of massne and massless fermxons muqn

be:diccussed separately. In the supersymmetnc case on t.he other hand t:he fenmomc mass

must be equal to the bosonic one, and there is less f._regd_ox_n to play with this parameter. .
-Our.aim is to provide a nontrivial model displaying a rich phase. structure,;but"\\"hich
is possible to deal with in the framework of a reasonable aprox!ma.twn scheme, preferably
inchuding nonperturbative ‘effects; .and whxch is important for the discussion of supercon-
ductivity at high temperature®®; the CP™? model may be used with this purpose™. -+
- This paper is ‘divided as-follows. Ii-section 2 we derive the: %-"exp'a.nsimi, deriving
explicitely the gauge field propagator for each phase. In section 3 we briefly discuss‘the
renormalization propemes of the model We dlSCuSS the rwults aud draw conciusions in

sectmn 4.

© 2.The CP™ miodel with fermions, and ‘the 1 expansion..” /" ~+

The model we are going to study consists of the usua.l cpr-t Laﬂ'ranglan ‘and’a

ferrruomc m:mma.l mteraction

Lonin = DEzDyz + % Db~ M RN
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where D, = 8, + A,, and z = (21, -, za}, i5 a U(n) multiplet satisfying the constraint

Tz = % ' (2.1a)

where f is a coupling constant. * The fermion is also an-n component multiplet ¢ =
(Y1, 5 ¥n ), with a mass M, which is a free parameter. ’

© H'M =0; we can obtain'a supersymmetric model, if we include a quartic interaction
for the fermion !

. 'C-wsv _[’rmn + .f(#"’f’) : o (22)

as long as we enlarge the set of constraints, to include
WH=0=y%z - _ _ (2.2a)

' Sinéé:fhe spmor strvctuie in tres dimensiomal ‘space timie is the saine as that of two dimen-
' siomal spa.ce time, no further interaction arises, and the two d]mensnona.l 5" mteractwn,
m.tgrata now to the current current interaction.
- The & L expansion of ‘the modél may now be cbtained by well known methodst®%:10,
and we shall not-do it in: full detail here: - I fact, our main interest concerns the vector
meson: two: point: functlon, and:this is- the point where we shall make a more. detailed
discussion: ' :

The L expansion is obtained from the following auxiliary Lagrangian in the minimal

caseg 10, 8 )
Coin =Z(—D*Dy—m?) 2 4 B P M)+ % (zz =) ey

with D, =3, — TA"” while in the supersymmetric case, we need a further auxiliary field
¢, in order to.implement: the: quartic_fermion. self: interaction in ‘terms of an interaction
- quadratic in the fermion fields, as well as an auxiliary field ¢, to implement the constraint
(2 Za); thus we have -

E.,u,y—z( DD, )g+$ip¢+%(iz %)
' 1

i

— 1 1
+ma’2\/—5mﬁ¢ \/_czwb+ \/—1/)20- (24)
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Notice again the absence of thé +s self interaction in three dimensions which migrated
to the current current interaction.

In the large n limit we have to impose a saddle point condition on the expectation
value of @, fixing the bosonic mass (which can also be interpreted as originating from the
expectation value of this field); we have to make a similar procedure for ¢ = o ~ \/nM,
fixing the fermionic mass M, in the supersymmetric case. These parameters are fixed in
terms of the ultraviolet cut-off A as well as the coupling constant f. This is the typical
procedure in two dimensional space time. However, in three dimensions, we have room for a
new phase!. Indeed, integrating over n—1 degrees of freedom z; {and in the supersymmetric
case ;) with i = 1,...n - 1, after expanding also around the classical field z&' (and about
the classical fermion field 2 in the supersymmetric case), we obtain, using a Pauli Villars

regularization, the result

— (A m) + } + 308 = g (2.5a) -
o = 28y = ' (2.5b)

for the bosonic piece of the action. On the other hand, for the expectation value of the ¢

field in the supersymmetric case, we have

5 (A~ M)+ + T =0 (260)
Far=ylo =0 (2.60)

We identify two phases arising from (2.5) (and (2.6)). In the upper, unbroken phase,

f>fc— 2Z we have _
1 1

which is the generated mass, for the bosonic field, and in this phase
7=l =0 (2.8)

In this phase the SU(r) symmetry is restaured (with analogous result for the fermion
in the supersymmetric case, where M = m). This is the only existing phase in two

dimensional space time.



For the other solution to equations (2.5-6), we have the broken phase, where

|28 = wl(}fi) | e

This solution is valid when f < fc. Notice that neither the minimal nor the supersymmetric

couplings alter the above phase structure. Indeed, in the supersymmetric case, (2.9) is

valid, and (2.10) is realized by the expectation value (aﬁru')" in the place of 52! The

propagators of the fundamental particles are immediately computed. For all cases we have

(R (k) = g @11)

W@ (-p) = " (212)

where in the upper phase m is given by (2.7), i,f = 1,-+.,n, while in the lower phase
m =0,%,j =1,---,n — 1; moreover, in the supersymmetric case we are constrained to the
equality M = m, while M was a free parameter in the minimal case.

" - Let us discuss the SU (n) symmetric phase, i.e., f > f., where the fundamental fields

have a (transmuted) mass. The gauge field two point function is computed as follows

w =5 +TE, (2130)

and

Y i 1
2 =" _tl (_32 —m? N ;A“AF) la,=o  (2.130)

E e e — _iA_ - (2.13¢)
T, +6A“6Autrln(;3 i A= M)}|a,=0 (2.13¢)

For the bosonic centribution we obtain from the above, the inverse propagators in the large

n limit. We have

&k 1 @k (2k+p)u(2k +p)y
w®) =20 | G —r ™ | R B (e PP

(2.14)

Although these are linearly divergent integrals, the use of a Pauli-Villars regulator elimi-

nates the divergence in a gauge invariant way, leaving the finite result

4 i {~p* m
I‘fy(p) = (g,.p - p;f ) {W (—p2 + 4m?) atan Tz E} . (2.15)
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The above function has an infra red {IR) behavior given by the expression

PuPu ip" T N T T
Tuulp) ~ (g;w - T‘;Z ) T (2.16)

The contribution of the fermions is given by the expression

P [ @k vk - Mynlkt p— M)
Pule) =tr [ oo s e 3ok 1+ o — 3] -

(2.17)

which corresponds to the one loop fermionic approximation. )
There are two main contributions to the above, one ‘arisitig, from the product of an

even number of gamma matrices, which we call Ff,},

and a Chern Simons type terin, Fff
They are given by the following expresions, which can be computed using a Feynman

parametrization of the one loop integra.ls; ahd efeméﬁf.tary integration!!:

50 (o 22) 20 il o

 PuPv Ceel
= (ow = 222 77 ' (218)
for fermions of mass M, and o

To(®) = (gny—.p“p”) fg\/—pz, T ' (2.19)

Pz

for M ="0. Oun the othér hand, for the Cheri Sitons termt we obtain the followmg

€Xpres sion

. . ./_ .
( )— — (IM}V 2A{atanv4M2)E“Vp\/?

pp
=B’ )ewp—\/:——pzj | (2.20)

for massive fermions, and '
rol(e) = —sxgn Meyp® _ (2.21)

for massless fermions. Notice the ambiguity due to the sign of the rass.” We shall suppose

from now on that M= 0. We have for the total two point funétion the result

TW(p) = (Fo*) + BGY)) (g,m - ”;ﬁ’") + A(pz)ew\/% (2.22)
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In order to obtain the propagator we invert the above expression 22, obtaining (g_lfter a
suitable gauge fixing procedure!®

F(p®) + B(p*)
A(P*) +(F(p*) + B())

“Pupv _ A(P") b )
[(5’"" ) - s s ] O

Duﬂ(P) =

- The IR behavior of the functions can be easily obtained. For massless fermions in the
minimal theory we have

VA(pz)% ,.f., = o .' - (2:24a)
B(p") = 6 —p _ (2.24b)
2 i p |
LA 2.24
F) 5L e
Therefore
16371' p,upv 4 pp
Dy w5 — Pule | = 2| . 2.25
. —16}1/ [ T hve f—p2{ (2:25)

" For massive fermions, on: the other hand, we have, for small momentum, the behavior

AP~ “\/—p e, ' (2.26a)
. 2 X :
Ny P ,
B~ - 2 - (2.26h)
and _
- : 1‘,2_ ' . _
Fp*) = 24_1r; : b (2260)

The constant ¢ is regularization dependent?. Naivel'y.'it is given by ¢ = Iﬁ_l - ﬁn}—l',
where A jis the ultra violet cut-off, but in fact it can have another value depending on the

‘regularization employed®. For the gauge field propagator we have now.

R 127& 1 1y : PuPw \ _.
B EA) ) e

for £ = 0, while for non zero values of ¢ we have:

L[ 2
Dyu(p) = 2” i ﬁ) - [g,w Sl 2 ﬁfl eas o (2.28)
(m— %) -3 O S ¢

Therefore, if ¢ is non zero {as is usually the case, if we which to mantain gauge
invariance®) the pole in the propagator disappears, giving rise to a cut in the case of
massless fermions, and to a massive propagator in the massive fermion case, as usual, when
we have a Chern Simons term. The discussion of the supersymmetric case is identical with
that of the massive fermions, with equal mass, i.e., M = m.

In the supersymmetric case, we compute also the ¢ field propagator, finding

Lolp) = % { + _‘;’H (2 tan\/ - fr)} {2.29)

while for the @ two point function we have: _ .
Ta(p) = —at \/_Pz o 2.30 |
N T N (2.30)

The auxiliary (fermionic) field ¢, which enforces the contraint (2. 2b) has a two pomt

Tz(p) = SL':r (m .+ % 1'3) .[Zata.ni / j“;ﬁ;; - Tl'] . _(2.31j

Let us now turn to the broken (SU(r)) phase. Here, the fundamental fields form a.

function

s U{n — 1) massless multiplet, with propagators
_ i ’
(a(p)zi{p)} = —25;‘1' (2.32)

(bi(o)b;(p)) = (2.33)

P-M M

where M = 0 in the supersymmetric case. The propagator of the auxiliary « field is now
given by the zero mass limit of the previous expression 30, corrected by the expectation

value of the n*® r field, and is given by

Da(p)

\/3 n 16 o (2.34)
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Lét us now concentrate on the gauge field propagator. The important point is afllways’
whether the fermions are massive or not. Using the saine hotation as before, we have, for

the Chern Simons term _
Alp*) = VP o (238)

The bosonic contribution is rather simple, being given by the bosonic massless loop,
and the constant term | o | arising from the vacuum expectation value of 7,2,, and we

have the result

P =L (2:36)

whereas from the fermions we obtain one of the previous contributions, that is either
(19,21} (for M = 0), or (18,20} (for massive fermions). Notice that the supersymmetric
case corresponds to massless fermions.

Therefore, for massless fermions (we take £ = 1) we have

H
e +Ee‘.,,pp‘° s {2.37)

which has no pole at p* = 0, but rather a well defined mass term. A different charge for

16ix? | o [* Pubv
D - 17 -
I-“’(p) 2 16 | o 14 7!'2 g#”

the fermionie field as compared to the one of the fermion, would imply a more complicated
structure for this propagator.

In the minimal massive case, we have, first for the case g = 0

_ 16 _ PPy
Do) = oo (9 ) (238)

while for £ non zero, we obtain (we put for definiteness ¢ = 2}
167%

(VT 1610 B) 6t
{(\/—_112— 15| [?) (g.w - P‘;f") + %e,.,,p"} . (2.39)

D.lw(P) =

Therefore we must have a complex spectrum, which cannot be analysed with naive argu- '

" ments, from the above expression.

3. Renormalization.

‘A short note on renormalization is.in.order: First notice the behavior of the auxiliary
c.and. .o propagators for la.rgemomentum E e T F U S
. .
. -4 Lo (31
T P S (3.2
These results shows tha.t the fermionic as well as the bosomc mteractxon after we take mto
account also the gauge field propagator behaviour for ia.rge momentum, are renormahza.ble
Its is clear also, that since the deca.y behawor of the propagators wu:h t‘.he momeutum is
not stronger tha.n tha.t of the free propaga.tots we do not ha.ve a.ny posxtnnty problem
In any case, renorma.hzabxhty is prwerved Indeed there are cancella.txons of ultra.w-
olet'. dlvergenmes due to i:he cconstra.mts (2 la) a.nd (2 23,), generahzmg arguments used in .

[12] In fa.ct for Gteen s fu.uchons ha.vmg more tha.n two extema.l zsospm a.trymg legs,

the foﬂowmg a.rgument holds. Follow the i isospin of a glven external iuxe, 1t "must end in
another isospin carrying external line. Consider the dxagram ‘where the two lines came
froni & complicated blob (as in ﬁgure' 3.1y and’ the ‘comon ‘intérnal line interacted more
than once; Construct now, as in Bgure 3.2, a diagram whiéré the samie lines Row Tt
of the sathe blob join'ifito an auxiliary line (o if we'are dealing with two 2 Tines, ¢ if we
are dealing with two fermions, and ¢ if it is a boson fermion pair), and afterwards,: that
auxiliary line generates. the previous pair.again.. For the divergent part of the:above two
diagrams there is.a cancellation, since.when th_eblqb:.s;:h,rjinc,k_s;t.p..az_;g:gps_i;_a.nt,;the;sgqqnd
diagram gives.a minus sign, due to the fact that the awiliary field propagator is miinus
the.inverse of the two point f.f.:.m-:tion corresi:on&ing to-the fields it ga.ve origin to. This

gives a ca.ncella.tlon of dlvergencaes for each pa.zr of extemal hne, and a s:mple countmg

of the rema:mng dwergenc:es shows that we a.re left on.ly with the usual mass é.nd wave

function renormalization (the couphng constant renormahzétlon is englobed by the mass

renormahza.hon, due to the 1nass transmatation phenomenon)




- 4. Conclusions.

We conclude this paper, in a way analogous to-the two dimensional situation, where
the long range force arising from the CP?~! bosonic self interaction is screened by the
fermionic fields. The nature of the screening is however more complicated not only due
to the phase structure of the .model,_ but also due to the regularization dependence of
the Chern Simons coefficient. In any case; we learned that massless fermions play a very
special role in the npper (unbroken) phase, since fhe gauge field propagator displays a
séﬁ;re root cut rather that any pole. In this case; '.the cﬁnstmction m.ay be inverted in the
sense tha.t; & square root beliavior of a gauge field permlts the construction of a fermionic
ﬁeld anangously to the two dlmensmnal constructmn . In the supersymmetr:c case, on
the other hand we aﬂwa.ys end up with a massive ga.uge ﬁeld showmg that the screemng
mechamsm works in tree. dimensxons as well“ Thexefore, ‘the supersymmetric cpr
model in tb:ee dlmensmns hasin both phases a hberal:ion mechamsm for the fundamental
ﬁdds deg:ees of ﬁ'eedom We ha.ve not aualysed whether there isa mechamsm a.ua.logous
to the twodlmens;onal one, _where the chn-ahty of the fenmons decouple in order tha.t the
. ga.uge ﬁeid has 1ts pole slufted from zero.

.In_the purely bosonic theory, we have two phases, an SU(n) symmetric, confining
phase,-‘and,an SU(n—1) symmetric (or. SU(n) broken), non confining massless phase, the
two phase structure is. preserved when coupling the model with fermions, either minimally,
.or. supersymmetrically. .- -

¢ Tn- the confining :phase; if ‘we' couple minimally to'massless fermioné,' the long range
propertiss of the’ gauge fields are screened by the fermiors, and the z-partons‘are liberated;
in'a méchanism similar to’the two dimerisional case: The) ga,uge field, on the other hand,
does riot preseut any pole. & e '

In the massive (and a.lso in the supersymmetnc) case, & mass term is generated for
the ga.uge ﬁeld wluch now presents a ma.sswe pole Aga.m but by auother mechamsm, the
' pa.rtons are hberated in the process - _

In the broken phase, on the other ha.nd the z pa.rtons are, in a.ﬁy case, unconﬁned

however, the situation for the analytic properties of the gauge field propagator is inverted:

10

in the massless (and supersymmetric) cases, the gauge field presents now a pole, that turns

into a more complicated structure for massive fermions.
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