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Abstract

We perform the: BRST BE V qua.nnza.tmn of the
theory of a relativistic's spinning particle with N-= 2
extended supersymmetry and- a Chern-Simons term.
We-calculate the tra.nsxtmn a.mphtude and show that
itis proportmnal to the propagator of the field strength
of an antisymmetric tensor. The local internal SO(2)
symmetry of the theory without the Chern-Simons

' term turns into a local external O(2) symmetry when
the Chern-Simons-term is added to the action.

*Partially supported by CNPq

. cm.ted to the spmmng pa,rtmle}.

* The step:for ‘going from’ a quantum: mechamca.l system: to
a field theory has:been recently shown to be a non:trivial-one
when local symmetries are involved. An- outstanding example
of -this is. string theory for which no:satisfactory. field theory
was found starting from its first quantized ‘version. This has
led to-the study of topological field theories as.an alternative
to find out the fundamental symmetries: of string:field: theory.

: The same situation seems:to ha.ppen for pa.rtxcle theories.

An a.ctmn was proposed-to'describe a rela.tw:stxc ‘spinning par-
ticle with:N'extended local worldline: supersymmetry andlocal
worldline internal O(N: ) symitietry: [1] ‘Upon quantization it -

N

describes: a particle: with- spin: 7. The qtlantlzatxon was per—
-formed thmugh the Dzra.c techmque of' R B

' th ﬁéid strength for: sﬁmr >
and hence in the massless-case the: ‘gauge invariance for V' > 2

is'not:manifest: i those: formulations: This:had been noticed

also-in- ref.[3}. 'As.we will show, -even:with:the: addxtxon of a

‘Chern-Simons: term to-the-action this: problem: remains:

* The need for a Chern-Simons term arises because the. theory
has an amomaly for the. local internal O(NN):symmetry and
it is well defined. only. in even space—tune dimensions .where
the anomaly does not sp011 ‘the internal. symmetry [4): “One
way to remove the anomaly: for the N =2 case is to-add a
Chern-Simons term to the action wluch cancels the anomaly

and the- theory becomes. well deﬁned in: a.ny.dunensmn [4 5]

it’ descnbes a.ntzsymmetnc tensors [4 11l peE! ewxll '

!
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;fermmmc coordmate, ':z,
-x,(t) are. the g;ra.wtmos f(t) is the 30(2) connectlon, g is an -

quantize the theory in the BRST-BFV framework [6] which

-showed up to- be a systematic way to obtain the propagator

for a field. theory starting from the point particle theory, as it
was done for the relativistic and spinning paxtmles [7] and the
chiral particles- 8]-

Antlsymmetnc tensor field theones are typical exa,mples of
reducible gauge theories, i.e.;. theories: which need. ghosts for
ghosts for ghosts, etc... The most adequate formalism to treat

~ such class of thearies is the- BRST formalism for reducible sys- -
tems [9] since it provides: the right counting for all ghosts and
ghost numbers.: [t-also provides an easy way to show the equiv- -

alence of antisymmetric tensor field theories to-usual field: the-

* ories:at & given.dimension-{10].- Although being a-reducible. -
theory its:mechanical counterpart which:will be: studl.ed hereis .

irreducible:; This is: so becanise; . as:we will show, the.spinning

" . particle:transition: amplitude: (with: the: Clhern-Simons. term)
s proportional to the propagator: for the field strength. of the

' .. antisymmetriestensor, which.is gauge: invariant, in.a.similar -
. way to-the spinning particle without the:Chern-Simons- term.

Therefore: the gauge: symmetries: responsible: for-the. fower-of

' -:ghosts for ghosts remains hidden: in: this formulation.
sz Wes stazt: w1th the- action: [4] :

(¥ — ZXJJ)F‘)( %X;?,!'J;n) “p T”,}F'

1 2_:‘V(t )is -the‘wo;:ldlme e1nbe1n,

3

”'—)I + w‘(tzmz(tl) (‘1) :
'gb“(t) is the .

integer, g — 1 being the rank of the antisymmetric tensor as will
be shown latter. The action (1} is the usual action for the rel-
ativistic massless spinning particle with two supersymmetries
(which is well defined only in even space-time dimensions) plus
the Chern-Simons term f(g — £) which makes the theory well
defined for any dimension D. It can also be viewed as an world-
line N =.2 supergravity theory coupled to matter fields, with
V,x; and f forming the supergravity multiplet. The boundary
term in (1) is needed so that we can perform the variational
principle on the fermionic coordinates having only one bound-
ary condition for them..

The actlon (1) is mva,nant by worldhne repa.rametnzatmns

§X¥ = eX*

S = et

Y 7 (EV) o
b = (EXE}' o .
L 8F = (ef) o (2)

if the parameter of the transformation e satlsﬁes the boundary
conditions €(?;). = ¢(t3) = 0. The action (1) is also invariant
by local worldline N = 2 supersymmetry transformations

c O EXE = z'cz,i,b‘“

6¢5‘ = .- (XF_Xt‘!’#)
SV = 2zx,oz,

_ .,6)(;-_5:' : ; — € f > :
Sf-0 (3)

if the supersymmetry transformation parameter o; satisfies the
boundary conditions a;(t;) = a;(¢2) = 0. Finally, the action
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(1} is invariant by a local worldline SO(2) transformation

§XH =0

Sut = ebt

8V =0

Oxi = ebx; _

§f = b (4

Quite differently from the usual theories with internal symme-
try where the gauge parameter does not satisfy any bound-
ary condition, in this case the action (1) is invariant only
if the SO(2) parameter b satisfies the boundary conditions
b(t;) = B(ts) = 0. This, of course, is due to the addition
of the Chern-Simons term which makes it responsible for the
changing of the internal O(2) symmetry (in the absence of it)
to an external SO(2) symmetry. This is a rather interesting
mechanism to interchange internal and external symmetries.

The above boundary conditions for the gauge parameters
indicate that we must choose the gauge conditions V = y; =
f = 0in order to fully determine the gange parameters.

To show that the theory has no anomaly we consider the
path integral over the coordinates X#, ¢ of the exponential
of the action (1) considering the gauge fields as background
constant fields. They can be taken as constants in view of
the gauge choice made above. The integral over the fermionic
coordinates gives det™/*(i8;6;; — %e,’j), where f' = AT{f +
ixixa/V) and AT =ty - ;. Using periodic boundary condi-
tions we can calculate this determinant which after a regular-
ization yields cos? -Qﬁ Then we get the path integral

1’V{ffﬁ Xi}v] = f'D.‘Y‘u COSD—é“ X

' x@‘ff%%‘%f’@——) _Lxl_(q. ")AT | __(5)

)

’Now upon:a large gauge transformation in which- f.’ =t

21 we have cos? £ — (=1)Pcos? . £. and the exponential of
‘the’ Chern—Slmons term e~/ 10~ 3) s (~1)Pe=F 65 55 that -
W xi V] = (=1)*PW[f", x;, V] and there is. no restriction.

on the space-time dimension D. Then the theory is well defined
in any dimension. This justifies the choice of constants in the
Chern-Simons term.

From the action {1) we can derive, by sta,nda.rd techniques
the first class constraints which give rise to the local symme-
tries (2} (3) (4); they are respectively

H = P* = :
Q')i = _dejpi_ _ . .
¢ = .Esjd’f"%ﬁ’pj*‘_?Q_—D' o (6)

‘where P, is the momentum canonically cenjugated-do X*-and

the fermionic coordinate satisfies the Poisson bracket

'{lb,u:‘, 'Qb,uj} ='“i’7uv‘sff . : (7) .

The constraints (6) close the following Poisson bracket algebra
{6:, 'a';,} = §H
e, ¢} = o; N (8)

with all the other bra.ckets vanishing. . It is easily seen that
there is no linear combination of the constraints which vanishes




without use of the constraint equations. Then the constraints
{(6) are ireducible.

Following . the BRST-BFV prescription [6] we now extend
the phase space of the theory intreducing cancnical momenta

for the gauge fields {which.act as Lagrange multipliers for the

comstraints): p, for V, II; for x; and p for f. These momenta
are now considered as new constraints, Now for each constraint

we associate a pair of canonically conjugated ghosts P and 5 -

for H, P and 7 for p,, P; and ¢; for ¢;, F; and 7 for I, P and

1 for ¢ and P’ and 77 for p. The ghosts have opposite statistics

to the constraints.
Then the BRST charge can easﬂy be found using the. a.lgebra

' (8) It is given by

Q@ = nH+cipi—né+Pp, + BIL +
+P'p+ e Py — —;é’i_%ic,- (9)

-and it is easily seen to be nilpotent {@,Q} =0

To calculate the tramsition amplitude we choose the fol-
lowing boundary conditions which: are invariant by the BRST
transformations generated by (9)- -

Xr(t) = Xt ,X¥(t) = X
W)+ ) =t

plti) = pu(ta)=0
Hg(fl) = Hi(tg) = {}

p(t1) = plt2) =0

n{t) = nlta) =0

CRt) = () =0
7

ei{t) = «lls) =0
Gt} = @) =0
7(t) = 7'(t) =0
T(t) = 7(t) =0 (10)

where X{', X§ and ¥ are constants. It should be stressed the
importance of the boundary conditions. If we had made an-
other choice of boundary conditions for the fermionic coordi-
nates then the boundary term in (1) would have to be changed
and the resulting transition amplitude would be in another rep-
resentation. For example, for [V even, if the complex fermionic
coordinate £ = 715(1;’)1‘,‘ + iw’;\,ﬂﬂ),a =1,...,N/2, satisfy the
boundary conditions £#(¢;) = £5(¢;) = 0 then we get the tran-
sition amplitude in a coherent state representation {11]. With
the boundary conditions {10) we will get the propagator in the
usual momentum representaion.

We now have to choose the gauge fixing fermion ¥ which
implements the above mentioned gauge choices V = y; = f =
0. If we choose the conventional gauge fixing fermion ¥ =
PV +Px;i+P f weend up with a complicated ordinary integral
over f(0), involving trigonometric functions, which we were
not able to solve. So we looked for another ¥ which could
make the functional integrations feasible. Since by the Fradkin-
Vilkovisky theorem [6] the transition amplitude is independent

of ¥ we can choose it at will. We then chose ¥ to be

U= PV( sei1e1y) " + P (11)

which is dependent on the fermionic boundary conditions as
well as on the parameter g. The absence of the term P f in (11)
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implies that the effective action will riot havé the constraint ¢

in the standard form f¢ so it is necessary that the parameter

q {as well as e;;4;%;) should be introduced in another place.
Then the effective action is given- by :

Sur = [ HPX +pV S — il +pf +
+Pi + Pii+ P& + Rc. + PR + P -
~{Q UM+ Sl (tu(n) (12)
where

{Q. ¥}

. L : _
—Vﬂ(iéiﬂm)_(q_ P'P( fzﬁﬂg) iy
+ixits + e Pixgl — Peixi + PP R ¢ )
The traunsition amplitude is given by
| 2 Xey) = [DueSe 1y
where S,y is given by (12) and the measure is '
Dp = DX* DP, DY ’DV Dp, ’Dx. DIL; 'Df Dp D P
Dy DP D DB, Pe; DP:. Dy ’D'P Dy PP (15)
We now perform the functional mcegra,ls over the momenta, of
the gauge fields. The functional integral on p, gives § [ V1] which
leaves an undetermined factor det & which can be qb_sorbed in
the overall normalization of Z. Then the functior;_al_ integral be-
comes an ordinary integral over V{0), whose integration himits
~are taken from 0 to co as required by causality. Ana.logously

the functional integral over II; gives 8[x;] which leaves us with
an ordinary (Berezin) integral over x;(0). We now "make a

9

change of variables F = —f— so that * is dimensionless. Then
the functional integral over p gives 6[]:] which turns out into
an ordinary integral over F(0). Being the gauge. field of the
0O(2) symmetry the integration limits are taken from 0 to 27r
The. functlonal mtegration ov_er the ferrmomc ghosts 'P P,y
and 7 leaves - us w1th a det@2 : .}.T The mtegra,tlon over
the bosonic ghosts P,, P,, C; and c:l leaves us Wlth a c’net_2 32
(./_\T)'2 F ma.lly the mtegra.txon over the fernnomc ghosts P,
7, P and 7' leaves us with an undetermined factor of det?d;
which can also be:absorbed in the: .overall normalization of Z.

With all these functional mtegrals performed t.he effectlve.

action (12) reduces to

Surs _/ P - 2"{’"’”' ,' )q_ ,;. ¢,x,]

+1 w,{tz)w,(tl) e (15)'_’

and the transition amplitude (14) to -
o o i
Z[X1, Xoy 1] = ]0. dV(U)"]dxi(O) "é'xdf'(ﬂ) X
x [ DX, DP, DYAT)™ et (17)

We now perform the folowmg Change of Va.na,bles (whose Ja-

cobian is equal to one)

CAXE
AT (t2 —-t1) + Y"(t)

U= R (1)

where AX¥ = X¥ ~ X{' and with the followmg bouﬂdary con-
ditionn for Y* and ¢ -

Yrn) = ViE) R0

X = Xt

i0




) + W =0 . (19)

The functldnal integral -over Y reduces the functional inte-

gral over P# to an ordmary integral over p* = P"(O) The

fmlctmna.l mtegra,txou over mb" gives a det & which can be cal-

culated ‘with the’ penodac boundary conditions (19) and- the
result, after régularization, is independent of AT.

Fma,lly, performing the ordinary integrals over V(O) x(O)
a.nd .F ((}) we obtam the transxtmn ‘amplitude

©ZXG Xl = dp pﬂ'npm('rmp)‘” (20)

thh a.Il factors of AT cance]lmg out. We will now show that
this transition amplitude corresponds to the propagator of the
field strength of an antisymmetric tensor of rank g — 1.

PFirst we take a representation for the ’Y: in terms of Dirac

‘gamma matrices such that (7) is satisfied -

) {'Yi 17_1} = 1"é;; 7' S (2.1)
Such a representation for the v is [1] : '
no=7rel

wo=rerr (22)

where 7" = ... "y.p.' For odd diménsio_ns we take a reducible
representation of the gamma matrices so that ™ anticommutes
with all 7#. Now we have to take into account the ordering of
the v in (20) Since the 7! do not anticommute we antisym-
metrize a.ll +{ and all v§ so that (20) becomes
- ZIXy, Xovl = '

e:pAX

= f dp
_ P

pﬂ%" T ‘]p"'rz[mm- Yopy] (23)
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Using (22) we find

szX

Z XI!X’Z: 71 _[dp
xpu(yHy? ety *)q l)mp”('ympl---*rpq_,])ﬁ‘; (24)

and multiplying (24) by ((v)*'v# . v (1, - - 7)) we

~ obtain, up to numerical factors,

1pAX

f dp TP Bl =< F¥ R, L > (25)
where 851t = 6;‘,‘:63: ... 851 + permutations. Of course (25) is
precisely the propagator of Fy, , = By A s )

Like in the case without the Chern-Simons term the gauge
symmetries of the corresponding field theory is not manifest in
this formulation. The same happens-in the Dirac quantization
where the gauge symmetry is hidden in the Bianchi identities.
This seems also to happen in string theary. In the path inte-
gral formulation of the Ramond-Ramond sector of the spinning
string the massless fields in the expansion of the wave func-
tional appears through their field strengths rather than their
gauge potentials {12]. This shows that we do not have still an
appropriate formalism to find out the gauge symmetries of a

“second quantized theory starting from its first quantized ver-
- sion. May be we need to introduce more symmetries at the

classical level in order to generate the gauge symmetries of the
corresponding field theory. How this can be dene however is
not known at present.

Another interesting point which should be stressed is the
conversion of the internal O(2) symmetry into an external
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SO(2) symmetry when the Chern-Simons term is added to
the action.- To each external symmetry we can associate a
a local transformation on the manifold in which the symme-
try is defined. Reparametrization symmetry is associated to
a local transformation of the proper-time ¢ — t(f). Local
supersyrmmetry is associated to a local transformation in a
Grassmannian direction (a sort of fermionic time) which al-
lowed to rewrite the theory in a N = 2 worldline superspace
whose coordinates are ¢ and #; [4]. Now the new ((2} exter-
nal symmetry allows the introduction of a new bosonic coor-
dinate which would enlarge the ¥ = 2 worldline superspace to
have two bosonic coordinates and two fermionic coordinates.
A superfield formulation on this superspace is presently under
investigation. A N = 1 worldline superspace has allowed the
derivation , e.g.. of the Atiyah-Singer index formula {13] and
the Weyl character formula [14] in an elementary way and it
may be possible that this new N = 2 wordline superspace be
helpful in proving other mathematical theorems.

As a last remark we would like to mention that the massive
case can be also treated by the BRST-BFV technique. We add
to the action (1) the mass term

= /‘2 i ——w*w* + 5 fe iy + imxad) +
+§U; {t)Yi (f2) | (26)

where +4* is a new fermionic coordinate. Then the constraints
{6) become

H = P?—m?
¢ = Pty — mo]

13

0 = el — iy )+2<I D (27)

and the new fermionic variable satisfies {w,[) (M } = 36,J The

algebra of the constraints (27) close as in (8) and the BRST
charge remains unchanged as in (9) with the constraints (27)
instead of (6). For the new fermionic variables we take:the
boundary conditions (¥ (t1) + ¥i(ta)} = 71 Now the gauge
ﬁxmg fernuon is choosen to be - ;

v =PV(E Eu%%) )(memm) +sz= . (28)

After the change of vanables 1,L" = qr, +1{;* we get the transition
amphtude

.szX
Z{XI,X%"YH’Y ] _fdp 5

x (gt — ma)(pvy = m%)('rmp)"‘ﬁ"mz - (29)

X
2

Notice that the mass terms dlsappear due to the last fa.ctor
vivs. Taking the following representation for 4 and 7} -
terms of Dirac gamma matrices in D = 1 dimensions

no=rvrey

o= ey
o= ey et
o= eyt L - (30)

where now v* = 4! ...yP+! we obtain the propagator for the
field strength of a massive antisymmetric tensor: of rank ¢ — 1
after antisymmetrizing (29) with respect to 7}’ and ;7 and mul-
tiplying it by an appropriated combination of gamma matnces
as in the massless case. g o
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