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ABSTRACT . : '

We have developed an apnfoach, based on the LMTO-ASA formalism andr

the recursion method, which allows us to perform first principles
'spzn—polarized self~ consistent calculaiions: of electronlc structure in
real spage, To 1llustrate the method we obtaln the electronic structure

-~ of ferromagnetic FeNi3 and atiferromagnectic Feldn. The results compare

well with those obtalned by other methods, The scheme described here:

‘"can be applied to non- periodic systems and s wvery useful to obtain

'Iocal magnetic moments in complex metallic systems

1. INTRODUCTION

. linearly with the number of 1nequ1valent atoms belng considered For_ﬁ

;;hese reasons. real .space ‘methods .are“_yery useful to 'describe the

. extended with encouraging results to treat s and p'electrons but the-\,;

. being used when one forces the Hamilgonlan to “be’ ﬁightly oqnnd through f

Reei space methods such as the‘recﬁrsfon method"do-not require'~

'-symmetry and their cost when solving an eigenvalue problem grows'f

electronic nropertles.of complex systemé;'for which the usual k*space”
methods are lnapplicable or extremely costly. Reel—space methods are
not very practical ln general bot they are extremely efficient when

the- system in consideration can be welI described by a tight binding_v'

(TB) Hamiltonian. Because localized d-bands play a centrai role in the

~electronic structure of transition metal alloys for a ‘long ;ime_ L

parametrized TB Hamiltonlans and real- space methods have'beenIUSed'ﬁo”l:'

study the magnetic propertles of these sSystems.. A lot of-brogrcésiinﬂ =

understandlng the magnetic propertles of - metalllc systems was made by-

using this approach and simple d- band parametrized model Hamiltonians

Usually the parameters are are obtained from a LCAO fit to ‘more exact};'

.

k-space calculations or adjusted to” fit experimental resu}ts and it is'A_-f

i

assumed that they can be ‘transferred ;o describe the "more ,complex“f‘

systems one wants to study2 In the case of magnetic systems the Stener ',

. parameter is alsd needed. Thls is an additional problem,.because the}f

results for the magnetic mements are sensitive to the choice of . T and :

often the results can be made to agree with experiment through small

variations of this quantity. The LCAD parametrization has often been

lack of a sound thecretlcal background to Justxfy the procedure leaveS-:.,l

some _fundamental questions anunswered. Uhich are the approx1mat1ons-f
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a fit? Should the usually extended s-p electrons be treated within the

1B scheme? How do we treat the wave function and quantities which which '

depend on it? Do the parameters in binary alloys change as a function

of the magnet.ic moement? .

A ma_jor' progr‘ess t.owar‘ds obtamlng a tight- bindmg Hamiltonian

.

" based on a solid theoret'ical understanding of the problem, came in 1984

with the advent of the LMTO—ASA—TB formahsm The LMTO-ASA is a linear

"method !mplemented around an energy F‘. tha.t treats s-p and d electrons

in the same @manner. In‘this formallsm . the Ha.miltoman'can.be

expressed im terms of different 'sets of pasiz functions®, One can
. . .

~always choose an appropriate set for which the relevant’ part. of -the .

Hamiltonlan is tightly bound for s-p and d elecirons .The sound

.th'eore.tica.l framework of the LMTO-ASA formallism allov;s us to evaluate
wave functions, and to know exactly which appr'oxlma._t':ians. being ,made.‘
Within the LMIO-ASA theory, . siimpie paramef.ri'zed Hamiltonians can "be
Cbulit wlthout the 'peed of fits to more exact _calculations_c.:r-
- experinent™ . “The lack of adjustable parameters ‘make the .results more
reliable. Parametrized lLM‘l'O-ASA' calculations have been wused with
-guccess to study the électr;onic si:ructure of éeveral systems . In Ithe
case of magnetic systems, it has been used in conjunction ;tith the
Stoner criterion to obtain the electronic structure of FgNias. But in
sonea caées. such as that of antiferrcomagnectic FéMn, the parametrized
IIILMTO—ASA ~appreath faiis. This suggests that =a mofe rigm;‘ous first
princlples seif-consistent approach may be needed, to obt,ain reliable

_results for the ma.gnetic properties of complex metallxc systems The

posslbility of uslng the LMTO-ASA TB formalism in conjunction with'

the recursion method in order to perform self-consistent calcizlations

in real space was first pointed oyt by. .f-'u‘}iwara—";' At tha.t; time sbme
technica.i aspects rggarding the determination éf.r"eliable LMIG-ASA T2
structure constants were still unknown. They were in_terest.ed in.a.' very
complex amorphous Fe-BE alloy, and therefore never attempte.d 2 site by
by site self-consistency or a spin-polarized ..'c.alculation._ They made a

self-consistent calculation for the average Fe and B in the cluster,

-1gnor1ng for sake of simplicity, t.he local variations of the potential

In this paper we develop a spin-polgrized, first-prinéiples.-
self‘—consistent real space calculation. The procedure is ver;;,r similar
t.o the regula.r‘ k-space LMTO-ASA formal.ism, but the sollition of the

e1genva1ue problem is Implemented in real-space with'the help of -the

" recursion method . This approach has been tested in non—magnetic ZrzFe,

glving dccupatioh numbers for s-p and d-bands which agree within one

hundredth of electrons with those .obtalned in k-spaces. The paper is

"organized in the fellowing way. In Sec. II we give a descriptidn of the

LMIO-ASA and of its several representations. In Sec. III we describe ';

the real-space self-consistent approach and present 'seme results for .

’ FeN13 -and FeMn. Finally, in Sec. V. we present our conclusions.

II. THE LMTO-ASA-TB FORMALISM

- The LMIO-ASA-TB fermalism is a wel.l known first-principles method
and has been degscribed in several paper‘sg“'s' m. Therefore we will be
as brief as possible in our discussions of the method. The LMIO is a

linear method and its solutions are valld around a given energy Ev.

Here. as In most of the literature, Ev is chosen at -the center of

‘gravity of the occupied part of the given (s,p or d) band. We use a

first order TB Hamiltonian where terms of order of {E—Ev.lz and higher

are negiected. We also work in the atomic sphére approximation (ASA),
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w)f;ere the space is divided into Wigner-Seitz cells, which are then
approximated by Wigner-Seitz (WS) spheres of same volume. The function
qo:(r), defined as the radial part of the solution of tﬁe Schrédinger
equation for a spherical potential inside a given sphere at energy Ev
and Iits energy derivative gbu(r) defined at energy Eu, are very
fundamental quantities in the LMIO-ASA formalism, To understand the
LMTO-ASA formalism from a real space point of view we should start by
describing the choice of the LMIO-ASA basis functions.ulnstead of
obtaining the basis set from solutions of an isolated atom (as in the
LCAO), we consider the solutions for an lisolated m@xffi{:-tin sphere of
radius s, with a given spherical potentiallfor- r<s and a flat potential
outside. It is assumed that the kinetic energy for one electiron outside
the muffin~tin sphere is approximately zero and the solution of the
Schrodinger equation outside the muffin-tin sphere reduces to" the
non-divergent solution of Laplace's equation r—E—z where &0,1,2 for é.
p and d orbitals respectively. The solution inside the sphere should
match the one outside at the sphere boundary. This set of muffin-tin
orbitals will be used as an envelope in order to force the LMIO-ASA

vasis set to be continuous and differentiable in all space. To build

the LMIO-ASA basis functions from given muffin-tin orbitals we use a-

rocedure involving ¢ (r) and ¢ (r) which is described bellow. First we
P v v

consider the orbital centered at a site R. The tail goes as |r - R)—@"x

cutside the central sphere and is a regular function within every other

sphere centered around any R’#R. Around the site R’, the tail can be

exSanded in series using regular solutions [r - R’!e of the Laplace

equation. If we use a scale a and define rRE{r - R}, the tail of a

nuffin~tin orbital centered at R can be expressed around any other site

R’ by the expansiongr

" v 1= -
— Y (nR) =

L a L

where L=({,m} is a collective angular momentum index and Sg.L"RL are
the well known coefficients of the expansicng. These coefficients
depend on the position of the gites on thé given structure, but not on
the Atypé of atoms being cén;idered. Now that the envelope function is
written in a convenient for‘m,_qto build the corresponding LMTG-ASA
or‘bitall.r we substitute the solutions of the envelope inside every WS
sphere by.a linear combination of wv(r)_ and g‘;y(r‘). chosen in order to
pf‘esérr‘ve the. value of the function and its derivative at thne sphere
boundai‘y.When built in thi.s way the LMTO-ASA basis is nearly orthogonal
to the core levels and provides a much better basis for the actual
solutions than the original muffin-tin orbitals. Using the LMTO-ASA

P
basis set {Xi,} we can build the Hamiltenian H® and the overlap matrix

o° in the usual way. These quantities can be expressed in t.el."ms of SQ
and of potential parameters which depend on the values of the functions
¢,(r) and {ou(r) substituted at the WS sphere boundary.

.Until now we have described the standard LMTC-ASA 1‘orma1ismm,

which does not give rise to a TB Hamiltonian. The structure matrix S

. . . . -2é-1 R .
entering the Hamiltonian decays as r ° with distance and is very

+long ranged for s(4=0) and p(é=1) orbitals. Andersen and Jéva{fng have

shown that one of the characteristics of the LMIO-ASA formalism is. that
that the choice of basis set can be changed to sult ones’ purpose.
A controlled mizing of the original basis set can vieid & new basis,

tuilt to have a particularly desirarbie praperty. For a general basis
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'{in L} the amount of mixing is determined by a’ set of parameters ﬁﬂ.

These parareters define the basis and can be adjusted to produce a set

with the desired property. Because the sets are related through mixing,
they can be obtained from each other. "There are three very Iimportant
* LMTO-ASA representatlons. The first is the standard representation with

no mixing (6£=0} which we have described, The second is the nearly

orthogonal representation where ﬁg is chosen to make the over‘lép matrix

close to unit. Finally we have the TB .or mast -localized representation,

with a mixing chosen to make the interactions between neighboring'sktes

as short ranged as posslble Here. f‘olloulng'the literatur‘e‘, 'we_e use

.quantitles withouh bars to denote the potential parameters Q&’ 'Ce,' Ae

£
in the nea.r-ly orthogonal repr—esentation The mixing Qe and the other

potential parameter‘s CB and Ae in the or-thogonal representation ar'e‘

given 1in terms of the solutions at the ‘poundary of each Ws sphere. :

belng different for every fnequivalent ‘atom in the system. From now we

" will use quantities wit.h & bar to designate quantities in the most

locahzed representation. The structure constant matriz § for a basis

s;zt ‘defined by a mixing 5& ls ‘written in .terms of the oniginal
' _. canonicél structure matrix S° of eq.i as‘: ‘ . . K
s =s%1-0 %™ : 2
Here I is the umt matrix and Q is a diagonal matrix with elements Qe.
. Using this expr'ession the mixing that gives t.he B or most locallzed

" representation can be f‘ound_ by trial and errora. choosing the values of

Q in expression [(2) in order to abtaipn a localized struct.ure constant_

matrix S, The values of mixing were found to be appreximately

independent of the structure and are given for s,p and d electrons by

N

&€

G o= 0.3885, § ¢ 0.05005 and G = 0,uin71a Y
d . F e

o the Se‘ii'—CO"'Si“tEnt real-space approach described in this

—_—

paper, we will work on the orthogona] represematlong. but will express
the orthogenal Hamiltonian in terms of localized pa.r'a.meters of the TB

representation. Because the basis functions the several representations

- are not indeperdent, the orthogonal parameters CE‘ AE’ QE are related

to the potential ‘parameters C and K. of the TB representation: For a

. 4
given energy Ev we have’:

C&'_ECV ) 3 1/2 oy (QI-E} CE_EEv
CE-EZU A VR & e A8

(3)
Finally, to f‘irst order in’ E—E we can express the Hamiltonian H of
the orthogeonal r‘epresentation. in terms of TB par-ametersa"as:
H= C +a'%5 372 _ (a)
In the orthogonal representation the overlap matrix is close to

unit anr.:.l_we have to solve a simple eigenvalue problem of the form:

(HE - E)C =

0
= Z {quu(rRJ +(E-E) q’av(rﬂJ} YL(PR) C{E} - (5
- - . .

It is interesting tc.) note that the LMTO-ASA basis. f‘un-c‘tions,r when
ﬁritten in this ferm, can be seen as & Taylor serles expansion of an
energy dependent partial wave. o
3. SELF~CONSISTENT R.EAIT—SPACE SCHEME

The present LMIO-ASA recursion _scheme. solves t!;e ei_geivalue

problem given above in a self-consistent manner. As In k-space, the

© problem can be divided in two independent parts. First we find the
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-s"tf-uctﬁ;-e ‘constant matrix 5 for the given system. It has been shown -

“that 'S‘:decreases.exponentially with distance and that to find the 9xg

“hatrices conhécting each ihequivalent atom .to its neighbors it is

.ato.ms._‘_Because the values of Q are given by constants that do not
:depend oﬁ'the'potehtial, S does not change during the Se;f—consistént

‘process. Given 5, to build the Hamiltonlan we should find the potential

E'paramet::ér's € aud K. They can be found from the orthogonal potential

‘parameters C, A-and Q using Eq. (3). But to ebtain C,. A and Q we’ha.vg
“to 'solve tﬁe_ Séhrtiedinger equation inside each non-equivalent WS
spher‘é.r This ‘part of the problem is often called “the atomic part® and

D e ‘e R - .
$ treated in the same manner as In K-space. Actually we use regular

LMTO-ASA codes when solving for the "atomic part_". in real-space. This

"part -glves all the non trivial. informatlo:n- about the potential.

Th_erefo:re the approximations for the exchaﬁ,ge and correlation terms’

fu'seti in__réal-—spage‘ are exactly the same .as the ones used in regular

4_}('-'-space LMTQO-ASA formalism. The potential Iinside a N_S' sphere and

‘therefore the potential parameters, are uniquely determined if e .

‘give the occupation for each ‘local (s,” p and d) band at the site, the
first and second moments of the local density of states relative to E,
:'15' so because the spherical average of the charge density inside the
:sphere' is given in terms of the radial pa.rt-of‘ the solutions of the

.Schrﬁedinger equation inside the sphere, and the moments of the local

"s_o_lutiqné at E=E:v inside the sphere, we can find the charge density.
.Using Poisson's equation we can find the electrostatlic potential. I'f‘ we

.

;s'tx_:f‘f;ici'eht to invert a cluster of absut 20 atoms around each of “the

ressonahle guesses for the occupation, secend moment and logarithmic

and the ioga.r:ithmic derivative of gov(r) at the sphere hounda.r‘yu. This

‘density’ of states(LDOS). With given moments and a guess for the

10

-Summ the exchange -and correlation terms and use the given boundary

c'ondit.ions we can obtain better solutions for the Scﬁr'dedingér equation

"inside the sphere and better values for the spherical charge density.
© _We proceed until the potentlial reaches & final self-consistent value'

for the given moments and logarithmic derivatives. Here wWe choose EI'J in

to keep the first moment of the density of étahes for the occupied part
of the band al’ways_ zero. To start é'self consistent process, we give
derivatives for each inequivalent WS sphere.. With this sf.arting guess
we find the orthogonal potential parameters.r'Using Eg. (3) we find T

and A and bulld the real space TE.Hamiltonian of Eg. {6). We use tke

-

recursion method and a large cluster f:o' obtain the LDOS for s-p and d

electrons at each ‘inequivalent slte. With this knowledge we find the

" new energy Ev and the new momé;nts for each band at each inequivalent

site. As in k=space, the new logarithmic derivatives are giveh in terms

" Of new values of EV' and the old patential parameters . We use the new -

values of the moments and logarithmic derivatives te obtaln new values

’ for the orthogonal parameters and new TB parameters C and &. We build a

new real space Hamiltonian using expression (5) for fixed § and use
the recursion method to obtain the local density of sta}tés which will

be used for the next iteration. The results will be converged when the

’ momenté and logarithmic derivatives obtained.by solving the elgenvalue

problem differ by less than a previously established amount from the
ones whlch have generated the Hamiltonian. We should note that when.we

solve for the "atomie part", we choose the potential to be zero at the

at the boundary. When building the Hamiltonian we should correct the

relative energy scale of each WS sphere by the Madelung energy ;ig'e to .

10
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'_charged WS spheres of ‘ether sites at‘the given sphere and alsc take
‘:T_int account the electrostatlc contribution of the sphere itselr.
. For magnetfc systems the protedure is s:m:lar, but we have to
ffreat'up and down bands_Separately, when s0lving for the eigenvalue
.fn}eﬁiem. These. bands are  generated by Hamiltoniansl with the same
a::sinnctdhe constantn but different potential,parameters and thenefore
"have"diffenent moments and logarithmic depivatives associated wlth
them Hhen solving f‘or the “atomic pa.rt" we use these moments to obtain
f‘ﬁthe spher1ca1 charge . denszty associated up and down spins. We use the
I total charge denslty when soiving Poissen’'s equatlon, but the up’ and
down contributions are ‘needed to obta1n to ohtaln the exchange ‘and
_ncorrelation term In the pﬁesent wark a excnange and correlation term
Cof the form proposed by Barth Heldin is used./' .
e, RESULTS AND DISCUSSION ’

To 111ustrate. the procedure we have obtained spin polarized

- results for ferromagnetic FeNi and antiferromagnetic FeHn For the

.FeNi structure we. have Fe in the corner and Ni in. the. faces of a FCC,'

.“unit cell with lattlce constant of 6.620 a.u, For FeMn we have a basic

:nFCC unit with a lattice constant of 6.850 a.u., and two Fe and two Mn
:_atons in the'basie..We performed self-consistent.LMTO -ASA calculations
in real-space (with the scheme develecped here) and in reciprocal space
.'for the two compounds, In reciprocal space we did two calculations: one
using'for the Hamiltonlan the same approximations that we have used in
. real;space and the second using the standard LMIO~ASA anproach. For ’
;eaicuiations in real*space we have used, for both Fth'and FeNi a2 B

11arge cIuster of 1372 atoms To avold surface effects, the LDGS Was

”obta1ned via the recursxon method, for an atom close to the center of

it

iz

the clnster. Here we hive used = cutoff paraneter LL=20 in “the
recurs1on chaxn:. A Eeer and Petlffor uerm1nator was ‘used to obtain
the LDOS and its moments: We‘noteithat the precision can be'increaged
by using a larger cutoff pafaneter LL..

We have mentioned that the pntentiai uiﬁhin the sphere 1s'governe&
by the moments of the local density‘ of states and the logarithmic

derivatives for up and down bands: We find that the occupation {moment -

.of order zero} ig the most sensitive of these quantitles and the one

that’ d1ffers the most from corresponding k—space values®. Therefore, to

" give an idea of thelefficiency of "the real-space approach, we show in

in tab:es I and-II, the results for the occupations of up and down

bands around Fe and Ni In FENiB-andlaronnd Fe and Mn in FeMn. We show

r_résults from three different calculations; self-consistent real- —Space

results (RS), self con51stent k-space results with the first-order (FQ) -

Hamiltonian and regular LMTO-ASA k-space results. (FH). We also show the

local maghetic moment for Fe and Ni in FeNia and for Fe and Mn in FeMn.

" Comparing the results of FO and FH we see that second order effec;s and

the inclusion of combined corrections are not very important. Therefore

our real-space Heniltonian shenld represent the systems well.

. PR 14,15 .. .
~ For FeNi3 there are Some results the magnetic moment '"T. The

"spin-polarized parametrized LMIO-ASA approach, which uses potential

porameters for the pure metals and the Stoner criterion tc obtain the

- electronic structure, works very well for FENiSE. Gur present results

are shown in Tabie I. We can see that the real-space self-consistent
approach compares: very well with the!k—space results, for which the
sane FO appnoximation was used. Dccupatlons of:E and p e;ec:rons differ

ny a negligible amount and even for d-bands the differences 1in

12
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occupatwn are .Lof .61."der".of. hundrédti]s .of‘ elect'r"on..' This is tl}é kind.of.
,agr"e-c.emer.:t.: that we (expect from ;ur _exXperience with nonmagnetic systemsa.
__.-The magnetic moments compare very well with those obt.amed in k-space.
.The pa.rametr'lzed LMTO-ASA appraach gives 2. Su for' Fe and 78}1 for Nl
'A DVM cluster‘ calculatinn with 19 atoms gives 3: Iu for Fe and BZ_uB
f‘or' Ni All’ this vaiues—:ar‘e r‘ather‘ ‘close and it. is clear that the

: pr'esent. real-space approach is qulte competitlve

_FeMn is more Lnteresting While the magnetic moments in FeN1 is

: q;uit-e stable. the moments in FeMn ' are very ‘sensitive to small
f:varm.tions of the lattice constant . The para.rnetr‘i"ze.d L]ffI'O'-AS.A a]:;proach
in" .th.is. case, - clearly indicates", that the system t_df.ll -be
.‘ant..i::f.‘;érr'omagneti.c. if.‘. any magnetl'sm‘ shoud be present But the -
.pa.r.ainetﬂZEZG calculation sléwly converges to a non-ma_gnet.ic state. The
FeMn moment is very‘sensitivé to details of the calc;ﬂationl and should)_
be an interesting test . the method. If we .compare the RE and Fé
occupa.t.ion values ve _éee that s and p bands are tn very good agreement,”
.but tbe':_d-bénds differ by 0.1 electron. This discrepancy is small,
. but is ‘lé.r‘ger_ than the one expected on basis .of‘. previous résults for
:_nonmagnetic systems. It lea.d‘s to values of magnetic moments which are

'_'less accuraté than in the case of FeNi . Even so the results ar'e' quite

.good cons:dermg the dificulty of the problem e l"ave 1nvestlgated the )

reasons for- the failure of the parametrized approach in FeMn In the ;
'parametrized approach we use the Stoner criterion where the d-band .
gnift should be equal to the magnetic moment times the Stoner pa.rameﬁer‘

I--(ei':t.r.*acted. from pure metals). Using the d-band shifts and d-band

. magnetic moments of the ‘RS calcuiations we would need a decrease of ‘8%

‘on the Stoner parameter of Fe and a decrease of 17% on the Stoner .

13

14
parameter of Mn to stabilize the moments. . We alsé noticed that the
parameter A which regulates the band width is different for the up and
down bands. In the 'parametr'ized approach, a single value of & is used
for both bands. WYe note thaf if we use in the converged calculations an

avera'ge value of K, between the up and down values, the magnetic

moments decrease. The case of FeMn illustrates ‘why methods involying

' parameters are not reliable.” Small differences in these parameters. can -

. . . 4
determine whether the system is magnetic or not. Here we have shown

" that even when the system is very sensitive to par'a.ruetet-s. the
" self-consistent real-space approach is reliabile.

" V.- CONCUSTONS

We hagve déveloped a first-principles self-consistent reai—space'

method that can be used to study the electronic structure of complex

‘metallic systems. The method was tested for simple crystalline FeN13

and FeMn, where k-space results can be obtained. But it dees not make

use of symmetry and can be applied te non-periocdic systems._.- To

lilustrate the advantage of the present approach let us consider the - -

problem of a magnetic substitutional impurity on a non nmagnetic host.
The .cost of the real-spaée method grows linearly with the number of

non-equivalent atoms. But only the density of states is used, atoms

“with same LDOS are consldered equivalent. Therefore to study the

influence ef the imp_urif.y-over four shells of neighbors we only need

to consider seven non-equivalent atoms, and the cost of ‘the caleulation.

is just seven times that. of a mono atomic ecrystal! [t is clear that we

~eAn also easily treat magnetic intera.ction beiween izrpurit.ies

In conclusion, we have presented a new appr‘och to the study of

spin-polarized electronic structure in complex metallic systems. The

14
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.methcd is competxtive and its potenhxal hould be Turther investigated.
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Fe . - NI R N . Fe . Mo
- - - . . : ] FeMn -
RS . FO =i FH. RS FO FH . o : RS -FO _FH RS FO . FH
5. 0.325 0.327 0.320 0.333 0.332  0.325 . s 0.350 4. 352 0.341 0.319 0.315 0. 307
T |pjo.388 0378 0.377 0.3%59 0.356 0.466 | _ " . T | p|o.42i 0.831 ¢.428 0.378 0.378 0.374
d’i 4,664 4,571 .4.858 4.867 4.B31 4.802 d |-3.829 4,088 4.028 | 2.071 1.861 2.013
J & | 0.320 0.321 @.311 0.354 ©.354 0.342. . - ' : ‘ s | 0.332  0.330 0.320 6.339  0.337  0.325
'l | p o378 o0.382 -0.383 0.418  0.416. 0.418 : T l |p {00384 0406 o0.400 | 0.424 0.428 0.418 |
o d 1.782 1.750 1.783 3.829 3,968 4.006 . S - 5 .1 d 1 2588 2.449 2,515 q.453 3.553 3.530 -
|meg.mom. | 2.877  2.821 287 0.656 0.580 0.529 o B mag.mom. | 1.388 1.872 1.S62 -1.448 -1.866 ~1.479
Results for the occupation of up (1) and down (}) . - TABLE,II: Results for the occupation of up (T) and down (])
spins for the real-space method (RS), k-space with ., S - o spins for the real-space method (RS), k-space with
first order Hamiltonlan (FOJ and with the full o : ) first order Hamiltonian (FO) and with the full
'LMTO-ASA Hamiltenian (FH). Magnetic moments in p . I ’ LMIG-ASA Hamiltonian' (FH). Magnetic moments in s,
".are also showm. : ) - . are also shown. - o :

§ . - . ) ' . g a’




