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ABSTRACT

The: Unltary Pole Approximatlon (UPA) is used te construct
a separable representzation for a potential U which consists of a
Coulomb répulsion plus an attractive potential of the Yamaguchi
type. The. exact bound-state wave functlon is employed. U is
chosen as the potential which binds the proton in the 1c15/2
single-particle orbit in 17F. Using the separable representation
derived for .U, and assuming =a separabie Yamaguchi potential to
describe the ld . neutron in D the energies and wave functicns
of the ground state (1'} and the lowest 0 state of ‘%F are
caiculated. in the_core-piqutwounucleons model selving the Faddeev
equationéﬁr_ o

L. INTRODUCTION

In some three-body processes, the T-matrix associated to
a pair of particles is dominated by the bound-state pole of the
palr. In this case, the interaction U between these particles can
be approximated. by the separable potential
U,p = U ¥ @ U™ o)y, _ b}
]W > belng the bound- state wave functlon: _Tth,apppoximgplqn is
known as, Unitary Pole Approximatxon (UPA). o B
' Our. purpose ts to  construct, besed. on the. UPA; . a
separable approximation for a potential U which consists of a short
range attractlve part, V, and of a Coulomb. repulsion V (ZZ'BE)/P
As it 1s well known, the inclusion of the Coulomb 1nteractlon in
the*three-budy problem-presents many. difficuities. Although it has
been possible ‘to. extend the Faddeev.: formzilsm- to 1nclude the
Coulomb forcel, the- numerical applications. have been. restricted to
low values (g &) of the product zzt 23, i The: usual- replaqement-of.
the . Coulqmb._Tumatrix . by;_vc (Bern; Approg;matidgl .becomes.
questlonable.as ZZ* 1ncreases : .
" In-a recent calculation-of the p-d break-up. reaction

the: 1ong range tail:of  the:. Coulemb, interaction. is. replaced by a.

short range :petential’ and. the EST method is used.’ to- obtain. a
_separable approximation fort: this. cut-off Coulomb potential The

EST. method: 18 more general than the UPA.. However;. for the UPA it

_13 nct Decessary to make any screening of the Coulomh tail

.- CONSTRUCTION OF THE UPA FORM FACTOR

Having in mind applications to three-body-. systems
consisting of two nucleons outs;de an lnert and nassive core, we

conslder U as being the single-particlie potential of the: proton.




For simplicity, it wil} be assumed that the short range part V is
already separable and acts in a specific (L£j} crbit of the shell
model::

A
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i} <P V[P = - 5 E.J(p) g”(p ) Z“< pi's‘”p? <'b'“u¥p >, (2)

wher'.'&rg:_rist the  momentum of: the proton (mass m} and

: <p|fym> = I (m, >R ) Yie (p)] 5 m> @

2 s_

: We ‘assume-. also that: the error made in considering the core as a

pOint charge whichk leads to an excess Coulomb repulsion in the

_}cor‘r‘esponding to the Interior of the core, is compensated
'_f'or by ma.king ‘the potential V' more attractive
It. is.convenieni to. choose a i‘or‘m f‘actor of the Yamaguchl
.typ_e::.- )
'e . .
(p) - P . : (a)

'J (p mz)aﬂ

‘ ﬁi’th‘; this: cho'ice-.. the two~body problem corresponding to the
o potent;..lal;.wv-(':- can be solved: exachtly " The energy € of the

. . 2J
bound-state. is determined by the equation
C iy e ee (2041 23 —ze-1 -z
A Twmin & [ ] — {2B) (B+x] .
g} 20 L bt - S
K. . .
: ] s B} :
- 2':"'1‘._[1-, -1 - < 42— = [[S_H_c']} ' (5)
‘where:s = - [2n2Z'e”}/2 and k = (Zmiezjl)tfz .
Thé-. corresponding wave function is given by
BS. . .3 1 c - .
‘ )= —_— - Y s 8
‘lf”u () Nu = = ig J( p) V“ (pl)] ”pﬁp) (8)

p i

_U;e which generates the same: bou.nd state as -Ehe= potentla.l_

where
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and: N s & normalization f‘act.or' The":C: (z): are. the. Gégénb_iiuer’

e}
polynomials

From expression (6},  we: see: that: the: separable po -ntia.l-

‘glven by
<.p]Uue;!%.-:;._:..._f:‘:Tf. (?.) 85 (p ] .
.' .Z':plyuu eJnl.ﬂrl‘."ﬁ"{-?
& -
with
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and A” is determined by requiring that tle bound state. has the
energy elgenvalue e“ Expression (8} iz the UPA, Eq (1). when
the degeneracy introduced by the quantum number p is- included

As an example, we conslder U as the interaction; ._which

describes the 1d single-particle bound state of  the pi:‘o.ton' in -

52 .
YIF. The energy of the bound state (e, _ . =~ 0.536 MeV) 1is
reproduced if we take A =945 fm ' and B = 1.464 -fm . in

2 5/2
equations (2) and (4). The value of # is the same as the. one

appropriate for the neutron 1d5,z single-particlie state in: Yo (see
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Sec:. [II). In Fig. !, we show the radial Tunction

1

-1y
ulr) = ac® & ‘"J 2T [ gn" ] e BRI 5 40y
i}
where: A is a normallzation constant and ¥ = is/k (Ref. 7, page

432). The corresponding mean-square radius is 3.74 fm. This value

is.very close to the valué 3.59 fm given in Ref. 8. In Fig. 2, we:

-C . C
. sjz(p), v, s/z(p) and 8, 5jz(p) (Eqs. (4},

(7) and- (9}). - It can be shown analytically . that vg s/z(pJ

behaves: as- 1:>.2 when p » 0 and as p_i for p.» ». Finally, we mention

plot. the functicns g

that: the couplmg constant A

. which appears in Eq. (8) resu..lts
equal to 1103 fm-

Hl. APPLICATION TO A THREE-BODY BOUND STATE CALCULATION

We- consider the nucleus '°F as a three-body system
composed  of an 180 core plus a proton (particle 1) and a neutron
(particle 2}. We. restrlct ourselves to bound states dominated by
the: (1d5/2:._ _ld'-wa) confliguration and, in fact, consider only the
ground state (1'Y and .the lowest O state (excitation energy
1.042: MeY]). ’

' For the proton~'°0 interaction, U =V, + V., we use the
UPA potential described in the previous sectlon. For the
neutron-core Interaction, Vz, a peotential of same form as thé
short-range part Vr of the proton interaction (Eqs. (2)-(4)) is
used:. The parameters are chesen in such a way to reproduce the

energy (-4.146 MeV) and the radius® (3.184 fm} of the 1d

5/2
17 ' (2) -7
single-particle state in ~'0. Thus, the values Az — 824 fm
a.nd B?;/z = 1.464 f‘m"1 are obtained. We here make the remark that
) {1 -7 N i (2}
since: A (= 945 fm ') is larger than A ., V. 1s more
5/2 2 62 1

' attractive than Vz. This 1s expected since, as was pointed out in

Sec. II, V1 heés an.artificlal attractlve part tc compensate for the

excess Coulomb. repulsion.
For the neutron-proton interactien, vn’ we use the

separable s-wave Yamaguchi potentiaj:

3y (2 o s . :
<q|Vi2|q > = Z - o ggla) gglqa’) Z [SMS> <SMS| , (i1}
. 8=0,1 Mg
gglq) = P ) (12)
q +Bs

In Eq. (11), 3 is the relative nomentum : (F-B), P, being the
momentum of particle 1, and SMS> is the spin wave f‘unction for the
proton-neutron system.  The values used for the parameters

are A, = 0.149 fn°, B = 1.185 fn’’, A = 0.382 fm° and
Bl = 1,406 fm-l. which are determined from the values a =—23.71 fm;
Tog = 2.70 fm, 2 = 5.42 fm and r ot = 1.76 fm for the sca.tter‘ing
length and the effectlve range ef. the neutron-proton scattering.
Performing the. Faddeev decomposition of the total: wave

function, ¥ = \ii(”HII(ZJ [3), we obtain the following expressions:
for the components \Ii“)
1) .
(P)
2 B/2,2" %3 2
¥R, By e — Zg‘; o, (P - .
EmE- P e, C -2
AN .
. ‘9‘2 sz, "J’;‘“’_r [P1' Pz_).- (13}
(2)
. (P)
2 Bsz,etyr L
¥ BoPp= B N el oy -
2nE-P?-p? R 2z 2 Py
Y., : g {14}
£'5r,2 EI‘Z_,JHJ(PI,PE],




_ L(P)
PEE . — Z Va gs(p}

ZmE—iP—2p =

'HLO(US;JH_J (P,p) + (15}
in Egqsy (13)=(15), E 1s the energy of the three-body bound state,
(J,‘M‘:I‘)_' denotes the total angular momentum, # is the center of mass
_momentum ?1+?2 and the. ¥'s are the usual total angular momentum
elgenfunctions,

. . The- spectator functions H satisfy the homegeneous
integral equatlons given in Refs. 10 and 11. For the 1" state, we
ha.\.!e.(&’.j.’-]'= (2. 5/2),( 2, 3/2), {4, 7/2), L =0,2 and S =1 1in

axpansions: (13)-(15) and, for the 0% state, (£,}) = {2, 52), L~

= 0 and:S5.= 2. The coupled integral equations are transformed into
" a.system..of algebralc equatlens by appiylng the N polnt Causs

quadrature method for the integrals., - The va.nishlng of the

assoclated determinant glves the energy eigenvalue. In this way;
we: geb E + = —13.31 MeV and E + = -7.93 MeV. These numbers are
12 Euxp
-8.71 MeV, <_ie_s;,z;1_te of the f‘a_ct,;-tha.t anly. the 1d5/2 1nteraction is

considered: - )

" close. to the. ewperimental valuesx itid

In:;? brder to - evaluate. the contribution of the Coulomb

force to the three-body bound: state energy, we replace the valence.

pi‘oton by a neutron and calculate the energy of the o ground state
. of;, By obtaining E + ( B0} = -11.38 MeV. Therefore, in our model,
the. switchin,g—on of‘ the proton—core Coulomb interaction rajses the
ener'gy;; by,, a.n-ramount E0+( %) - E (%0 = -7 93 MeV + 11.38 MeV
3.45 MeV. Experimentally, one has E"p(mF) - E;’i"(‘ﬂo} =
-8.71 Me¥ + 12.19-MeV = 3.48 MeV - This shows that the UPA 1s able

to yield a ¢orr‘ect value of the Coulomb energy.

H

In Figs. 3 and 4, we piot the spectator functlons versus

7 and H(al, we conclude that

momekt um. From the closeness of H
the asymmetry Iintroduced 1in the tolal wave funciion (Egs.

{13)-(18)) by the Coulomb force lies mainly In the difference

= -8.75 MeV and E+ =

C s . . c : (2)
between : )
s 5/2 en the: form factors gy 5,0 24 B L (g2 572,

C (2): S
8 ez “and By e by - a factor | 15. 50 a.nd accordingl -\_r_id_a o

’ {2y .
Ay ora 2 XL, by UIS. 50)°.  Therefore,. | the: actua1.-

K" and H'® are 15.50 times those shown. In Flgs 3 and 4.

It 1s our pur'pose to extend the: present calculation to' ’

other levels of b and further we expect to be able to apply the
UPA to describe the (d, n} stripping reacticm on 1‘_39-_,'

‘in Fig.
2] and 1s. about twenty pertent. We.make. here the: rematle: that in:
the . numerical calculations we found ib convenlent t.o multipiy_,-

o
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FIGURE CAPTIONS

Figure 1 - Exact radial wave function for the mszz state in the
Coulomb-plus-Yamaguchi potential.

c

Flgure 2 - Form factors E: ss2

of UPA, g

2 ge2 ©OF _th_e: Yamgggchl‘

. c
potential and the dlfference Va sz between: .ga;:s, and

c ;
By 52

Filgure 3 - Spe_ctator_ffu.nctions. for the ground state of 'S

Figure 4 - Spectator functions for the lowest 0* state of 8,

10
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