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‘Centro de Fisica Teérica. (INIC) -

Departamento de Fisica, Universidade de Coimbra, P-3600 Goimbra, Portugal

Abstract: A classical relativistic. approach baged in.the: Vlasox: equation is-applied to the
study of infinite puclear matter. Hadronic matter couples to: massive scalar and vector fields.
The small: amphtude oscillations azound & statlonary state. are studied. Orthogonality and
mmpleteness mlatlons ‘and the energy welg,hted sum ile are obtained for the long:tud.ma.l
modes. The ‘appeararice of the' zeT0 nound mode and: thie. dxstnbutxon of the strength among
the différent: modes: are discussed: R is ‘seen:that the scalar field anly couples to the low
energy. excitations at. high densities and: for- wavelengths :not: too long: The vector field

couples: strongly to. the low energy excitations. The. kmg wavelength Limit and high density

]in:ut are studied.

1. INTRODUCTION

A model relativistic field theory of nuclear matter, known as quantum hadrodynamics (QHD),
was proposed by Walecks [1,2] some years ago. The aim of this model is to study high d_;:nsity matter,
which might be attained in the core region of neutron stars and in high-energy heavy-ion: collisions.
Most of the previous work in QHD has been performed in either the mean-field theory (MFT) ar at
the ﬁn&IOOp level, which includes the shift in the baryon vacuum energy [2;3]. The motivation: for
these studies was that the MET should become increasingly valid as the density increases.

When a- two—locp calcula.tlon is performed for the ground-state [4], the ane-loop results change
drastically: I-Iowever, as. poml:ed out. by Furnstah]. et al [4}, the failure of t.he Ioop expansion does not
necessanly xmply that: the MET. msults are: inaccurate: :epmsentatmns of the undex-lymg qua.ntum
field theory, speua.l.ly at high. density, . C

It is the purpose nf this work. to: study the QHD: n. a. clasmca.! approach usmg the telahwsnc
Vlasoy equatmn which may. be regarded: as. the dlassical. limit of the MFT:: The. relatnushc Vlasov- .
equation based on QHD has been used: lately to.study heavy -ion. collisions [5; 1}, md ms pred.tctmns ‘ate .
similar to the more difficult caIcu.latmns based on the. tm:le—dependent Du-ac equatmns.[ﬁ ."Fhi

that the use of: the relativistic. Vlaso\r equahon appears. as: an: altematma way tq s!:udy relathstxci :
systerns. . ) S _
We ate interested in studying The RPA col!echve modes: wr:espondmg ta, small amphl:ude oscil--
lations arcund s stationary state in. nuclear matter, In- section 2 we formulatg the Vla.amr .equation
based on QHD. The dispersion relatlon urthogonahty and corpleteness. mlatmns tha.t the: RPA

normal modes fulfil} are glven in section 3. The numencal resnlts and mndusxons are: preseuted in

‘section- 4,

2. THE VLASOV EQUATIONFORMAELISM, .

Following Walecka we consider a system of:baryons, with: Nass; m mte:actmg w:th and: through =
neutral scalar field & mth Tass: My, and a neutral vector. field W& = (VD,V} with:mass My g, and
g, are the vector and scala.r coupling constants xespechvely, and. denotmg by. f(x,p, t) thame-hody
phase-space distribuction function, the energy of the system;is

E=2 [ #3f(x.p..t}‘{[(p-: — %V + (m - 0 EBPP 4 0 Vo)
+ % f FzA + VE-VE + mld?)
+g [ @200, ~ A AY, + VY- VW - GHEY; + mi(v? WL e
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where Ilgy;) is the field canonically conjugated to $(V;).
The time evolution of the distribution function is described by the Vlasov equation

af _ :
E"*‘{i,h}—o: o - (2-2)_

where {, } means the usual Poisson bracket, and B, the classical effective oné-body hamiltonian, is
given by

h=y/lo - & VP +(m-0.8) + Ve, (2:3)

It has been argued in ref.[8] that eq.{2.2) expresses the comservation of the number of particles in
phase space and is,, therefore, covariant,

From Hamilton's equations we can derive the equations- describing the time evolution of the fields
Sand V¥:

?;f VB mi® = g,p,(x,t), : (2.4a).
8;:’.’; - Vat+miVp = g.,:pn(x, 1)+ = (8;:9 +V. V) (2:48)
. - VZV‘ +fnz'vi= g.,j.-(x,t) + Ei. —aa% +v- V) l(2.4l:.)
| plrt)=2 [ ke feeup) Bt @5)
is the scalar, density, - o . :
i . _ [ fp . : -
st =2f g fmed, . )
ilxt) = 2] (;‘;;. fox,p, 8y B e’" v, ' 2.7
éte the: comp_onenfs-o_f the four-current, and '
Ce=ip-aVitm-gdP. @8

Tt can be easily seen that the four-current satisfies the continuity equation. From eq.{2.3) we can
write '
. &p 8k
=9 f -1 1) —
J(X,t) 2[ (2“}, f(x:p:) 8? ‘

and therefore it is straightforward m show that

=2f o ),( + {f,h}) : 2.9)

Using eq.{2.2} it follows that
St = 0. ' (2.10)

This continuity eqﬁation also gives (from egs.(2.4b and c)) the following relation between. the

cornponents of the vector field. :
e
- +V-V = : A
% 0. (21
At zero temperatiire and for particles obeying Fermi-Dirac statistics, the: value of the distribution
function is either 1 or 0, since the single particle state is: uther occupled by ane partlcle ar. emp{:y
The state which minimizes the energy of the system is chamctenzed; by: the: Feﬂm momentum FPg,

and is described by the distribution function

hixp) =¢0[PF =5, © .7(:2.-123).'

by a constant scalar field given by the self-consistent equation

mi% = g} MY, (2.125)

with M denoting the effective baryon:mass :

M= m— g‘..ﬁ;ﬁ. . o (2:12¢)

and b‘y a mgstant vector: ﬁeidll{{:',‘.'where- |
W = aid . RS E -(z.z_zd)?;
V=0 (eaze)

I equatlon {2.12a} ¢ stands. fm: the: i :sospm ‘degeneracy : &= T for nettron mat'" d
nuclear matter '

" Gollective modes {a the present: appmuh mrmpond to small muﬂatmns aroun
state, The linearized eguations. of motion desmhe smnI[ devmtmns from:: the eq_mhbnum state.-

Therefore, collective modes will be given as solutions of the linearized equatums of monon To
construct these equations let ’

f=tftét, T (213q)

B = % +68, (2.135)
Vo = Vg +5%, ’ ' (2.13¢)
Vi = 6V, (2.13d)

As in ref[8] we introduce a generating function S(x; p, t) such that

5 = {5, 70} = ~€{S.P* (P} - ). 1)
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In terms of this generating functlon, the linearized Vlasov equation for §f is equivalent to the following

tune evolutmn equation -

; . . - " p
—-..17_{.5:'130}:-5" = e-y.-ii-—e-; + gufVo — b v, (2.15)
to be:atmﬁedmly iorp Pp Ineq(215)

'.p’+M'+g.V° €o+&»V° . {2.16)

'Ih lmeansedeqyat:mofthaﬁeldnae

8;:,“ v=s§+m,5§ S - (217a) -
_yafr‘"-viw +ﬂ55Vn ....._g.ﬁja N o ' (2.175)
'826?,'.5 -i—m,é'V— = g.,b';, R | ) | A : (2.17c)
A : .
(2.18a)
(2.185)
(2180)

_(2.19)

-_'Wﬁemﬁmthemgle betwempaudk,.Fo: these: modes, we get V2 = W*_- 0 and calling.

M,the equatmns of motmn beconm

o —enelSufe) = .-Emww“ _ wEatVy, g
(g*—khm:' g::':; 3, - ﬁ’%g,.mm f_i da.r.':s,,(z),'l' @)
(w’ o)V = o }zg,wpfsp f dr2S.(2) , (2.20¢)
(u= By -@, - @) es = -Wﬁ,wp}‘ f_ &) ' (2.20)
5.

where wo = kPr fer, e = 1/ P} + M? and -

1 _ %93 1 _ peos?(8) P :
= 2P &pf, (q’ 3 ) g’—E. {2.21)

I is mportant to notice that the continnity equations (in form of eqs.(2,11)) is. contained in

3 (2«)2

eqs.(2.20). Il' we integrate z times ¢q.{2.20a) from -1 to 1 we get
w f & 2S,(z) - w [ 28, (2). = 2 g E bV, .
o - -1 T e
Using this relation in eqs.{2.20c) and (2.20d), we obtain
wbV? = ESV,, o (2:22)

wh1ch is equivalent to the continuity equation.
The solutlons of eqs.(2.20) form & complete set of eingenmodes {9} which: may. be used to construct

. a general solutmn for an abitrary longitudinal perturbation

3. GENERAL SOLUTION OF THE EINGENMODES EQUATIONS:.

Defining the. dimensionless quantities

&%,

Qlu.--—' e sz=—,‘nff_ . St

&= ¥ / W, | ' .. — @,-.}?).
G Camy
Gy = ‘% (31“') :

w = (3.148)

D wy = %(b’+m\',+ﬂ’) =w;+§-G§-. - (3.1f)

and & = wfuwy, We can rewrite eqs.(2.20) as .

@ -25u(e) = 610 —iG2Qu +iCs2Qs, 0 (32a)

' @ - = -Gy /: dzzS‘.,(z)' . | o (3.28)

.6 -




2 avn o [ ‘ o
@ - wd)Qu, = .G,f_ldusw(z),_ (3.2¢)

@ - w;)_q'&_, = —is L : dzz*S,.(=) . _ (3.2d}

Equation (2.22) s now equivalent to the relation
B2, = £ Q ‘ ’ (3.3)
2 PF St - .'

These equations may be derived fom the Fagrangian :

3 , . . o 1
L= (1P (P + BG;) ~ i f 5 (2)S(e)edz — f IS(z)*s*de
=1 - -
+ E‘(_-1)_J;([—p,-|=a+w,?;q,;=) -G @y j:s*(a)zgz + G @ f_‘l S{z)edz + iG1Qs f_ '1 $*(z)ade.

_iGiQ; f S(z)zdz - iG3Qs f S(e)etds + iGa0; f S(z)?de , (3.4)
where 2ll time derivatives are considered with respect to T = wol. In eq.(3.4) P is the momentum
canonically conjugate to-@y. ’ .

It is. conveniéat' to- work in a Lagrangian formalism. becanse the Fuler- Lagrange equations are
a natural. way: to’ imtroduce- the normal nl.o_de;i, and because orthogonality relations and sum rules
are- easily- obfained from: the Lagrangian. Thia..Lagrangia.n is, however, cm.ly formal. It was written
in: this way m..gg-'d_eg_._t@jde;ive #95:(3.2), Therefore, the presence of the time derivative of the time
component of the. vector field ((J;), and. its canonically conjugate momentum {F;), that does not

appear in a convmtwnal Lagrangian formahsm, does not imply that @; and Py are mdependent

. dynamic variables.
Using the ansatz RRRE
Ql,u(‘r} . [ G
P‘lw("-’) o Py
' Qau(T) Qe o :
Cr) = Bulr) | =| Pu €7, (3.5)
| Gaulr) Q.
PM(T) . Paw
Sw(z_r ‘J‘) . Sw (z)

in the Euler-Lagrange equations we get for the normal modes

"wQ.f‘“ = }:J"*’ ¥ U = 1! 2: 3)1 (3502)
iRy +ulQu = iGy j Su(z)eds , (3.66)
TP + W = Gy f S.(z)edz , (3.6¢)

-1
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P tolQu = s [ SR, 0 @sg
@ - 25.() = i61Qu ~ iGaQau +iGs2Qsu .~ (86e)

There are two types of solutions of eqs.(3.6) [10]. An even finite mismber { 2N) ‘of discrete modes
W= 1w if @l > 1, and a continuum of solutions if [F] < L The dispersjon. relation. for the discrete

fodes is o
oL~} =G [ (@) + sal@al)de = 0, -

where Gﬂaﬂ_wg Tt e
@ =& il R .o &
o@) = (PF) @ | , - {3. sbi

The solutmns of eq.(3.7) aze eguivalent to. the longitudirial: undamped collective modes studied
by Chir in a quantal one-loop approach [3]: The discrete modes'a.re described by ;

Qlin
Piyn
Q2in .
¥in=| Pan | = (3.9}
Qsin
SPS'*“
. .*n(f) 5 m-*(‘f(wm) £ za(wm))
In the continuwm the normal modes are given-by... -
Qu “’Gf b Z-ula)
™ % e a.(w)
o - g’w _ -—ta(w) :
= 20 | = : wa(w) (3.10}
QBw'_ .—W __ga(w) :
o @£ o(m) -
' -2+ (f(ib‘) +2(3)) @js:_,
with a(%) satisfying the equation '
- c:a : : E .
&) = 3.11
il ey S o za(w})dz L

In eq.(3.11) and in what follows, mtegrals mvolvmg the: ﬁctor s have o be mterpteted s prmcnpal
value integrals.
From eqs.(3.6), (3.9) and (3:10), we can see that the: normal modes sahsfy the followmg art.hog—

onality relations

Y PnQitn - QsnFian) + [ 2S1EWSunle)de = dma, (3120)

e




e zé—!{(% o

. ideial: state‘of thaxgstem weanlg need
. ﬁom. eq{33}mohtm :

L 'agd we_nmst:lmveQn -0

:E(—l)’-i-i(p ,Q,., Q,,,P,w)+ j 253(2)S.(z)dz - oo - @),  (120)

A J:i

. !E( 1)“'1( i.,Q,w Q,*npjw) +f zs:&n(z)s (z)dz =0, (3'12‘7)

'I‘hm set:of aoluta.ons is. mmplete [9 10]. Fot a.uy aﬂ:utrary initial state

Qﬂl
Pa
0

- Qe
Rm

: mnhary fupctions

(i) = f(l*) + zaly) ) o .. a
S Tt W’)j Ty dz {3.16a)
o) 2"’(‘3:" : 'é}f(u) i?a? )d’ + Z(A’ VBJ})  (6h)
and:’ : ) .
o G:&(lt)

Ki(“) = v R

wheteA, ami B, are. :onstants to be determ.med by the mitml values Po_, and Qp; respectively. Using

the standard fbrmu.{a, T
L P -
: CryFE L
“we.can show that: Sl T _ _ : :
. Y T . .

Pp .
m( ) ] , /—1 (w—z):-(f(w,,)-t-za(wm))’dz {3.13) |
iiﬁQoh R ' (s14)

(3.15)

{3.16¢) -

Using eqs.(3.16) and (3.17) we can write
(@)

@) = T 00@) + v A5} (3.18)
with :
c(w) == (sZ( 1P, ...Qo,- - QiuPoi} + f ! es;(z)g(;)d_z). ] (319)
7\

As shown in 'Ref.[10], it is. not permissible to use the orthogonality relations to: Herive c{w) on
account of the singularifies i . S,,,(z) However, the. expresszons for [ are obtmned duectly from
these relat:ons We. get ' L

I ( S 1P (B s ~ Qi Bi) f as*.k(azﬂtzlda) - 320
'Ihe solutmus of the m.ltm! value problem. is. therefore ’ ‘ .
\1:(7) = f (@), e~Tdz + E(c»rn‘h,.g.‘?""*-’ + o;...ﬁlr-n_e.*“ﬁf-)::. - (3.2)

'the amphtudes @), tyn . and e defined by eqs. (3. 19) and: (3. 20) satxsfy [101 the, followmg_r
mergy weighted sum ruIe (EWSR}; w!ndx is; Inown: ta:be pzeserved b_v,r l:he me_ ximation

L @k .
f 1 1+ 2 (f(@) +wa(u))=¢=(w)“"“ +_ EWm (i

1G58 f B(e)elds - ac;,q.,,, =m, @)
The strength function is deﬁ.ned in- the interval, (Dtl[ and is g;uen bg - . -
C . 252[2(“,)[; 7 Lo
)= oG eV &
a.nd the ﬁ'actmn exha.usted by the. d.lscrete modes ls
: __F{m)_.;: "Ti E.aﬂ(i%l’iﬂ-‘ esal). o (324
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4. NUMERICAL RESULTS AND CONCLUSIONS

The parameters: of QHD used in all numerical caleulation are given in mf.t2], ie, gl =0164, g2 =
136.2, m, = 560MeV and m, = 738MeV. The dispersion relation ¢g.(3.7) has always an even
mumber of solutions £, At saturation density of symmetric muclear matter (Pr = 142fm™1, ¢ =
2 sad Mim-=0. 556) if kfm < 0.4 eq.(3. 7) haz only four: solutions (N =2). Two related with the
scalar mode;,, :I:m,,,, a:nd. an.othe: hm re]ated mth the: vecl:or mode, Ty '

Fxquation (3-‘1} was; _wntten itk units of ¢ .. It can be rewritten as (w, = wyw;)

( S E e Ffdp')(w’ k’ m,)+{2+f;;‘[,‘(”t‘kpr‘/€£')]

&y + kPplep

[e"P"‘M’( B m.)+e"’Psep(w’ B m.-v’d")(k—?“ )]"’ 61

htkelimith—vﬂweget

(4.2)

with: sofutions:

(4 36)

These are exar.tly the solutions: obtained: by Ghm [3} i the same Limit; and. show that the mesons
behave as. if they: hnd an effective mass’ of ™ (v) = M) In. Fig:1 we plot w?,, as a function of £
for: hoth modes.. E:om “this ﬁgure We see that for these values of k, the relation between w? and ¥
is almost linear, but, ualike the results obfained: in zef.[3] {in | the low & lumt) the slopes of these

curves are; d.\ﬁ'erent from 1 We have :
o = '1.03&?~+..;,fs,.'¢:;‘-5, R {4.4a)
Wi~ u B M., ‘ C o (aab)y

- Fwe conslder values of kfm g:eater than 1.0, the. nelatxon is:no longer linear.
Fot kfm: > 0.4 we still have the solutions +w,: and Hw,, related with the scalar and vector
- modes, but. two mere solutions, s, appear now: (N = 3). This solution is the one which Chin las

“identifyed s zero-sound, and Fig,2: shows the behaviour of this. solution as & function of k. As we _

mll see later analysing.the EWSR, this solution is culy important for 0.5 <. k/m < 2.0, at nuclear
-. saturation. density.

The appearance of this solution depends on the value of k. In refs. [10,11], where & study of

Landau damping i infinity nuclear matter is done, the zero-sound mode will only appear for certain

11

(4.3q) .

values of the interaction sttength. Our present problem is more complex because together with the
generating function, S(x,p, t}, we also have the meson fields. ‘However,it can be seen from eq.{4.1)
that changing & corresponds to changing the interaction strength in refs.[10,11]. In fact, rewriting

eq.(4.1) as

. EFty w,—ka/ép ] gf PrM? . i
1+ [2+ ¥Fr ,(w,q-kPF/eF T Ry Yy gy v

+E%?p5pm (g_ )] ='0, _ I : (45)

we conclude that the zero-sound only appears for values of k for which the-second térm in eq.{4.5) ] .

i negative, ie., k/m > 0.4 for Pr = 142fm~%. This is in agreement with the' conclusion of Matsui
[12], that at nuclear saturation density for symmetric muciear mafter, in the ].umtof snall fréciuéhcies
and large waveléngths, no zerc-sound mode-appears. Taking: the: same. liznit; (!ong wavelength and -
low frequency) in eq.(4.5) we obtain precisely the expression derived by Matsui ﬁ'om a mscmscoplc: )
calculation of the meson propagator (eq.(B:16) in ref{12]}. Our equation a]lows,,however,-‘ the. gtud_y S

' of the appearance of zero-sound mode for any value of k. We observe that as Pr. increases. the zer0

mode will turn. up at Iarger and larger wavelengths.; H’omﬁa-—- 155 fm=" on, thix @dﬁ*,eﬁsts for.
any value of k, it agreement with results of ref, {12] o .

The stability of these collective modes can be dec!uced dn-er_tly f:om the form of the dJspersxon
relation [13]. The condition FETR o '

“’; >. 2(G1W: Gz@ﬂx

must. be verified. For.stability we understand: I:hat the enllect:ve E:mtahon speetra adtmts no soluhon'

with w? < 0 for real #*. I w were Lmagmary, then thete wauldrr ways be exponentxally-gmwmg
collective modes, or density fluctuations, whick: are: p}ws;c il na :

To analyse. the collective modes. in: the: mn,f;muum wew:!l mmder: the s.unpf t’iexamp

condition which favours:this mode [B]pamely :

'I'o.'=_.

i | (46)

For this: condltlon the strength ﬁ.mctxon becomes ) :
_ ) Zaz(w)(w’—wz)z o o
(4
(@) = G’(E+x’(f(w}+wa(w))’a’(u)} [ eTe)
the ﬁ'actlon ‘exhausted by the discrete modes i s
F = — =L . i 4.7h
(@) = E e S um

12




[+]

with T, given by €q.(3.7), and from eq.(3.22) we get my = 2/3.
In Fig.3, the percentages of the EWSR exhausted by the continunm and diserete modes are
plotted as a function of , st nuclear saturation density. From this figure we see that the scalar

" mode remains unexcited by this initial condition. However, the vector field is strongly coupled to the

continuum. We also see that, despite the fact that the zero-sound mode {w,z) exists from k/m = 0.4
coward, it only exhausts & dgnificant part of my for 0.5 < Efm <25,

In Fig.4 we plot the strength function for the mitial condition eq.{4.6) , for k/m = 0.1 and
Pp = 1.42fm~1. The curves obtained for other values of k-and Fp, and other initial conditions are
gmilar. o -

- An-initial condition: wﬁth favours: the: scalar modes: is. given. by

(4.8)

eecacom
.

3 'w;-_)’(l + 2 {f(@)+ wa(w))’a’(w ))

(2.98)

1.42fm l), the Bysl;em behaves ba.sxcally a8 xf l:he ucalar mnde and the continnum were decoupled
Howeve.r th.ls i$ino’ longez the case as. Pp increases. In Fig'5. the percentages of the EWSR exhausted

" byieach: mode are plotted as a ﬁmctmn_ k:for: Pp = 4.0fm™! and for the initial conditon eq. (4 6).
I s su.rpnsmg that- at:high density an& for; k/m values in.the range 1.0 < kfm < 5.0 the scalar
mnde_ b_ecames»the most. important: one for_ this condition. Tt shows that at high.density the scalar
© mode is aIsozstro.ngly-cc;upIed to the cont:'.nﬁum This behaviour is completely d.i.l%erent from the 6ne'_
. observed:i in-the bong: wave.]ength hmlt In this. case the- zero—sou.nd mode exhausts only 0.07% of the

EWSR. for.. all values of k..
To conclude, in the present work' we, ha\re constructed a relativistic Vlasov equation based o

QHD Applymg the. Viasov equatmn to.study the mesonic longitudinal normal modes in nuclear

13

m:(mﬂr wgfal(—) V . (4.9¢) .

matter, we have obtained results similar (in the low k limit) to the more difficult calculations based
o the cne-loop expansion.

We have obtained a set of stationary linear modes of excitation satisfying orthogopality and
completeness relations, of the form characteristic to the RPA. An energy weighted sum rule wag aley
caleulated. o

Qur results show that the scalar and the continuum modes are essentially demp(lgdgnbnnal
densities, but both of them are coupled to the vector mode. Ip the high densify Hinif aﬂ

are coupled We also conclude that in the Jong wavelength kmit the contmu:@m& Verto ﬂelﬁkﬁ-’e‘*

strongly coupled while i in the short wavelength limnit they are ghinost docoupled. Thersfore, vector
meson. oscillations can be interpreted as collective modes in- ig fong wavelsenpgizh Limit and meson
propagation.in the short wavelength limit.

This work was partially supported by Junta Nacxonal de Investigacio Cient{fita e Tecnoldgica
(INICT), Portugal (project # B7148/C: FIS) and by- FAPESP-Brasil. One of the anthors, MN
would. like to thank: the hospitality of CETUC during her stay in Portugal.
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FIGURE CAPTIONS

Fig.1- . 'I'he dispersion relation for the scala.r made (full }me) and for the vector mode (dashed lme) at

- nuclear saturation densxty The ﬁ'equency w, and wave vector & afe. it umts of'm.

Fig.2- The dispersion relation fdrl-zerofsound,-.a_.t'- nuclear satﬁration___den;ii;y;__;ﬁ; y

frequency w, and wave.vector k-are in uﬁits of m

Fig.3- Percentages of the EWSE erhausted by the continuum and {ﬁzll hne)dm:r ite mode :
of &, for the initial condition eq{4:6); and for Pg = & 42fm‘1 The dashed dotte

dashed lines :epresent the_—_sca_lu, vector._z_md_ zem-soun(_i—, modes_-_:espectwely.\_ .

Fig.4- Strenght ﬁmctlon, as 8 fu.nctmn of w (m units of wn by for tlxe Jmtlal uom:htlon eq(4 6}, fa:.r )

= 1.42fm=1, and for. k/m 0.

Fig.5- Same: as fig.3 for Pr=4.0fm™1;
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TABLES CAPTIONS

Table I For the values of K- indicated, percentages of the EWSR are given for the initial condition

eq.(4.8) at onclear saturation density.
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TABLE I
K/'m %Iﬂl a(w)d’w %w,:, %w,; %ng
0.01 0 100 | o /
0.1 0 9948 [ 052 | /
10 0.86 77.93 | 20531 0.68
10. 0.04  |5533 ju63]| o
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