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Abstract

In the present work we have set up a scheme to treat field theo-
retical lagrangians in the same bases of the well known nonrelativistic
many body techniques. We show here that fermions ard bosons can be
treated quantum mechanically in a symmetric way and obtain results
for the mean field appoximation.

1 Introduction

Treating strongly interacting systems via effective lagranians requires the
use of nonpetubative methods. In this context a very important tool is the
self consistent mean field approximation, well know ir the various fields of
applications, nuclear phyéics, solid state physics, statistical mechanics and
so on. Most of the successful mean field apoximations in field theoreti-
cal models of inteacting fermions and bosons[2] assume that the mesonic
degrees of freedom behave classically, while the fermions are treated quan-
tum mechanically. The semiclassical limit of such systems is an attractive
and recent research topic due to its connection to chaos[4]. At the same
time i1t is wel known that a unique prescription in obtaining such limit is
ill defined[3]. It has been recently shown[4,6,7] that the mathematically
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rigorous classical aﬁa.logous of a spin-boson system can only be obtained .

by using a symmetrical mean field wave function. Oaly then the quantum

Heisenberg equations can be shown to correspond exactly to their-classical

counterpart. In the present centribution we show that a nonperturbative
scheme can be set up to justify the results obtained in such theories and
treats both fermions and bosons in a symmetric way, ie, as quantum felds.
Even in systems composed of fermion field only (such as the Nambu-Jona-

" Lasinio model) the present approximation reveals interesting properties in

terms of the current language of nonrelativistic many body physics. In
particular for the NJL model[8] we desintangle the Hartree and Fock con-
tributions showing explicitely a very delicate cancellation which leads to
the result that in this model only the Hartree term survives.

The paper is organized as follows: in section 2 wetreat the ¢ —w model[2,
3] usieg a quantum representation for the fermion and meson fields. Next

" we obtain the corresponding mean field approximation and show that the

well known results obtained by treating the mesonic field classically can be

justified in this symumetric quantum approach. Section 3 analyses within the-

same scheme the mean field approximation for the NJL model[§] showing
explicitely that only the Hartree term survives du€ to the cancelation of
the Fock contribution. Conclusion follow in section 4.

2 First Example: the ¢ —w model

The lagrangian density for the ¢ — w model is given by:
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We consider an infinite system and use the following expansion for the
fermionic and mesonic flelds:
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In this reprensentation,. the opei:tor, co(k. ) annihilates a fermion with
E,(E) > D{particles), ci{k, 5) creates a fermion with E,(k) < (}(anﬁparticles}
and ¥ are the boson operator where i can be equal ¢ = ¢ and v = w me-
son. respectivelly: The fvac > state for noninteracting fields is defined as:

co( k, 3)|vae >= cl(k s)lvac >= 0.
The Hamilionian is obtained through H,_, = fd*z H(z), where we can
identify the terms: Hp+ Hi + Hi, withi=s,v,and ° .
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2.1 Symm_etx"ic‘ Mean Field Ai)proximation

We assume the ground state !¥ > as a direct product of the fermionic
and mesonic ground states, ie., [¥ >= |&r > @[y, > and in particular
|®F >= TTheks c.o(k s)|vac >. The MFA is obtained solving simultaniocully
the following equations:

with :
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The self consistent solutions of (3,6} to, i = s and v, leads to: .
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Note that in the present approach the well known expession for the reduced
mass m# is a direct consequence of he self consistency which comes from
the symmetric quantum teatment of both degrees of fredom.

3 Second Example: N-J-L Model

Here we used the same expansion for the fermion field and consider the
mass m as a {ree parameter to be obtained from the condition that the

ground state energy is & minimum. The NJL hamiltonian can be written -
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where the kinetic term is: -
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and the two-body potential is:
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3.1 Mean Field Approximation

One equivalent way to obtain the ground state which mininmizes the eneergy

is to lmpose the condition < N;i{HN_;L,clca]ii\E >={}, where {N; > is the
ground state which we take as:
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In the two body potential terms we observe that the Ha.rtree contribu-
tions are propotional to:
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and the Fock contributions are propotional to:
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Putting both contributions sogether we can see that the only terms that

survives are the Hartree terms because the Hartree contributions in V2 is




null due to the structure of the 53 metric and the Fock contribution from
Vit cancels thazs coming from V. Explicitely:
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Note that the last term on the r.h.s. of eq.(30) and (31) vanishes due
to shew fact that the integrand is odd. Therefore (30) and {31) cancell
exactly. Using eqs. (27} (31) in (26} we obtain the following relation for
the mass parameter:

moo=
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4 Conclusions

In the present work we have adapted the scheme of traditional nonrelativis-
tic many body techniques to ireat field theoretical lagrangians. We have
shown that fermions and bosons can be treated in the same way and the well
kown mean field results are reproduced. Moreover in nonelativistic nuclear
physics the method has proven to the very useful in going bevond mean

field theories (i.e. to treat collisions{9,10] and extansions of the RPA ap-
proximatin and so on). Recently a similar approach has been developed for
the Ag* theory in order to study the problem of initial conditions[11]. The
extension of the interacting fermions and bosons would be an interesting
and open research topic.
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