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‘Abstract

We discuss an alternative method fo;,__cpmputing finite-temperature effects in field the.

ories, within the framework of the imaginary-time formalism. Qup approach allows. for

functions,

L. Introduction

There have been several calculations of Green functions in thermal felq theories. In
particular the high-temperature limis of the two-point funetion is well inown 1-4j, and

more recently higher-point functions have also been studied in the context of QCD and

point function jn QCD, which takes aceount of the complete hjgh—tempera.mre expansion.

of the imaginary-time formalism. Our majy result is given by the eq. (4.20).

The standard way to compute the finite-temperature Green functions in the

Imaginary-time formalism, is to employ the relation (see {1] and references therein)

T f (ks = 2rnT) = ﬁ /: '_m.dkc,%- (ko) + F(—ky)]

ne L s . (11)
A LSS o (5T

usnally well known for many field theories, The coetour in the ky-plane of the second

term is' then closed ip the right half plane, and one ig left with ag integral over k with the
Bose-Eins_[iein distribution. After the angular integration ig performed, we are not able.
to proceed without restriction to the leading bigh-temperatyre Lrit. Tt was shown by

Pisargk; [6] that the leading high-temperature contribution comes from the region of high

the no-leading contributions come from the complete range of the | k -integration and

there is no simple Way o proceed with the calculation,
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In this paper we will employ a different .;;tpproa.ch in order to compute the left hand
side of eq. (1.1). This consists in first compuiing the integral over | k |, and then to
perform the sum-over n. As we will ses, this procedure allows one to obtain the complete
high- tempera.t.ure expansion in a systematic way. Besides. that, we aze able o obtain the
most general analytic contmua.tlon and a real-time limnit which gives both the teal and
the imaginary patfs:of the Gireen functions. For simplicity we will consider here only the
two-point function, though the same technique can be employed to higher point functions.

One of: the key elemeni’.s of this calculation is a process of analytic continuation which

makes 11: poss1b1e to use. the relation .

ct:

=1

FC(a), ' (2

for;any.cc # 1. Thisi 1s in the spirit of {-function regula.riza,tion. The contributions with o =

Y correspond‘.to. the ultraviolet divergence. Using dimensional regularization, the terms

with e = Lare tra.nsformedmto coniributions proportmna.l to C(1—2€) = —1/2e4 +0(e).
These: ccntnbutmns give not only the pure pole and. finite induced terms that are present
at T'== 0y ‘but also some additional finite terms which ate characteristic of the T#£0

configurations: -

“In the pext two sections we will be considering the scalar Xp? theory. Using this
model we will be able to illustrate the main points of our method in the siroplest possible
way-. Some lmportant steps will be clarified in the next section considering the even
smlpler 2: d1mensmnal scalar modd Afterwards, in the section 3 we will treat the 6-
dimensional: Ad®: theory, which has. some similarities with QECD such as a dimensionless
couplmg constant. and the asymptotic freedom The techniques employed to the sca-la:
1.}1(-:0173r will be requued. in the section 4 where we consider the pure Yang-Milis theory.

2. The 2-dimensional scalar theory

.

In order to illusirate our method without introducing unnecessary complications, we

consider here the scalar A¢® theory. In this section we will make the computations even

simpler bf considering a 9.dimensional model. In two dimensions it is possible to compute
the {wo-point function without using 2 high-temperature approximation. This will enable
us io obiain a better understanding of the general analytic protnerties.

, Before we resirict to a 2-dimensional space time, let us write the basic equations for
a general D-dimensiona! space time. The iwo-point function is given by (see fig. 1 for

notation)

T d? 'k 1 1
= /\2 ZD —_— [
W5 2. | Grp e LR (e B+ (ko o) 4 @

where ko = 2mnT and py = 2wIT (1 is soine fixed integer). Our metric convention in the

Minkowski space is such that g°° = +1, gl=g2=g%=..= gP- 1P 1=-1. Ineq
(2.1) bath ko and po were transformed from pure real to pure imaginary numbers, which

is equivalent io consider Fuclidean metric.

The standard way to compute a finite temperature Green {unctxon like eq- .(2.1}. is
well known.. The sum over 0 is transformed into an mﬁegxal in the complex plane a.ro:md
poles in the imaginary axis. In what follows we-wﬂl_pro;qed d:.ﬂ‘erg:_:ttly, We first _p_erform
the (D — 1)-dimensional integral and only then sum overn.. As we wﬂl .see in the next
section thls procedure will make it possible to obtain not only the lead.mg high t.empexa.ture

contribution, but also all the other powets of T in a systematic way Besides that, our

 result will give both, the real and the imaginary parts of the two-point function.

Using the Feynman parametrization. and integrating over | k |, we obtain from eq.

(2.3)
- = ()T (5 D) o LT3 i(,D) (2.2)

n—=—0a
where

I(ks, D) = f(kﬂ+b:c—p2a: ), (23)
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and b = po(2ky + py} + p*. Our task now is to compute the parametric integral in eq.
(2.3) and then to perform the sum over n in eq. (2.2).
With D = 2, integration over'z in eq. (2.3) yields [7]

F(kg,2) = 2- i po(2ko -+ po) + P° - o{2ky + po) — p°
” (p°+pz)[(2k°+p")z+P2]+m2P2 \/kg +m? ' \/(ko +p0)? +m?
(2.4) _

The mass m is- only needed in. order'to r'eguianze the contnbutmns with ky = 0 and
By = —po. Therefore, for n # 0,—l one may.set m = ( and the squa,re roots become
a.moduli:: The modulus | kg + po. | from.: the second. term in eg. (2.4) makes a difficult
task to- cqmput_t;. the surmiover-n. Oﬂe—.would: have.to consider, for some positive pg, two
regions:. | ko |< po. andif kg 3 Pa- s possible to avoid this difficulty by performmg a
shift kg — ~&g. — pg in the second: te:m of eq.. (2.4). Nevertheless, one ca.nnot be sure
that theresult. w:th or, mthcm.t the shift; gives the same analytic contmua.tmn to a general
complex: go. Fort.u.nal;ely the 2~d1m.enmona1 medel is simple enough to provide an explicit

comparison. of the twa, procedm: '__One can compute the sum with or -without- making

the shift a.nd then to _c.ompa.re the wo.resnits. Let us first compute the sum of eq. (2 4)
mthout petformmg : I‘nﬂ‘

cethe. otiginal’ express;on has the symmetry py — —pp
one ma.y choos&pu > 0 For. ko_?": G, —pa, we may set m, = 0 and the eq. (2.4) splits in

th):eepmces
11 1 1 :
I+k,2 ( ) 2.5a)
(o ) PB'H'P kozko"i‘PO“'!P ko +po 2k +pp +ip/’ (2.50)
for ko > 0,
2 /1 1 1 1
kg,2)=— ol e — — — ], 2.5b
L5 (o ) Po—IP( ) ) (2:5%)

ko 2k +pg +ip ko +po 2ky - py — ip

for_ —po- < ko <0 a.nd

11 1 11 ' :
' L ) (2.5¢)

IZ(& _2.="-n2;€ — — + .
T<(bo,2) = Po —ip ko 2ke +po +ip Po +ip ko + po 20 + po + 1p

for ko < —pp-< 0.

The sum over n may now be written as

o bl
4 1 4 g p?
Z I(k-o,2)§ >0 T 12 7 73 22PU £
= Po i tP*m  (Bh+p%P? p
+ ZI+(’=9=2) + Z I3 (ko 2) (2.6)
e=—i—1
~i41
+ 3 Iz
n=-1
where [ = Po/27xT and the first two terms are the sum of the n = 0 and n = —{ contri-

butions. Making the change of variable n — —n — { in the second sum.of eq. {2.6) we

obtain
= 4 1 4 pi_p?
I(ko,2)| _ = 1
n;m (k0.2 s BE+p'm {5 +P?P po .
(2.7
+ E(ﬁ'(kn,z) +(p— ~p)) + ZI (—ko,2).
n=1
Inserting eq. (2.5a) and eq. (2.5¢) into eq. (2.7), and using the formulas [7}
2 ;n el C Rl 2 (2.82)
ii*y : = ¥(z) - ¥(y) + = - © (2.85)
= +zn4y z oy
and .
=1 : )
S =9 +q, (2.8¢)
b
where ¥(z) = d[ln I'(2)]/dz, one get
3 4 1. 31 1 [ Po—ip Py +ip
I{k ,2 = - —_——— | 4
n;m ®02) oo = i * g +_pz[7+2\11( )P CeF) 29)

4xT 4xT
—— +

+ - —|.
Po—ip  Ppg+ip

The result for py < 0 is easily obtained making p; — —pp in the eq. (2.9). The correct

analytic contmuatlon to a function which is analytic off the i imaginary py axis is obtained
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simply by writing (2.9} in the form

4 1 —i +ip ‘
Ejfwmw ] {—+;E[Qw+aw@%3?)+zmﬂ;§%)emem)

n= 00

o —i —po i
+ (4~,+2u1:( i”ﬂ Py + 29 TNT p))Q(mRepﬂ)

arT 4T '
+ — + — | e(R. ]} )
- (po.—w o -HP) (Re po)

where e(Re pa) = #(Re po) — 8(~Repo).

(2.10)

Let us now make the shift & —» —ky — pp in the second term of eq. (2.4). The

resulting expression: may- be written as.

ZE{kn)'._ o

’ 1 ‘1 1 1
(kg 2) = ol IS S - |, @11
Pi+ P 0 Po —ip po — ip Po+1ip
. ko kg -+ ko +
_ _ 2 2 2

for kp # 0, and .

. ‘ . 4 1 .

(0,2 2.12
09 = i (212

where the superscnpt s denotes the shifted result. Eq. (2.11) is not as it stands in a form
wh.ich allows analytic: continuation directly. I po is allowed to become complex in (2.11),
there are poles in-the complex plane which are not allowed. Therefore we first make use

of the identity
(ko) = 26(Re po)d(ko) — 26(—Re po)d(—ko} ~ e(Re po). (2.13)

Using this identity and {2.8a) and (2.8b), we obtain
o

Z Il(k0,2) 2-::-]32{ 2' |:2’)‘ ‘_,I,(Po-*‘ P)'{'T(

—ip ) 4xT 4xT
4nT po+ip po—ip

% (26(Re po) — e(Re po)) -+ %} +{po — —po)-
(2.14)
Using the relation )
T(—z) — ¥z} = weot{nz) +é, ' (2.15)

7

the contribution proportional to &(Re po) can be written as

1 in( 22 T 4T | o
(R po)— ptmlep) Al AT g
=T pf +p? | sin(252)sin(2ER)  po—ip  Po - ip

The first term in (2.16) vanishes at py = 2m{T, and the unigue analytic coniinuation
satisfying the conditions of Carlson’s theorem [8] is also zero. Therefore only the last two
terms'in (2.16) remain, and inserting them into (2.14) one gets an expression identical to

(2.10).

One should-also mention that eq. (2.10) has the expected general: ana.lyiic properties -

in the complex pp plane off the imaginary axis, required: in Carlson’s theorem, see for

example (3.1.8) of ref. [9] (since we are computing in: the Euclidean space, the real and

imaginary axis should be interchanged when coropating with ref. 9. Indeed, using the

properties of the Psi function one can verify that the eq. (2.10} has neither poles nor
zeroes for Re pg 7 0.-For Im pg = 0 the result is real, positive and tends to zero when pg
tends to infinity.

3. 'I‘,he ;._ﬁ‘-di'rnensio_nal scalar. theory .

Let us now consider the 6- dimeasional model Integra.twn over z in eg: (2. 3) yields
{in what follows we set m = 0) [7]

I(kg,ﬁ):— {ikg+pg|(pg(2kg+pg 2)—|k0 (po(2k6+pu)+'p2)_

PP 2| ko + 20 || P | +{2kopo + P} ‘.Pz)i}.
2| p] 2k | p | +(2kopo + 2%+ D)0

+ [(2ke + po)® + P?}1n

The simplest and perhaps the lon.ly way to proceed from eq.. (3.1} is to use-shifts in kq-

.Perforrmng the shift kg — —ko—pp in the first tetm and in the numerator of the logarithm

{the factor multiplying the logarithm is invariant under ko — —kg — po). we obtain

+ .
I*(ko,6) = E(p"}{zko (8% + P* + Zpoko) — p“ " [(2ku +po)? +p7] -

[hl?:IPH'PB in2ko+Po—1:|P|1 }
ilpl-po Zko +po+ilpi

(3.2)

[y

oy




As in the 2-dimensional model we now use the identity {2.13). Again the first two
terms in (2.13) give no singularity, This is bécause the logarithm in {3.2) is finite when
Re pg and &y have the same sign. Let us consider the_ contribution proportional ig £(Re pp).
In the 2-dimensional case we were able to perform the sum exactly, and ﬁe had verified
explicitly that the singular contribution was zero for py = 2xIT. In the Present case one
cannot perform the sum exactly. Even so, we may explore the fact that in the contribution
proportional to £{Re Po) shifts can be easily done. When we do the shift k, — —ky — o,
fhe quantity 2k, - 1.79 changes the sign, If we average over the two forms, before and after
the shift, the Ia.sf; logarithm in ¢q. (3.2) vanishes. Note that since &y = 2mnT, the use of
slﬁfts is.only meaningful l;f o = 2miT. Therefore, in tl_ie same way as in the 2-dimensiona)
maodel, the singular contribution (which now is the.ldga.rithm) vanishes because we choose
to analytically continue after using py = 21T, Performing the sum over 1 of the resulting

expression, we ohtain

oc b3 > 2 2 :
, _Ftp mhﬁw_ﬂ)
nng(ka,a)_ 4p? {E(Rﬁpﬂ) Ay Po—i[p]
BT m lnifpfﬂ:o)
6 t{p| ilp|-p
=~ (2ke + po)® + p2 2hot+pm—ilp|
- , cotPeeipl| -2)| ¢, (33
[28('R8p0);_—2i}p_lh*ln2kﬂ+P°+llpl (o — Po) { )

where we have made use of the €q. (1.2) and {-2)=0, ¢(-1) = -1/12, €(0) =1/2 and

:lﬁoo ko = 0.

sz(_;;_fﬁﬁ[(m;;pa){(pu—;lp“l)"], {3.40)

Ve = 4Whis + 4o Wiy + (52 + P’) W, © {3.4b)

9

and the eq. {1.2), we obtain the following result from eq. (3.3}

= 2 2 ;] 2 R m
=Hmtp Btp, Potilp| Vo, ,
2 [0 =g e ) [ 5TRT "o =3 22 e tiz)
4T Po ilpi+py LS Vo, ,
Ty (1¥2i[pilniip; —Pu) - TFT;(QWT)EJ‘C@J-FU y
: ' (3.5)
where we have made use of the fo].[owing Property
= { Vilpo) ik =2y
Vil=p) = { Vi(po} ifk=29j 41, (3.6) .

The first term in the last sumn of the €q. (3.5} contains diverge_:pt contribution
proportional to ¢ (1) = co. This will give a tempera.ture—independentr contribution to the
two-point function (the eq. (22) hasa T factor). In order to deal with this contribution
one has to.use some sort of regularization. Leaving this piece apart for a morzent and
inserting only the finite terms of eq. {3.5) into eq. (2.2) we obtain

A2 pz +

2 2 2 . oo
ST _ p Bre, mtijpl 1 V2 .
ST = {E‘Re I r & G

i 2o ilpl""p") 2 LQx Wi .
1= — lp 2 120 Vi += _¢(2 4.
3 2Elpf zipi"“?() ?TJ'=ZI(2WT)2JC(J+ )

(3.7)

Let us now compute the divergent contributions. In order to do that we will use
dimensional regularization. As we haye seen, without using any regularization the only
divergent contribution came from Yitky (1) = oo, Therefore, we only need to
regularize the contributions proportional to 1/ko. Let us turn to eq. (2.3) and set I —
6--2¢. Theidea is to use an expansion in powers of | &y | and collect the terms proportional
ta | kg [~itee, After the sum over o is performed (using eq.{1.2)} we will obtain the

regularized divergent contribution proportional 1o ¢ (1 + 2e) = -1/2¢ + T+ O0(e).

With m =g, eq. (2.3} may be rewritten as

Lka,6 +20) = F(ko, ) (ky, ), - (3.8)

10
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where 2 e p g P-o e
f(ku,ﬁ) = (1 + p_oz) m [*4— + (ku + —2—) l (3.9)
and
ap? — b
B + 4kip?
Flko,€) = f (1-2%)%" da. (3.10)
~b :

VB +4kip?

The. integral I{ky, €) may be expressed as

2p? — b b
v B+ 4kIp? B + 2kop?
- Hkoye) = f et f =2 f vy (3.11)
—b o 9 - .

where we have made ¢ -— —g in the first. integral and kg — —ko — juu in the second one.

Usihg_the.substitut.ion- z = siir§; one get

arctan
T2k H 2k || P
f(stE) =2 f (Cosz 9)1—1-6 d6. (3.12)
The power series for f(ko,€) up to Ic"“'z‘ is

1+£ a2 2
' 143 +{l+
st = (1+55) 1P1kze(k0+(1+e)mkn+(_+ﬂo_4_t_,f)_&

CE Pe
3P ("+3)" )

where we have neglected higher powers of €.

(3.13)

In order to obtain the terms proportional to | ko l'i"'z‘_ we have to expand I(ko,€)

up to kg 3 Using

' b ko Po )
tan — 2 —— = arctan | T+ ) 3.14
2t o e 13 | "‘“”‘_(ikenp! " (3.34)

11

where’

) ) . . . .
n= ————*————‘PUT? T . (3'15)
2]k lip!

the power series for I(kg,€) may be written as

. - ek .
Tko, ) = [(ko,€) I'{koe 2

F : i
e + I'(ko,€) | o

2l 5 ‘ :
) =0 (3.16)

I”’(ku,e) .

T . + ..
=0
where .

'k =2 AR ' o (3.17a)
(D,E) ":U-— 3 1+pz . 3 . a
ik = —4(2 AL 3 3.17b
(.o,ﬁ)‘ﬂﬂ——‘l( +€) 1+;)—2 Thelipl (3.178)

(ko €) | (1 + 2 o {(12 + 10¢) (1 + f;" )—1 -2— e]-. (3;17c)

WE ﬁ:st note that the term proportlona.l

In order to obtain an expression for I {ku,_e)

0 kgl’f?’ in eq. (3.13) is already of order e Therefore we may set ¢ = 0im I(kg,e)l

The result is.

_ kq  p 1 iip.l-ﬁpg i

= 4t =ln 7| 3.18
w0, umi[(“’ B) Bitatisiem (319)
Inserting eq. (3.13) and eq. (3.16) into eq. (3.8). we obtain

k -142¢ ! o pz
Lo 777 ”‘12 : {pg—%-pz—{-E{?pz-i-(pﬁ-’rpz) 3+—p%_

2\ w o iplop '
* ((“Tp_[;) +2i|pil"up.1+pu)]}+""

where the dots represent powers of | ko | different from ~1+42¢. The sum over 7 may now

I(ko,6 -+ 2e) =
(3.19)

be performed using

i { ko' ‘l_1+25 - 2(271'T)_1+2EC(1 _ 26)
n=—eo _ (3.20)

= (2 T) M (—% s O(e)) .
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Comb;mng eg. {2.2}, (3.19) and (3.20} we finaliy obtain, for the regula,mzed divergent

. contnbutlo];l and the induced finite térms, the following expression:
- 2 I 1. 4nT? 'y) . a
€ —+=ln——-1—_ +
) = 35am { (2e T2 5 ) i +P°) _

> 2 2 2 —1 . N 1
2, P+ P Pu) ( ) Do i pi-po
' 2= {3+ (1+ +——In- .
PR ( p? ( SprL o 2ilpit dp] e

(3.21)

Equation (3.21)\11& {0 be compared with the dimensionally regularized vacuum two-point

function which is given by [10]

——f—{(iﬂ-iln?%*_p?.+ilnﬁ—l—-—§+ 1) (p§+P2)}- (3:22)

vac  384x% \\2e..2 . p¥ - "2 -4r 6 2
If we define the finite part of & as
uac
. 2 p4p’. @4p
f = ] In &2 3.23
|, =g B (3.29)

and use the same scheme-of subtmt_:tiqn-in {3.21), we are left with the following finite

contribution at T"'# 0
4nT 1 . a g
38411’3 {(hl + 3 7)2' (.Pﬂ +p ) +p°

1 Ip (3.24)
7 +p? ( ) po_ . i|lpl-po
+=—[3+ 1+ Ho In -
2 ( p)( p? 2ijp| ilpitp )|’
The final resilt for the two-point; function in the 6-dimensional Ag® theory is given
by:. . ) . : .

()fm

£ = (BT + (), (3.25)

where (é}T and (£)" are given by éq. (3.7) and eq. (3.24) respectively. '

o
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4. The Yang-Mills theory

The diagrams which contributes to the two-point gluon function are giver in the fig. 2.

In the Feynman gauge the (4 + 2¢)-dimensional contribution of these diagrams reads

"ub ub 2 —2eT - d3+2ek A,'.w gup
Bet = N§ 5 3 { T \ e et o ~4{e+1) . (a1)

n=—od

where N is the SU(N) parameter and a,b = 1,..., N2 — 1. The second term in eq. (4.1)
comes from the tadpole diagram (fig. 2b) and part of the gluon-loop diagram {ﬁg 2a).
The tensor 4, is given by

Apy = 49 g0 + 8 (1 + €) kuky + 2(c — L} pup, }
(4.2
+ (4e+ 5)puk, + (de +3) kups,
At ﬁnite—temperatﬂe the tadpole contributions like the second term in eq. (4.1) give

a finite nonzero contribution. Indeed, integration over k yields f10]

P TR T(-1=9 . 1.
(211_)3-{»& —k2 kﬂz == (47[_) %+€ | kg ‘ . ‘ . (4.3)
Performing the surn over n with help of eq. (1.2) and using { (-1 —2¢) = —1/12 + O (¢)
we get
: T & #t*k 4 T2
Eub =N5°b 2 P f ey ol )
BP g H_X_:m (2#)3-&25 k2 (k + p)z + ) u (4 4)

The longitudinal and the transverse components of i:“f’, are both independent and
nonzero at finite-temperature [2]. These two components may be expressed in terms of
%88 and i::”" = g“”ﬁ;ﬁ. Using the Feynman parametrization, the eq. (4.4) yields

Ses = N&“"gz{

T _LGo9uT R op o
gt T 2 AR (2e2) kot ]

xT(koyd + 26)}. (4.5)
and

T_z F(z )_

zab,u Naab 2
3 .(4 }g+e

(10 + 6¢) (p{, + pz) Z I(kg,4+ 25)] , (4.6)

n=—00
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‘where I(kp, 4 + 2¢) is given by eq. (2.3).

The eq: {46) was obtained using
AL = (4 +40) [(e+p) + #]-(0+6 (B +pY), (4.7)

and then making & — &k +pin the first t;erm,_in order to obtain a tadpole integral like the

one. given. bsr eq. {4.3). We have made use of the same procedure in order fo tra_.nsform

part of the gluon-loop diagram (fig. Za)-igté a ta.&pole integral. Note that, on dimensional

g:r_ounds,,_the T? leading contributiox; to E;"’" is completely given by the first term. in eq.
(4.6).

Let- us. i)roceed as in the scalar case and first compute the finite contributions with

= {. Afterwards, we will compute the temperature-independent contributions propor-

tiomal: to. T 37 kg 1+2¢ Setting ¢ = 0 in I{ky,4 + 2¢) and performing the integration over
zin eq. (2.3} one get {7]

2| ko |i p | +i (2kopo + p§ + P)
2| ko [{ p | ~¢{2kopo + 75 + P?)

Itko,4) = 5 tlpl [1;;

- (4.8)
2| ko % po || .| +4 (Zkomo “i-P(z:'—_Pz) C
o 2] kot po [ | —(2Repo + 2§ —p?) |
‘ Performing the shift kg — —ko — - Po. in the second term we obtam
E(ku)( ilp|-po 2ku+Po+=IPf)
T kg,4) = = In i 4.9
oot = o 5T om0 " 2k 20— ] (9)

As in the scalar case we now use the identity (2:13). Again the singular contributions
proportional to &{Re po) disappear after we average over the result with the shift and the
result without the shift. The sums over n in eqs. (4.5) and (4.6) can then be writien as.

P+ 2p® pot+i|p|
ilpl  m-—-ilp]

3 [0 + 2k )] 10, = e(Re )

_47l'T Po n‘.': i 'p I ‘-.pu
3 ijp| i|p|+po
48{Re po). av 2ko+pmt+iip]
ak2 + 4k n ——— — — 4.10
el Z( o + dkope + PO )0 S T (po = —po) (4.10)
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and
Y. 10k 4) = e(Re po) - i P°+Z;§:
e e i po —
2’601'?01'”13{
+26(R. -
(epo) |Z 2ku‘l‘p0—1|p1+pﬂ Po,_r . (4.11)

where the contributions proportional to e(Re py) come oniy from the n = § term. Ex-
panding the logarithm in powers of k7" and using the eqs. (3.4) a,nd-(l.Z), we obtain

==

> [492 +2(ko +Po)2] i(kg,,4po) =.

n=-—oo ’

2 2 .
&(Re po) [2p?+4p lnp"“;p’—sz:————%ﬁp s (o )]

ilpl T e-iipl T (20T)Y

8= P ipl— o Va; 2Wa;
__(1 " 1n |p| Pﬂ)_sz 2j+1 + P 2]+1C(2j+1) (4.12)

3 tipl timl+pe S (2eT)H

— e(Re P0+1!P] = WzJ
n‘_y—_‘wl(k"’@ @ p")[ el m—ilp] 4?_:1(2 T)ZJC(J)}

oo

We; .
—4.) (271__1_!;:;.;?((2] +1), (4:13)
j=0

where we have made use of the eq. (3.6) for V}, and of the same property obeyed by Wy.

As in the scalar A$® theory, there are singular contributions which are proportional to
Ll
¢(1). Inserting only the finite terms of egs. (4.12) and: (4.13) into 'eqs. {4.5) and (4.6) we

obtain

- 2+9p% po-ilp| 1 3 Uy + pP Wy
Zub T — N’Sﬂb 2 R Po + )54 Po P 2; TP 23 .
) VP amiTo T Mo ilpl © 42 2 arrys )

Tz( Po 1P| ~po ¥ + p* W, . -
+5 (14 =5 —1In- Yajri P Wajta :
3 Zilpl ilp| +‘P0) 47,2 Zl (2n T)zJ (27 +1) (4.14q)

and

-ﬂ : 5 - d I
(E“E{P)T = N§tg? {E(Re ) (pg + pz) [81‘ri lp! ln 1}:: +:: 1 }I: i r
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Lo}

’

0 . - =
+4:z 24 z,/;i, 7¢(2 ) 422 (P§+1f )Z; 7 2;;;« +1)} - (4.14b)
In the same way as in the sca.la.r theory, the divergent contributions to 2‘”’ have to
be regularized. This can be done keeping € # 0 in eqgs. (4.5) and (4.6} and expanding-
the result in p.ctwers of ky. The 'd.ivergcni: contribution (in the limit ¢ — 0) is obtained
selecting all the térms-propo-rtiox._lai'to Ry itee,
Itis commpn_ggoﬁnd tl.u-a.t the finjte-temperature divergence have the same structure
as: the. vacuum one- [2] (this can be directly _séén_ih the e.f.l. (L.1)). Using dimensiona.l_.

regularization; the. vacuum two-point function r_ea.dg (10]

2 | 21 1 -
B~ g _21’°8+;’ S (mBty +In—+'r—ﬁ+ LY
HGG P
- PS5 oeptp 1 3 1 155) -
b3+ m—Nﬁ“b 28,,26(1“ mE st -t (£:155)

The computation of the finite T'divergent contribution follows exactly as in the scalar
case. Usmg egs. (3: 8), (3:9) and (3.12) thh ¢ —€— 1 and expanding the result in: powers

) of kg we ohtain .

1  ilpl- ( pﬁ) | ko Ji¥2e
— ———— —_— T 1 e —_—
Itho,#+20) = gl o (1 22 )

z'|¥’|—1’0) —142¢
].ll,.— . k
(”e'lpl ifpl+p kol

; _ . _ —1+42¢
+(€_1m+p' Pﬁmlipl pu) | %o |

2 2ilp| ilp|+p kq
F1l[afia B _) p%—»apzlnz'lpl—po]
Azl (e R R T R |
+§(P"—P§)}i_ko |32 v (4.16)

Inserting eq. (4..16). into eqs. (4.5} and (4.6) and using eq. (3:20) we obiain

i|p|—po 3 1)
In - — = = 4.17a,
@ Tilpl ilplim 5« (4172)

- 4xT?
Sy = e LR (T

8x2 2
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and

- 5 4nT?
(Egob)t':Nﬁang{Bu_ (h:l "; _'T+ -+ ~ )

Bm? 5
2 : — 3 [
B0 (1, P, ilp] po)+PoEP|lu%IPi o
242

zZlpi dlpl+p/ 8% ilp|4p

OD

(4.17b)

Comparing the egs. (4.15) with eqgs. {4.17) we note that the contributions propor-
tional to 1/e are indeed identical. If we define the finite part of the vacuim two-point
function as the first terms in eq, (4.15) so that

ﬂNsub 2Pu+P 5 P2+_P

by f
(2, I., . o2 pe {.4.18_a)
|, = Netg B zﬁlnp  (418)

and use the same scheme of subtraction for the finite-temperature. two-point function,

then from the eqgs. (4.17) we obtain

s'|p\f—pu)
In - . 4.1%a
2z|p| feltm) (19

- . 2 .
(zgg)f = Npotg? {p—§ (Iu ot 7+ 17)

81;23 m 15 .
2 ; L — 7 | —
+ P () B ilpi—p pnipflnilpl-po .
© 24w

2i|p|- ilp|+p BrZi i p|+paf

(Eabu)f — Eub EPU + P (]Jl 47rT — 1+

(4.198)

The renormalized iwo-point function for the ﬁnitétemperature Yang-Mills theory
may be finally written as -

f}:"’“ - (ﬁ:b_u)T + (i:b,u)f } -
. (4.20).

55 = (58)" + Bty

where the two terms on the right hand side are given bj the eqs. (4.14) and (4.19).
We may now consider any particular direction in the complex . py- plane A case of
special interest is when p, becomes a pure imaginary qua.ntlty Thxs corresponds to the

real-time limit of the (ireen functions (we recall that. our result has been obtained in the

Euclidean space). In order to obtain the real-time limit from our analytically continued
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imaginary-time result, let us substitute in the egs. (4.20) po = igo + goe, where € — 0F

and

and

gq is real. Using the identities

eRepo), Po—iip| 5(40) 1Pl ipa? v p2 2a
et tlnl '%HP& #=a +»°), (4.21a)
Ppl=pe o |Ipl-g i P 91b
AR o 1B ()i~ 9°) (4.218)

Re Wsi{ps = iqo) = Im Waj11(po = iq) = 0, (4.21¢)

one can easily verify that the real-time limit of our analytically continued imagirary-time

result; which yields £y ;3 [9]; has a real part which is in agreement with the result obtained

by Weldon [2], and an imaginary part which can be explicitly written as

: 5(p—q}) 1 g+ | p | g0 PR
abp — ab .2 ¥ {1 T 2] —
Im 5" = V6% g e(g0) =~ aTeT = 2Tl v4‘piv(qo p)
"21(1’0 = "10)
i R A LA S 4,292

¢10+|P|1‘ T

~qo
qO‘lP‘; 4r

9 2 2
6(a; - p*) I* +(o—"Lln

Im ZFDO = N‘Sabgzs(%){ 27 p|

P

481r ipl 22 (2xT)2i-1

(69 — g5)é(e5 — p*) + L i Vosloo = ig0) + B Wey(po = iq")C(Zj)}.

(4.225)

In order to relate our real-time limit with the real-time formalism, one can use for

instance the eqs: (3.2.18) to (3.2.21) of ref. [9]. In this way, the real and the imaginary

parts of ZF yields the four functions (£2° &, )ij of the real-time formalism.
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Figure captions

Fig.1- Diagram contributing to the two-peint function in the X¢* theory.
Fig.2~ The three diagrams coﬁtributing to the two-point function in the Yang-Milic theory. Wavy

lines denote gluons and broken lines dencte ghosts.
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