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Abstract

We construct'the classical analogue of the phenomenon of superradiance in
the zero temperature limit and show that a simple geometrical interpretation
can be given in the integrable case. The nonintegrable case is also studied
and in both cases we find bifarcation of equilibrium for the same parameter
values where this phase transition is known do oceur in the Thermodynamical
context. The ground state of the svssem is also studied in the framework of
a mean field approximation and 2 simple analytical expression obtained. A
connection between the classical and qQuantum points of view is presented.

1 Introduction

The Dicke model of Superradiancel!) describes a system of N identical two-level
atoms in a linear cavity of volume V interacting with an electromagnetic field. The
separation between the azoms is assumed to be large enough so that their mutual
interaction can be discarded. Dicke. however. realized that. because the atoms
interact with the same radiation fleld. .they should be treated as a single system.

‘end not independentlyl. Oue of the most Hnportant properties of the Dicke modei

*Partially supported by CNPq and FINEP.

is the presence of a second order phase transition from normal to superradiance
in the thermodynamical limit where N and V-— oc with N/V finite. This was
first shown rigorously by Hepp and Liebl@, In particular they evaluated exactly
the partition function and correlation function in this limit. The transition t6 the
superradiant regime is found to occuwr for a eritical temperture. To which is a
function of the parameters in the model. In the superradiant phase (T < 7.) all
-thermodynamically relevant states are shown to be states with non vanishing mean
photon number and excited atomic states. This phase transition is therefor usually
interpreted as a quantum phenomenon. :

The existence of a classical limit for the Hamiltonian of Dicke's model was also
rigorously shown to exist and to be uniquef®, In the present paper construct the clas-
sical analogue of the superradiant phase transition at zero temperature both for the
model considered by Hepp and Lieb and for its extension which includes antires-
sonant terms. The classical problem is shown to present bifurcation of equilibrium
peints at the same parameter values where phase transition to superradiance ocours.
The character of the bifurcation depends on whether the antiressonant interaction
is present or not. ’ :

Furthermore we present an analytical description of the ground state of the model
in the context of a mean feld approximatior. The ground. state energy is compared
with the exact one and shown to be in excellent agreement. The superradiant phase
transition for the ground state has been’ numericelly observed by Scharf¥. Here
we present a simplified and analytical version of the phensmenon. Moreover the
connection hetween the classical and quantum peints of view is clearly established.

In section 2 we briefly review the Dicke model and define jis classical analogue.
Section 3 is devoted to the study of the bifurcations of equiiibria in the classical
model. In section 4 the study of the ground state in a mean field approach is
presented as well as its connection to the classical results. Some concluding remarks
can be found in section 5.

2  The Dicke Model and the Classical Anélogué

The Hamiltoniazn at the Dicke model for a single radiation mode v interactive with

N atoms is given by (h=¢ = 1)

N i :
H=at L ++f.~} 1
aa+§[2o‘+zﬁ(aaj _aa',)_ (1)

where a and o' are creation and annihilation operators for the fleld, ¢ is the energy
difference between the two levels of the atoms, X is the coupling parameter measured
in units of the field energy v, and 0'_7»t = o} 0¥ with af, o} and o7 the usual-Pauli
matrices for the jth atom. ’
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and noticing that N = 2., where J is the total spin,we rewrite (1) as

H=Hy+ H; ) - (3
with

Hy = dla+ed,
A
A
Hy 73 (adita J)

The phenomenon of superradiance is usually studied in connection to the Hamil-
tonian {3) i.e. X' = 0 with the radiation field treated classicaflyl®l, We summarize
the argument in what follows considereing the.quantized radiation field (eq-(3)).
The rate of spontaneous emission of radiation from the system in a transition from
an initial state ¢} to a final state |y} is proportional to

labg |l ) = |<¢;|J+a+1_ o] )

For mmplzcﬂ;y we assume in this dlscussmn ¢ = 1. In order to calculate the above
. matrix element it is important to notice that the spin projection plus the number of
photons is a conserved quantity, for [Hy, Hr] = .- Considering an initial state w1th
M excited atoms and » photons |M,n} and the corresponding final state | M n)
we notice that the matrix element {4) introduces the following selection rules

AM = =+l
(5)
An = &1
and M +n =M +n'. We assume ) = | % — n,n} which corresponds to % -n

excited atoms and the corresponding photon number n. We get

LN L
Hlv)'=|—=] N B - 6
oy e F = (o) Wiz 41 ©)
where 0 < n < —‘;’— Notice now that the maximur value for the rate of spontaneous
emission oceurs for n = & which corresponds to M =0,

- 2
Wy [Hl o) = (%) N*  for'large N.

This corresponds the. coherent emission as. compared to the incoherent result

2

( J;v) - N which is obtained for the case where no photons are presented n = 0
and all atoms are excited. -

Finally, we include ir eq.(3) the antiressonant terms to get

H=dlatel, +\/~_(aJ++aJ_) \/"ﬁ(guﬁa,r_-)'._ Y

The classical analogue to the above Hamiltonian is obtained via coherent states.
We start by defining the normalized coherent state

) =|2) ®w) (8)
where
Iz) = 622/2 eza' |0)
. (%)
) = Ty )

and |0} and |J,—J) are the ground states of field and atoms respectively, such that

aily =0 J_|J-Jy=0 - (10)

The classical Hamiltonian is then defined as

Hy = {zw|H|zw)
(11)
= ZE_CJG ;Zz) 12\/—— [)\ (@2 + wE) + X (w= +wz)]

In terms of “action and angle” variables L, L defined by
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eq.(11) reads.

2R -B/I ..
Hi=eh+ L+ u-—~—~m\/~2_Jl—\/~; [)\ cos(f; — ;) + A cos{d) + 92)] (13)

Here,: I represents the classical projection of J., varying from —J to +J, and T,
the density of photons. Making a last transformation to cartezian coordinates,

@ = AT +I)sing,,

o= m cos by,

@ = \2L sing, (24)
P = V2 costy,

. we arTive at _
o - VIT—H, '
Hy=eHy +H, —ef + Y2022 0y e 15
1= ey +Hy — e+ BT (+P1P?+ 192) (15)
where

B o= s(+d).

, 2 |
Hy = 5+, (16)
Ay o= AL

Further details of these calculations can be found in ref.[6].

3 Bifurcations of Equilibria

. Defining a four-vecior X and the symplectic matrix A by

;- 00 -1 0
. -2 . _ 0 O 0 -1 ‘ .
K=l i A= Lo .0 o | (17)
m) 01T ¢ 0 ‘

Hamilton’s equations can. be written in the compact form

X =AVH, N 1)
The equilibrium points of. eq.(18) are defined by the condition X = 0, or VH,_L =
Writing this explicitly, gives . . i

. A -
o= ep - +21_’; 2J - Hy
. V2 o
— Ot Aoqg) =0 1
- TR e A-on) 9
. dg
= 6‘11+“\/2i—;-\/2-]—31

1 ,
BT AT I PR A0 = (20)
. Y ‘
g2 = —pa— —jé_%\/éjﬁ—ﬂlzo -

- '. . '-A_ql
= + Va2S—H, =0 22
2] 9z /57 1 . (22),

Solving: (21) and (22) for p; and ¢, and substituting into (19) and (20) yields

peaF (o= M) + 20308 + 42 (2 4 2)] = 0
o ' ()
afti(e=a) 4228+ (0 4 02)] = o

We first essume that )’ # 0 and also that A > X', so that Ay > AL, In this case, it
is easy to check that eq.(23) plus (21) and (22) have the following solutions:

(Al) I Al < ¢ (and therefore A2 < ¢)

G=p=@g=p= 0. {the origin) . (24)




{A2) Ay >ebut Al <e

origin and
- 2J(M - J(A%
an=q@=0; p=+% H%— i P = X —€) ,\2 {the p-roat)
1 .

(A3) TM >eand M >¢
origin,
proot (as given above), and

2J(A JiM — 2
n=p=0; q (J\‘" =7F { TR T —€) (the g-root)

The stability of these solutions is given by the eigenvalues of the matrix

"o (':FH .
c Bz,-c?y,-
calculated at each of these points:
origin
€ A+ 0 . 0
‘i — A+ 1 0 0
i = 8 0 e A
0 0 AC 1
eigenvalues: e+, e£ A
det H' = (e - /\i) (e - ,\2_)
p-root ‘

A2 Ao
p) RV 2 0 0
A 4

i YRR 0 0

0 0 _’\}l-w € 2

AL+t Ai +e
. 2
] 0 &7 1

{25)

{27)

(28}

(29)

(30)

(31)

. I AYSC TR A .

- : Se 22 ) 4 LEBRIOEN) - gand
eigenvalties: roots of “ L S/\ e ) S ' (32)
: i M gt +2 (/\2 —e) = 0.

el Ogay
detH" = (4 )2( * )r _ (33):
AR '
q-Toot
wu el 0 0
., &S | S 1 0 T
H' = _ L o : (34}
B 0 .
1
o ! . (ebnz ,\2=—)3.‘ N .
L : 2 (35_{. )‘2--) (L)é\_r-l;l =0 0~
" éigenvalues: roots of { : ke _ = (35)
e —L*)'“Hg (e) SRR
o e e P
CdetH =— ( — )( __) - oL (38)

AR ;
The e1genvalues for: the p-Toot. can be easily’ showu to. be positive if AZ > & but

- these of the g oot are: two positive and. twoinegative, cha.ra.ctenzmg a sa.dd.le point.-
Thus, to summarize;.the origin is: the. only: equlhbnum point: for. ).2 < e. For.

Moz ebut Ao < g thié two: p-roots biftitcate: from: the origin s new: minima, the
origin: becoming a saddle point. This.is exa.ct.lv the point. were the: phase. transition

to supetradtance occurs. For A2 > e, the 0r1gm becomes a local maximum and the
g-Toots appear:as: saddle points. Since no new minima ha.ve been generated no:,

equivalent: phase—trans;tlon occurs at this point.:

The case: Ni= 0 is very peculiar and deserves a separate analysit. In this case,
the expression in brackets in equations (23) degenerate, in ‘a single one; Therefore,
besides. the origin we have

[




2 (e~ X) + 22 (pi+ ) =90 (37)
or '
2 2J(X%— ) —piN?
W=
Therefore we must have
2J (N —¢
< —ngj\;—ml >0 (39)

And again A* > ¢ for the solution to exist, and the phase transition occurs at
the same point. But now we have a whole family of minima satisfying

2 2
il ‘;'Pl =J( )\2) R ) (40)
Using: equations (21) and (22), we can calculate
G +r +p e

Thus,. B} .= I {from.eq. (14))gives a-classical measure of the average density of
photons in the system, and R} = J +-I. (from eq.{14)) gives a classical measure of

the number of excited atorns ir the system.. It is easy to.check that in general I, + I is
a constant of motion for ¢ = 1. We are now in a position to make a complete analogy
with' the superradiant. phenomena discussed. in. the beginning of this section. The
transition: to- the: superradiant state corresponds to the bifurcation from the origin
to.a. circle of minima: Moreover the classical analogue of the maximum coherence

quantum state correspends to fy = § and A? haif of this maximum value. This limit -

coincides.with A.>> € in eqs.(40) and:(41}. We have therefore maximum area in
both degrees of freedom. .

When X is sw1f:ched on, pnly 4 pomts on the circle reimain: the pwroots and the
.q—roots -

4 M’e.an:-Ei_'ela.ld'_Calculat-ion of the Ground-State:

We start this. section 'presentiﬁg a general framework for a mean field calculation
suitable for two interacting systems and proceed to ana]yse the ground state prop-
. erties of the D1cke mode}’ accorclmg

4.1 Mean Field Approach

Let us consider a quantum system composed of two interacting subsysiems, de-
scribed by the Hamiltonian

I;'=I;[1-+ Hz"l-ffu (42}

where Hy and H; corresponds to the free hamiltonians of each. subsystem and Hi,
their interaction. We wish to calculate the ground state and its energy in the context
of a mean field approximation. This can be accomplished by assummg the ground
state to be a product. wave function of the type

| W)=l ® ). ()
which obeys the equation

- H) = E) - (44)

It is easy to check that inserting.eq.(43) into (44) and. projecting int |31} and |1s)
yields the folowing two. coupled equations

k) =Bl (45)
ha |iha) = Ey |2). ‘ (46)
where by (ha) is a;-.fungf:ion.of: fga) (l4ha}),
-'ih= f}l + (12 |H12[1.b2) (47)
ki = Iy + (i |Af112!1f’1) (48)
and
Ey = E— (|| )
By = E— (i |fh]w)

The pair of equations (47), (48) should be solved self consistently

10




4.2 Solution for the Ground State of the Dicke Mo&el

There are two types of solution. One which corresponds to the product wave func-
tions of the noninteracting system and therefore zero average photon number and
no excited atoms.. The other one is the “condensed”solution which corresponds to
the supercadiant pha.se when the coupling constants are chosen as discussed in the
previous: section. This will be shown in what follows.

The mean field equations {47), (48} are highly nonlinear and we shall solve them
for the Dicke model with the following Ansatz

) =z} @ Jw) (49}

where the state |z} and jw) are given by (9)
The- calculatlon of h1 and }; is now straightforward

’

. Y :
h R - - =t -

1=ele fr s {w a+.wa)+w—r-"-1l+ww‘ _(u a +wa) (59)
. A' . . .

hy = ej + \/—(z J-t )+ == e (277 + 25-) (51).

We can now calculate h1 [z} and kg |w},

hylz) = L (Aw'z + /\'wg') [v}

1 4 ww™
(32)
1 -
+[et e (oY) ety
hs |w) = ( e;,- + \/A_sz w4+ ‘}32]2 ) |ar)
' {33)

’

+ w+4z+/\—.z'— —z"w —szz i+ [w)
VI VTV V2 k

and:verify that our Ansaiz is in fact a solution of the mean field equations provided
the following conditions are satisfied {the second term on the r.h.s. of eqs.{321.(33)
should be zero)

Ao,

11

'whereﬂw.(l “"‘.’ )

=+ 1+_lww_ ()\w +2'w) =70_. | (54)

[

W= ( ) A—

\/_ Em

The above equat:ons will determine z and. . self consistently. They correspond
precisely to the classical equations for equxhbrmm in the complex vartables (eq. (11))

(z,.._ zwz) =0 ) . | (55)

_ = U_i_—i%—fﬁ‘;-“ . COIféSde:ldS. to eq.(54)
== — z%%‘l q_o_J:.res_pond.'s: f::o'.-eq'.( 35):

IFwur .
This. means, that. the energy minima. will be exa.ct[y those found in. the previous

section:! ‘and::the; correspoudmg wave functlons given: by the: ‘cobierent’ states: The

approx;ma.tlon was, checked by cornparmg the energy rmmmum thus obﬁamed w;th .

the; exact ouem for: /\‘ £ L and M= 4-

Egzgéf =i=5.550543" . Bgs = —3.357959: |-

5 Conclusi'ons '

In; the present’ contnbmtion we cor:structed the class:ca,i a.na[ogue of the chke model

and ‘studied: its: phase transition at. zerc: temperature ‘The. superra.dia.nt phase 15

shown:to frave a simple geometrlcal mterpreta.tlou inthe :ntegra.bie case (X' £0): the
mean photon density is associated with the geometrical area. of the vacillator phase
space;. tlie:average numbet: of excited: atoms: given: by the'area: it the. correspondmg
phase space._The case; X # is also studied and the-minima (m both cases) shiown to

exhibit bifurcation of equlhbna for the same pa.ra.meter values wbere pha.se tra.nsmon.

occurs in the Theimedynamic limit.

Furthermore we obtain an analytical expressmn for the ground ssa.te of the system

within. the context of a mean field approch and obtain’ an excetlent agreement for

the ground state energy as compared to the exact one for given parameter values. .

A connection between the classical and quantum points of view is presented.
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