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MAGNETIC SURFACES IN NON-SYMMETRIC PLASMAS
MY Kucinski, LI.. Caldas, L.H.A: Monteiro* and V. Okam)ac
Institute de Fisica, Universidade de Sio Paulo
C.P. 20.516, 01498 Sag Paﬁlo,- 8P, Brazil

Abstract: An averaging method is- developed in order to determine analytically the
magnetic structure of a system with symmetry broken by small perturbations. Particularly,
Poinearé maps are obtained for toroidal helical fields using the typical parameters of the
Brazilian Tokamak TBR—1. The tecbx_ﬁi;ue is fairly general as the smail paraineter used in
the construction. of this theory is fhe original symmetry breaking perturbation parameter;
it is applicable. in. analyses of fields. in more comf:act devices as well. Unless the

u.nper__turbed-system--is.doubly.symmetric (circular cylinder) a single helical perturbation

mode (m, n) can excite many .cther modes. The. coupling between any two modes can be

explained in a.very natural way.
“Supported by FAPESP:

1. INTRODUCTION

_Ih; symmetric systems magnetic ﬁeld_ lines lie on surfaces {e.g. Edenstrasser

(1980)). The escape of the lines from & limited region due to the instability of a magnetc

surface against, resonance perturbations represents one of the most, serious problems in the

oonﬁnement_of_ plasmas. If the perturbation of the symmetry is not strong enough, part of
the lines:.éti_ll_fc}rms magnetic surfaces.
Expé_rimegts in-tokamaks have shown that instabilities can be controlled by

external helical currents: Perturbatiqns Just bellow a critical value inhibit the Mirnay

oscillations. Explanation of this. 'st_abilising effect. is suggested by the- Pulsator team

{1985) fixed helical islands. structure within the plasma would hinder 5 rotation of the
MHD modes. _Iﬁcrea.siug‘. the helical .ﬁeld,_ minor disruptions aceur in the resonant surface

and_ueighb_our_ing rational surfaces until the confinement is tota.lly_lost;_these-di_sruptions

can be explained in terms, of randomization of the field Jines. In spite.of magnetic surfaces.

destruction. ig i still pessible to. find approximate solutions. Whatever is the method used

we have to deal with some difficulties related to the resonance phenomena, A magnetic

surface is ‘very - sensitive. to .any - weak perturbation because it ig shaped. by-inﬁm‘te-

revolutions,of the field line,

To our krowledge an. averaging method was used by Morozov and Solov'ev
(1966) - and Solov'év and-Shafranov: (1970) in the contexs of determination of an oveail
structure of magnetic systems, _ ‘ -

Our approach is sim_jl'af in the sense that new coordinates are sought in order
to find a first integral invariant of the system.

T_hé_ perturBing field is characterized by a small parameter . The difference

between: these new, coordinates and the original ones are ngt necessarily small terms; they

are mastly dependent upon the original equilibrium field. Therefore, we do not deal with
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these new: coordina,tes as Tepresenting approximate positions. We keep the same notations A

x as. m Solmr ev and Shafranov because they result from an averaging procedure.
Appromma,te ma,gnelnc surfa.ces are, detenmned by this method the wandering of the actual
field lines in: the. vrcnut,y of these surfaces. is estimated..

"I section. 2 the method is developed for most general symmetric systems
with.a sma,ll perturbatlon '

In sectlen 3 ar tororda.l hehca.l syst.em is analysed Attention is paid to the

mode. coapling. phenomena, it.ig shown how a sole hehcal perturbatlon mode (m, n) Ccauses

the forma.tlon of: chams of 1slands at every resonanoe surface in a very: simple way. A

' prehmmary work: on this: sub]ect hsd been: presented at the Joint Varenna — Lausanne

Intema,tmna,l Workshop on: Theory of Fusion Plasmas (1990) The a,pproaches are not quite
the same:. The presenl; ana.lyms l.S more comprehenswe, ‘the’ agreement with the numencal'
results i 1s perfect- N Lo T '

2 GENERAL EQUATIONS

2. THE AVERAGIN: METHOD

The ma.gnetw ﬁeld is wntten as the symmetne ethbrmm field B with a

smalk: Qe‘rturbationa.‘_hr‘:_.-s
’ : - = -

B=By+b- ' o {1

~ The ﬁeid line equatlon B xdi=0 is. written. exphcltly as a 2—dlmensronal :

2

-system of: equatlons 111 terms of curvilinear coordinates xIL ¥~ and x
dx'l = Bl. and dxz..‘" = BZ : : (2)
4 B e B

where: B1 aresthe: contra,vanant components.
It is assumed that all the: physical quantities are periodic functions of x

with periodicity L.

* Bupon:x?

An a.na.logy to. dynamrc sysl;em equatlons can- be: estabhshed 1f x assumes-___. S

the: role of the t.rme The a.vera,gmg met.hod as: orxgma.lly presented by Bogolyubov a.nd
MrtrepoL'skn (1961) is: a.pphca,ble when the motion . is cha,raetenzed by two drfferent _.
trmescales, averaglng over: the fast. tlme 18 performed and the average evolutron is .

consx_dered. ' - '

}'n the a,pphca.t.lon of-any: avera.gmg me(;hod the chorce of the: coordmates is

: funda.mental We ta,ke for : x F magnetrc surface quant:ty of the umperl;urbed field wrth the. -

meaning: of radla,l va.nable we call x the ot.her relevanr. coordmaf.e of t}ns system, <2 will

be- an: 1gnora e.‘eoordmate. The: symmetry of the system 1s destroyed by the dependence of

s We,f,msther, a.ssume tha.t B is always d.lﬁ'erent from 2€10-.

S Wrththlschmce*' -' TP .

where g~ ij ate thie: contreva,rmnt metrrc elements

’I‘he equatron for the ma.gnetlc surfaces of t!:re unperturbed plasma. is rega.rded o

as known: i t.erms of the magnetic fluse 'Ifo(x ) of B0 t.hrough a consl;a.nt X surfa,ce
BU can be written as (Edenstrasser (1980)) o
| rB3—s0(x) PR ®)
The pr1me denotes derivative with: respect: to: x
If'the perturbatron is weak; {2) can be: wntten in the form.
. o
_% o (X 1. X ¥ )
dx o
and

J—j FQ(xl x3)+€f2(x 24 - ®
X
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where ciga dlmensxonless perturbation. para.meter of the order of b3/ B3;_

3 —_—
! —T(1+BT) 1;

0.
9
BZ: .
2 By 2
F== = V8 By
Zm,(i] .
5 \
2 2 - By 3
d= b Bl B3
0 o By

The. method. developed here can be applied in the resolution of any system of
equations.in the: form (6): -

- We.nse the functions: F2 and: f] whenever- the considerations. are:general and

. 1ot r@tncted o magnetm field functions.”

_ " Terms of the first two.orders of magnitude in the perturbation are retained.
Thisfis.ésseni;i’a_k in most: of-exgpes_sions- because. in the integration processes the errors can
a,ccumaia.t_é,.a;ﬁi overw-helm..the: actual .va._lu_es; Poincaré plats _obta.ined' by numerial tracing
of:field lines clearly confirm: this fact. ' '

The: fast timescale, here 1s the penodlctty in X3 Inst,ead of dealing with

actual field fine .c_oo:dma.te&new- variables, x { X ) and x”( X-) are introduced in order to get
integrable. differential equations. We use the same notations as in Solov'ev and Shafranov

(1970):

e P
£0 D) =—HO 1L 2 ) ax
— ]
f(X1=?>X3)=f_f

/-3-\-/
T2 =] -
where the integrations. are carried.out. with fixed x and: X

The choiee of: xl: 15 not-unique. We wrir.e:

v=xt o+ aded, ? )
and:. '
2.3 "i__i 3 2L 2 3,
xTEX +x..'('x X0, XX (8

In principle, x can: be the solutions of any autonorous. system of two: first

~ order dlf{erentleL equations; x can: be chosen arbitrarily. Because of (6) we. expect. é‘x to..

be a small quantity (O(e) -we: choose §x t6 be of the same order of magnitude. Our idea.

_isto build a _peturbation method: where the first order solution--(éx =0) contains most, of

thie: ma.m features: of- the magnetlc structure; 6x will. be; regarded as second.: order- :

CO;I‘ECT.]OHS In: dealing with a resonance phenomena it is desuable that the resonance effects
are th left to 6)5 We call zeroth order solution the unperturbed solutlon

The equa.tlons (6) can be written: .

-1 - 1 1. .
_dxﬁ" — ‘5X = ffi(xl,;f+ 1 %)+ e (2 ! +—2 5 (%)
A ey axt o’
__? d(‘é 9 2 3 1
_%-p +—-§6x -F(x X)+%—5X +ff((X:X +X X7 (99
Ay dy ot

Conslstently, terms of first two orders of magnitude are ta,ken u1to account.

2.2 APPROXIVIATE MAGNETIC SURFACES

_As criteria for the choice of Xl we take:




A S e .
i) 2 = (A + A A+ 0D

A= PRl 0 (9 (10)
dy
(i} xl define an. average magnetic surface equation:

Yy (xl, ;2-) = constant (i)

PR A I AT
So, \IIH. (¢ = fx", ¥~ — X — &™) would be an invariant of the system.

We call lst order solution the ma-ruetlc surface:

Yy (x \/ - X )- constant ) _ (12)
just because it is found first. The second order solution takes into account §xi:
N .
‘If (Xl - 6)(-1, x2 2 6)(2) = constant (13)
(i) 6x =0 a,nd the 15 order solution is thﬂ exact ma"netlc surface if, either:
gff=0 o b) _F.“:Oand f’:o {14)
. -
An adequate choice of ', *, and Ty is
% 3T 3
X =E(x, x) _ (15)
gl _ bl [
=g L+ (16)
dy By B
0 0
—_ ~~
. o+ F _
T 7o ' 1, T .2 2
rOd =i oh - vEel ol & d e an
¢

-1
Go,

'wﬁere:_ ‘I’I[-]I (X1)= 4B Bg (Xl, xg)-.dxl
and ¢ i3 a constant saﬁiéfying f : b-2:: (-;f, c, xs}' =0
_f

-~
The functions in (16) )a,gg_‘ considered. at (x + FZ, X ). We keep the form

/-\
P2 :nstead of writing explicitly as 30/83 Or. ‘/— B“/‘IJ because it hag the dimension of x

In both cases in (14), L Uy (x X ) is the exact magnetic flux through a

. constant X2 surfa,ce bounded by-the pnncspal magnetic axis and & magneulc surface xl

A]l the condzttons established so fa,r on- the coorc[ma,tes are, not sufﬁc:lenf: 0.

fix: xz; . The: system-of equations: (10): may- admit. as: solutions;; fixed: points: on (x; ,.-?}
plane;: a- stable solution: would: be & magnetic axis: alid-.- an- unstable: solution: could: be- a:
hype_rboﬁc line:On these fixed p_'_oints.the,expressionszi_n the righthand: sides. df-(lﬂ)'are 210

So, if the aim is to analyse the singular. features of the magpetic structure. & suitable choice

of % must vield (x5, ¥y =0.
Collecting all the rémaining terms jn. (9) we aré left with (Appendix A):

d gl 1 gl+§x1 g _bY 5x2 b b;
3 g —— 3+
dy 0o L By 2 By
~
I 3 .1 "'3 : o
o F o ¥ o
B B By Bop |
3 A~ /?-j
d gL O 9 Ga, s
d 2
X ay dx 3x




1 . 2 2 3 aF 1 18"
g | VEDT=FT B - b (18)
x i . i : 9 1
X
The expressions in: the rightha.nd' sides are evaluated at (x , x + F2 x3)
In thlS der;vatmn we do not take any assumpt:on as to the nature of b except
that it:is: solenmdal ‘

6)( is nearly osc:liatory functxon of x 6x can be represented in the form:

: T
o2 =68 (0 0+ 5 G 2 ) (19)
_2 r\l
where- 6;2 i8.4.corzection: t.o the average evolutmn of X and Jx is-the oscillatory part.
Usmg _2 9 - .5. 3 in (lS);we.get:
ol -2 gl (20)
and’. /‘\-J
ng byt v o B +Tr(,/‘b2 P’ - g ol (20)
X : a'x-l; ot

. The second orcier solution: must. satlsfy (13),.(18) and. (20)
3 TOROIDAL HELICAL SYSTEMS _
In. order to- describe- toroidal systems; toroidal polar coordinates (pt, b, @)

have: been mtroduced in. terms of focal polar coordinates (p, 4, ) (Kucinski et al (1990))

p(l——%cos€+ -—‘gR—) )1/2

10

siﬁﬂ = sind (L ——ﬁ—-cose'+ —gR—)z)"I'/ ¥ @y

RO is the major a:us of. the System; Byt and B have the mea,mng of radial and
poloidal coordlnates, ra;pectwely
3.1 THE UNPERTURBED SYSTEM

Wer consxder a selfmconsnstent equlhbnum solution for toroidal plasma with
nearly. c1rcula.r cross—sectlon wr:t.ten in terms of a cyhndrlcal plasma (Kucmskl et al
(1998)... o |
B : The avera,ge va.lue of pt on & magnetlc surface is taken: here as. the surface :
coordmate X ( xl pO) p0 must, not be confused w1th the. average. coordmate xl ]
mtroduced in the previous section. _ '

’I‘he a.verage polmdal field ig written in terms of a cylmd.rmal ma.gnemc ﬂux_ N

function, (lIf } as:

- By=pg By VO 2 (op)Ry S @
A local safety factor is defined: as: o _ .
—) o - o
a= _d%-'_ - (23).

A _
and all the relevant quantities aré written in terms of q a,nd \If(’: The expression for g.have
the form (Ap_peﬁdjx B):
a=Tag) + Qg (o) co88, (24)

3.2. THE HELICAL PERTURBATION

We are espe_éiq.lly concerned with the resonance phenomena; far from
resonance a small peturbation.does not significantly affect the magretic surfaces. Here, the
component of the hélical field normal to an equilibrium plasma surface is writi.eu as:

VEb! = (e¥] Po)pm,n boleg} sin(mf, —ng). . (28) -




il

where the subscript 1nd;ca,tes that the expresswn is taken at pm oA pm M35 the value of I

at a presumed: resonance surface:
by(pg).is normalized at p™™ (bp(™") = £1).
3.3. MAGNETIC'ISLANDS .
The structure near the resonance is analysed choosing:
. . o
X Epﬂ?xzsmﬂt—mp and XSEBt (26)
Thus; the averages are taken along helical lines. 21r‘IfI‘_)I. has the meaning of
aﬂnetlc flux of B0 through 2 hefical I‘lbb()ﬂ ‘
The expressmns for F2 F2 and F2 become:
= m-—~ nq cosﬂ

2. A
Fr=-nqq o

_nqma.x
N cost?t
‘and

F*=-nq sinf (27)

Thie .unperturhed stream. function ‘III(_}I- (F) has a maximum value at the
rational surface g (™)'= m/n as can be quickly inferred from:
| 0 e g R gt
' =% By =9 P =0 (m —ng) (28)
Near this surface:

‘D% N — —é— (ng' lI{(':)p mn (1{\]9"0)2 + an irrelevant constant
where:

i

For the perturbed system, expression (17). yields:

o

' 2 —
Fg= \I!I{_]{ + (€0 pp) o by(eg) cos (x° —nq, sinf;)
Ma.kmg use of the well known e\cpresswn '

.+-
olxsing _ i 3,00 e1(319 ’

-where -

12 -

where J { x):'are_g:ylin'drical.Bessel) functions, and taking the average we have:

L e g =g ,
"ft'H-.g'"”T_(_nq:f l’[Jc);t';,m,n (AP{J_}-"."“S‘_?HFOSX ; (29 g

o &I;H (‘I’ p(l 0) o, and JO‘JO (nqmax)
_ Thls expressmn can- be: compa,red w1th the umversal Hamlltoman of & non.
lmea,r pendulun (Sagdeev et al (1988)) The consta,ncy of ‘I’H determmes the relatlon

Apo

o AT e ol Uy (30)
where K is & real pos1t1ve number a,nd
Ly [ e e
PR g :"_o- ~ .
' - Tinthe case of 8045 <.0 we have:
R i N O
R “In what follows we shall assume ¥} > 0 and b, > 0 and’ consequently-
ElIrH> 0

xz' (Bt)' and: Apy, {Ht)- can be-written in terris of Jacobian elliptic fanctions.

(30} is clearly & resonant solution; the- dépaftufe:'of',o_g'fr'dmi-'ﬁhé_ resonance -
vatue o™ is of the order of ¢ 12 . The dlagram (x Za") is smular to the phase cha,gram of
a pendula.r motion.

K = 1 corresponds to the separatrix, K > 1 t0 the surfaces inner to the

separatrix and K < 1 to the outer surfaces,

)

The 1°* order solution that defines approximate maguetic surfaces comes




[

wa

u,
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from’. - {13).- It-. is. enough' to -replace  the variables in (30) Dhy:
o~

Py =py andx =y —F2~m9 —ng + nqm&xsinﬂ (31

n. order to draw a Pomca.re map. we. consider 2 plane cutting accross the

torus: ((,o = 0 for msta.nce), every tlme the ﬁeld lme crosses thlS plane the position is

ma.rked If we. put o= l27r fan mf;ever number, in. (31) and use (30) we must have an

approx.lmate representa.ntlon of the Pomcare map The sepa.ratnx equa.tlon (at @ = 0}

becomes::: _ .
. m: n__: . .
Py~ 8" _
0 e W cos((me +nqy,, sing,)/2) (32)
pm L
(p W) has. the meamng of ha.lfw1dth of the islands. This depends mostly

ontheva,lueofq._.

314;_THE—SPURIOUS BEHAVIOUR OF - THE LINES:

The: second order correctlons are derived from (18), (19} and (20) using
exphcxt expressions for: ﬂ]
From (25)- .

JEbt (po, __ Nmaxsmﬂ):—(ellf pO)mn 0(,00; J sin (x_f+ 8y (33

If 6,00 is sought in; the form of Founer series we find:

L E p : )
02y g 0’ | cos (2 +49,) (34)
0. m. + £ —ng Pt

Thls expressmn ewdent[y shuws .Iesonance: denominators at every rational

surfaces q = (m =+ f)/n except at g e ’I‘he resonant effect. around o™ is removed and

6,00 fepresents.a. dispersion of the order of e

The dispersion grows near other rational surfaces; when & line of force moves

14

far a,way from the average posmon the average ma,gnetlc surface: loses; the meaning, This
would represent the begmmng of. overlap of two nelghbounng resona.nces '
Once 6,00 is; known the. deterrmnat:on of §x isa ‘matter .of elementary

calculus; -

_);f [ ;~—anm&x pBJ J siﬁ X (35).

&0 (53/2)

32

OIfr terms of the order of ¢ are-to be ta.ken into account, all the terms i in

a4 18) must be cens;dered .im:order to-be coherent,
For the ca.IcuIatxon of éx we have to know vg b2 and g i, 1t these are of
the same urder of ma,gmtude all the conclusions drawn so-far are not changed.

-~ The ana.lytlc expressmn for the separatrix with the correctjons §x is:
' m

R JO.
Ll 0 - = t W cos((mﬁ + nq smﬁ + 69 )/2) (36)

lDmn-- 1

Fmdmg ;g a.s functu)n of 0, the relation:-

| | i) (6) + 6%(6) =mf, —np - (37)
can’ be used i order to: detemune the value of B after cach toreidal revolution (i = £ 2r).
The depa.r:ture of you from.the first order value is evaluated from (36).
~The. Pomcare map can: be obta.med without solving: directly- a system of

st&ndard mappmg equatlons

3.5. SATELLITE ISLANDS
As the second order corrections 6x exhibit resonanece: denommators the

e,\pressmns obtamed $0 far ale not very accurate near other rational surfaces; near each




rational surface q = (m + Am)/n similar procedure can be followed using.for the
coordinate ‘( the ew-:pressmn x =(m+ .}.m)é' —ny.

A chain of satellite islands i is found in the form (Append1x C):
Ap 0
i rAma * % +W cos{((m + Am) 6, + ﬂqmax sind, 1/2) {38)
; .
where the width is now given by:
’ 1/2

~
W= {nz ” 19 p 000!

pm+Am,n

~
ifJ_ Am(nqmax) > 0. J_,,, < 0 wehave asine function instead of a cosine.

The coupling hetween the modes occurs through Fg. The. width of the:

qatellite islands are fundamentally dependent on the asymmetry of q around the magnetic

axis (’&Jmax);:indirectly,_tbey are determined. by j;he value of 4 , q', the aspect ratio and the
' poioidal beta. (,B )

For nq ax S 1 the correction to. E(] is proportional to ‘]0 (na':nax) whereas,
near the main 1slands- the dominant terms in 5p0 are proportional to Jy (na'max). S0, we
may expect a higher scattering of the field line around the hyperbolic lines in neighbouring
rational surfaces. However, the main features of the magnetic structure must depend upon
local values of g, q'(shear) and B rather than on the way the mode has been excited.

In reallity, it is unlikely to have a single perturbing mode. A more general
expression for the perturbation could be:

bl = (e 2, ) m“Z& by (p[})cos(mpﬂt ng.

In the v1cm1ty of the rational surface {(m,n) the function 6\11 in ("9} must be

the sum:
8y = (¥, ‘90; bm Im —m! m,n
P p p Y

instead of a single term.

16

The positions of the hyperbolic lines depend. upon: the resultant sign of 6\I!H.
3.6: NUMERICAL CALCULATIONS

For the sake of numencal calculations we assumed that B is due to pa.u's of

currents £ IH waund on the tokamak vessel at g =4 So inside: the tokamak B is; denved

from & scala.r potent:al and: b2 v mb3 with an a.ccu:acy of: the order of (pt /RO) (Appendlx

D). With only one: perturbmg mode (m, n) they take the form

b
VEb = (E\I’c'pﬂ}-pm,n —Dm-cos (mﬁ-t_-'—. n¢)

IS m g v

p L]

" ¢ is.the amplitude of variation: of bang,jz by /By ab /0 and the value is
[ i

given by:

“m,n .m—-l R'O

L #al [
g : L]
Ta OH a, ) : \I'_c-

£E=

The unperturbed system function. lI'é.is written in. terms. of the plasma
current density . .
. ' B R{) s N
¥ (ol =—— L] tgd Jx) xdx -
with J (p) a(l —p /a. )T
Typmal values in TBR-1 exper:ments are used (Vannuccx et al (1988)):
plasma current (I )= 10 kA; Ry =10 ,30m; radius of the limiter a = 0,08 m; BW =05 T

coeflicient of asymmetry ak the plasma surface (A) = 0,28; radiud of the vessel (a,) =

U,llm-a,nd q ranging from 1 on the axis to = 4 {or 7= 3).




(=

k=1
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The field line is numerically traced for- 700.toroidal circuits in the vicinity of

each ratlonal surface and plotted in.-¢ = 0 poloidal ptane.
1S$

The: maps are- compared- to- the. order solution ¥y (x X2 - ;;)
con'sta.nt:shfﬁaces -_in;-t_he_ﬁ'gu_j:esr‘l to: 4:: Whenever there is no overla.ppmg of islands the
sepa.ratﬂx iﬁ shafplj}-deﬁﬂed and the ugreément between both. maps is pecfect. In the case

of Iy ._VSEJA and (m n) = (2, 1) following the line- around the principal resonance for

a,nothe}: 70(1 revolutxons chd not show a.ny mgmﬁcant change in the p1cture In all the cases

corxsudered overla.ppmg of (3 l} a.nct (_ :,:.1$1a.n_ds shad- ,_u]readg: began; the values.of e are

1%

CONCLUSIONS

L In tormdal plasmas a smgle perturbing helical mode (rm, n) causes the
fc')rma.tibn of: 1sia.;1ds,-. at every: tu.tlona.l surface.. The pE&Sma__lS all tied up by chains of
islzmds It Seems vey [ikély t;hat; thié strueture would hiudei rotutions of MED modes, thus

stublhzmg the plasma.‘ The w;dtb.s of the s&telhte Js[a.nds are funda.menta.lly dependent on

the asymmetry of the p;tch a.ngie of B axounci the prmc1pal magnemc axis:

The hyperbohc lmes a.re destroyed beca.use of t,orozda.hty, irrespective of

- cwerlap of nexghbou.rmg 1slancis Mmor d;srupuons -can _be -expected before islands

overlappmg ) o - .
: The techmque developed here is: fmrly genera.l it can be applied to any

symmetric: system: under—the mﬂuence-oﬁ'small perturbations:in order’'to get a bird's eye

; view of the matmetm structure, as-well as t;o mvest.:gate the scattering of the field lines.

To us; in the numencal tra.cmg of a field line near a separatrix the ana.lymc'

representantion: of the map: E_sadi proved: to_be very helpful to find the starting point of

integ;ation-._-: )
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. Aboveall, the application of the method is very simple.
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. APPBNDIX A

From:the deﬁnmon of \I!H (17) we derive:

__2H =—vE bY (T, T+ ER %) ()
o . " L

S T
ar? R T
*WB o x)—-——— Jé.b-—[c —— & b dy’ (A2)

o ox o
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Using the divergence = free condition for b in the form:
~
4 B o
[ 2 gr el =0 (A3)
the last term in the expression (A.2) becomes:
s Eﬁ S 3 -
—J R —fbg GhF 4 B P E R (aa)

c 6‘)(1

if V& b2 (x_l,. C, X3I). =0. Consequently:

- -~ S
8T 2 3
SR b2 - ,/”bl—gﬁ"/g_ b? (A5)
Bxl._ Bxl
L — ~
where & bt are taken: at (xl, ? + F2, x3)..
The condition (16) becomes:
of 1 9% b3 -1 A
= g (1 (A.6)
d¥yy .
If— 7 is to be zero we must have:
dy™ .
& _ 1 O S o
=g —  +—3) (A7)

Using (A1), (A.5), {A.6) and (A.7) together with
~ /\ - 2 3
a? _aFd _ ayl o | o
d)(3 dx3 dx3 (9—)(_1_ 3x3
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in the expression: {9} the differential equations (18) are der'iv.éd for Jx-i. C

APPENDIXB, - §

'When_-:a.a_ cylindrical plasma. with. circular- éross section and 'poloidaf flux

270 (p) is: bent into-a torus, the. poloidal flux Zﬂf of the self-con31stent magnetlc field'of_

the resultant system is (Kucmsk: et 2l (1990)):

¥, (pg, )2, (pt)+c050 o (pt)J _g_z\(x)dx | - (B.l)
T, Y (e
| where: Ppr. bis: @-are: the: toroidal polar: coordinates; A(pt)- =1+ ,5’ +- —2— is the :
coefficient: of asymmetry of the poloidal field; ﬁp is the poloidal beta;
' | Lo Pt '
i 1 . kIf'Zd .
_'2_"“'*2_'-_5‘_ P WP
- g5 .

and pt =igig the outermost plasma. surface

The average value of p; on a ma.gnetlc surfa.ce (po) is also the vadue of pt a.t.-

cosﬂ = G on-this surfa,ce ' . _
g oy et} =y b =)=V, (B2
From (B:1) and {B.2) it follows: - ' '

pt:pO—J -—éEA (x} dx cosd, .
%o :

" Using: ]El2 B0 . Vi = constant
’ -+ o

B, .V =1 o

0% Ry oy oy

B
&

9




W

%

o)

9 2
2., P R;
R=( 1‘_?{0_60530 0
B(} . Vo
an-approximate:expression for the local safety factor q(po,. ﬂt} =— can be derived
N : ' By . V4,
as:: .
. ~ N :
a= alpy) ap, (0g) cosdy
C=TR B,
oy,
. ~ : P R
- 0 ‘ 1 .
AT q—ﬁ‘ﬂ‘ (7 -@+4) _TOJ —A(x) dx)
APPENDIXC: = _ _
1 . . ) L
Jg_b = (E!I’.épg)_pm’n by (pg) sin (mf, —ny). o

= (s@ggo)pm.,n,pg._(pa).g_;q:(x?— Am) .
where: x')‘ = (m:+ Am) ﬂt:-_,_—hgé..: . .

CIf ba_(po)_._is renormalized in order to be = 1 at gt Am,n,

gl " 3~
. ‘I’H = w%ﬁ’-" (E‘pc!:'p()'.)pm -+_~_Am,n bﬂ{pﬁ)f cos(x” — Mmax smﬂt - Amﬂt)

TR N : e o~ = .
cos{x™ _'_nq_max sind, — Am_ﬂt} = E_—,S-»m-‘]-e (-m_lmax) cos (x°7 — Amd, .~ £8,)

o 3z
= I ARl CO8X

L TI;_en,._

. 2
U= lIII?I + 80y cos :

22

With'&pH. ={e ¥ pyJ m -+ Am,n '

_Am)
.Amp

IfJ- Am >0 6% > 0.and we have the expression {38) for ﬁhe separatrix.
APPEND_IX_ D-. _
- X : ) . .
b=¥4 (x}, 2% ) xg.s,mﬂt —ny; % = i

bm 02 g o 09 08

8% =V (m¥g, — ) = mixk. v,

87 = (w8, V) = mVE2 4+ n27P = Ve
£ =W, (V6 ~ V) = m 96 |

o Therefore g2 ~ mg'd and b2 = m 1% ¥ . b = 0 is written 2 _gri=0
B ' ax

ik I N 3
——Jgb" + (m——5+ —7 vEBY =0,
Bx} ’ W Ay ) g
_ Taﬁng ,/g;b.l. = (ell!'c ,ao) m.n bo(po} sinx2 we derive:
K p r g .

;o b
: 3
EW = v, b3/13.0‘= (€0, po)pm,ﬁ_ _—gcos .
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Fig. 1 - The Poincaré map obtained hy numerical Fig. 2 - The same as in the Fig. 1. IH=90A= (2,1).
integration is represented by dots; 700 toroidal '
circuits are considered in the vicinity of each '
resonance surface. Small circles represent the
5t
1
map. In parentesis is the perturbing field mode

(m,n). 1H=80A; {2,1).

order analytié solution for the corresponding
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T=60A; (3,1) a . : . I,= 80A; (3,1)






