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PROJECTED: QUASIPARTICLES CALCULATIONS ON
THE N = §2 ODD-PROTON ISOTONES*

L. Losano

Departamento de Fisica; Unurermdada Fedexal da Paraiba
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and

The stmcture of. !ow—!ymg ata.tes it odd—mass ,.8 'motones (135 <. A < 145) is

: imf_estzgated, ;n.;term& of‘;numbﬁepml_

| apprmdthahon-{?Besif

_aﬁ:fé.eé,_da_t_& t.e'mcgibm{sm) aken a5 the residual mucleon-

: .nueleon mtm-actxon Exatahon energms, dlpole a.nd

- '.B(EZ) values are calcu]ated and uompaxed mth the expenﬁzental data.

" 'NUCLEAR STRUCTURE: *7Cs; 1%9Ls, WPr, M3Pm, and M*Eu; caleulated levels J,
S A A B(M 1);;and B(E2) Number-projected one- a.nd three-quasiparticles. Surface §
L mtera.cnom : .

* Supported in part by the FAPESP and CNPq.
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d one: and thre&quaslpm‘tlcles Tamm-Dancoff:

__uadmpole moments, and B{M1) and

I INTRODUCTION.

Theoretical studuwof the Z >.50, N 82 lsotones in the mass regwn 135 SAZ 151
show that the propertws of low—lymg sta.tes of th&se nucle: can be descnbed by pure proton— .
quasiparticles excitationsl — 6. In. Befs 1 3 lxght odd 1sotones (8322 < 65) are studied
with the usua.l Bardeen-Cooper—Schneﬂ'er (BCS) forma.hsm within t.he one— a.nd ‘three-
quasxpartxcle space:. The stmctu.re of light: even—xsoton& (54 :

< 62 :xs:'mvestngated in

‘terms of zero and-two. quasxpa.rtm}es in. Rr;E 4 aud mcludzﬁg partide-number pzo;ectmn in

the formallsm, heavy even-lsotones (62 <£Z:< 68) a.reexplamed m Ref; S _More recently,

Tamm- Da.ncoff apprcmmatmn in:.a. number-pmlected one-: an hree-quasxpm:mcle space' '

(PBCS). The pro_]echon is performed after:the: m.tmm.lz&tmn oithe gron.ud state energy,— :

As a residual two-body force we take the surface. delta i mterachon (SDI) T ea.rlzer paper"':

the forma.hsm and some apphca.tlons are prwented By compa.nson thh,

model. calculations:(ESSM) we.demonstrated the. xmporta.nce of mcIudmg pa.rhde-number .
projection in the BCS approximation;; and tha.t the PBCS ylelds results very close to those -
obtained with LSSM. : '

For odd-mass isotones. previous calcr.datiéns.- g'eiléra}.ly are-restricted- to. seniority-one -
degrees of freedom. Exclusively in:Refs. 1-3 three-quasiparticles: excitations: are mcorpo—
rated but without partlcle-number conservation. '

In add:txon, in recent - years: several. expmmental stud.les of odd—mass' N

propertles, and h:gh-spm statms 12

(g-, 2.ds5 /2) ,and. only for stat&s w:th spin.and pa.nty I"' = 1/2“' the smgle—pa.rtlde orblta.ls: .
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Ryyse, daja, sad. 81/2' have been included. In Ref. 14 the “*Pm nucleus is described by
Prade <t al.. within a space where proton configurations of the types (g7/;,ds 227 and
(97/2:9572)5"H(ds2,1/2)" have been, taken into accout, The structure of positive-parity
high-spin: < 11/2!states. in- 1! Pr. were-investigated by Prade et al.1% within the same
space: of R£.£ 147' and: for: neéati.’ve—parity states: in- 'Pr and "*Pm the configurations
(92724512 )Z =81 (R ,2)l have been. oonsxdered. Assuming °Gd to be.doubly-closed shell
nuclens, Kacza.towskl et al 16 have mterpreted the negatwe—panty hxgh-spm levels of
HsEu nucleus as: members of (dsﬂ) z(hn ,2)I and (d5 Ig, gar /3) 2(hu ,2)1 multiplets.

' (SDI} is. used as the resldual nucleon—nucleon mtera.chon _
V_gm = -471:G6(r. —R)E(r; - R)&(Q‘_,)

_ Our sta.ttmg pom{'. for the chm.ce of pa.rameters was based on the values used in Ref. 5,

f0r55, <Z < 61 andm Ref 17, for Z = 63 The ﬁual values were determined by requiring

a good oveta.ll ﬁt of the energms of one-qua.s1pa.rtxcie (lqp) states, and a reasonable density
. _of Tow ¢ energr levels Pa.rametess used In: the present calculatlons are summanzed in Table L.

' It should be noted that the smgIe—pa.ttche energles dec:ease wnth the mass number. The

sa.mebehamor was, obscrved experxmem;a.lly:l8 The. densxty of levels above.1 MeV and the .

energy of the three qua.s:pamcie {3qp). states are sens1twe to the relative sxngle—partacle

3.

energies edysy — edrye and ehyy gz —€gry2, and to small variations in the intensive strength
G. Qur values for the parameter G agrees with that obtained by Cha.sma.nlg, using the
method of correlated quasiparticles;. in which the correlations arising from particle number
conservation, usually neglected in BCS approximation, are included: Blocking effect is
fully taken into account.

The electromagnetic properties were evaluated with the usual valuesl> 3’ 14,15 for the
effective electric charge and the effective gyromagnetic ratios, namely egf! = e, and 2¢, for
electric transitions, and gr =1, ¢t/ = 2.234, 2.91, 3.91, 4.464. and 5.58 for the magnetic

ones..

. TII. RESULTS AND DISCUSSION

A. E’nerg;r_,__spgctr,&; _ _
The experimental and calcnl_atedifeve.l schemes.of the en&rg Sp_i_mf-r&-for?,l:"'cs, 1395

MIpr M3pmy and 4SEy are compared in Figs. 1-5. We have calculated all possible low-

lying positive-parity states with exci'tafion energy | below: 2.0. MeV, for Z.< 61, and up to.
2.20 MeV, for Z = 65. In order to complete the results for 1gp states the nega.twe-panty

11/2; states are included.

We connect by dotted line. 1qp. states and those with mixed lqp and 3qp components
with the probably correspondent. experimental ones, based on the spectroscopic factors .
calculated by Wildenthal et al.20,

Due the high density of levels above 1 MeV excitation energy, the one-to-one identi— _

fication of the experimental and calculated 3qp states turns out to be, in. general, quite

difficult and uncertain. T herefore, in the following discussion of the 3qp. states only a

tentative 1dent1ﬁcatxou with experimental levels will be presented
In Table 11, wave functions calculated for a few Iow-lymg states are hsted There is
good agreement, in general, between experimental and theoretical energy spectra. The

4 .



differences in energy for dominant 1qp states is < 50 keV, and for states with (1qp+3qp)
mixing character is < 100 keV. All other experimentally known levels below 2 MeV, can
" be nssigned as being 3qp éta,t.es and differ less than 200 keV in energy. Below, we present
a-short discussion for each nucleus separately.

(2) 1¥7Cs. Our theoéetical.sﬁmmm is similar to earlier calculations® 320, All theo-
retical results indicate the sequence of low-lying levels to be J* = 7/2*, 5/2%, 5/2+, 32+,
11/2+, and.9/2%. It reinforces the 5/2+ and 3/2% spin assignments for the experimental
levels at 0.849 MeV and 0.981 MeV, respectively, and suggesis 11/2% and 9/2% spin and
perity assigninents for the levels measured at 1.184 MeV and 1,273 MeV, respectively. In
addition, we predict-2 15/2% state at sbout- 1 MeV, and two states with I™ = 17/2% and
' 15/2"‘ at about 1.5'Me\_1;. The 3qp 1/2] state may correspond to the 1/2% experimental
' level at 149 MeV. -

| {b) ¥¥La. The experimental density of levels in. the region 1 MeV-2MeV is well
reproduced by our calculation, in contrast with that carried out in Ref. 1, in which the
same SDI force was used, ;md in agreement with those calculzted in Ref. 2 and 3, using
Elliott. and Gatssian interactions, respectively: Similar to the spectra obtained in Ref. 2
the number of levgis‘-fc.ﬁr J™ < 9/2%, up to 2 MeV, is the sé.me obtained experimentally.
No state with J™ > 9/2% was calculated in Ref. 2. In Ref. 3 the number of 5/2% and 7/2*
sfates is smaller than the experimental one. For high-spin states with J~ > 11/2% our
results foretell one more state by spin than those obtained in Ref. 3, and an additional
17/2% state nt very low energy (about 1.5 MeV).

(c) ¥!'Pr. The theoretical spectrum reproduces the experimental sequence for the
first four levels, L.e., 5/2*+, 7/2%, 11/2%, and 3/2*. The density of levels in the region
1 MeV-2 MeV is in good agreement with experiment. Similar results have been obtained
in Ref. 2, where only states with J* < 9/2F were considered. The two low-lying levels
mensured at 1.20 MeV and 1.45 MeV probably have 5/2% and 7/2% gpin assignments,

respectively, which mﬁy corréspond to the theoretical 5/27 a.nd 7/2 states established -

5

at 1.34 MeV snd 1.44 MeV. The 3qp states 3/27, 9/2F, 9/2F, 5/2F and.1/2F, may
be related to the experimental levels at 1.44 MeV, 1.46 MeV, 1.52 MeV, 1.58 M_eV,.aLd
1.66 MeV, respectively. Just as in 137Cs and 1%L, J==11/2%, 13/2+,15/2*, and 17/2+

states are calculaied. The agreement between our. calculated spectrum and:that ebtei ed
with shell-modet! is remarkable. Both present the same number of states: by spin.. T)
states with J* = 13/2% and 15/2% at about 1.5 MeV, and one 17/2% state at 1.8°M
are predicted. The 3qp 11/2], 13/2F, and 15/2] states may correspond to the levels
mezsured at 1.49 MeV, 1.77 MeV, and 1.80 MeV excitation energy, respectively.
(d) 13pm. The experimental sequence of low-lying levels 5/2%, 7/2F 11 /2t gfat,
and 1/2* is reproduced. For.the density of leveliin: the:region: of 1:5-MeV-2:0: MeV, we.
have analogous results, as in: 1Py case; to$hie comparison: with: expetiment; data ;-
the spectra obtained in. Ref: 1, 2 and:3: J™ sta.tall/?"‘,13[2+,15[ ) a
also caleulated. We propose a gpin.and’ paﬁtyass:g;mentawﬂ"‘to ﬂ;‘_te’:}:eﬁ':elﬁ measunad '
at-1.94 MeV, which. can be.related. to. the 13/2F stat'e‘.. “The 3qp 5/2;'-.;_-3}2;;5,::_"1/2;,-
and—15[2;_states.:probably correspond-to.experimental levels-at 1.51: MeV,; 1.75:M&V; and: -

1.90 MeV,, respectively, and:the measured level 11/2% at 1.66- MeV -corresponds to' the
11/2F or 11/27 state. Our calculation-foresees two:states with. J* = 15/2% and 13/
and one 17/2% state, at about 1.5 MeV and 2.0 MeV, respectively: The resemblance with
standard shell-model caleulationl? is again remarkable.

(¢} "Eu. In order 1o illustrate the sensitivity of 3qp states with respect to:the -
parameter G, we present the theoretical spectra for G =0.165; Theory (A); and for G =
0.13, Theory (B). There is very good sgreement between: Theory (B). calculated spectrum
and the experimental one. The same prediction of weak proton pairing _inteiaéti_qn:strghg#th-
in this rﬁass region, near Z = 64, was antecipated by Chasman'?. In our ca.lculatedspect ra
{Theory (B)) the experimental density of levels above 1.5 MeV is well reproduced. ‘Earlier
calculations had quite diﬁ'erent results. The spectrum obtained in Ref._'.3 is.similar to that

calculated with the parametrization (A). In Ref. 2, the experimental energy gap at about
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500: keV above:the single parf.icle_levels.dbds_ not exist, and the 3qp states are lowered too
- much: The tiiéomtital‘ spectra performed: with parametrization (B), (Theory (B)), suggests
spm and panty assxgnments 1/2F to: the: level measured at 1.60 MeV, and predict 3qp

13, o "rst.ates at: L.T9: MeV and: 1.89.MeV; which may correspond to. the
levels semat 1 60 MeV and 1.88 MeV respect;vdy Only a.vae 2 MeV excitation energy,
states: mth J" > 13[2"’ are. prognostxca.ted

B. Electtomagn { 1.;Propertles

’I'he a&allable expenmenta.l data’ 8 12 14, 15 on, the magnetie dipole (i) a.ud electric

quadrupole- (Q) mommts, and the B (Ml),and B(E2) transition probabilities are presented.

. _amd compare«i mﬁz the: calculated values for the odd N.= 82 isotones in- Ta.ble HI. With

__th& excepf-kon the. s ,2+ .in.14°En; nucleus; the: experimental. moments are fairly well

_repmdueed L “theoretma.l calczﬂa.tlon. B should be. noted . however, that the measured

magnetxc/ mommﬁs- for;the ground state im. tha ne:ghhounng 1pr and. 143Pm jsotones

; h&ve magmtudes close. to: the smgle—pa.rhcle estimative; about 4 pn:. Keepmg in mind:
the mea.sure& va.luea, there is gocd agreement between theoretical and .-

- 2) va.lues, and B MI) va.lum for. transxtxon 5/2F —. 7/2';{’ in 1**La and

_“3Pm nucl_ and:for: the transition: 15[2'2{’ — 13/2} in 141Pr The dxscrepancy in-the

" othier: MY tra.nsmon, Seems to come:from: the fact that. the role played by the tensor M1

0perato: [Y:_. X S]‘i,vvery :mporta.nt when the tra.nsztson-due to |2 forbiddeness — is weak,

_Js not consuiemd ‘.the prﬁent work

I_J;—'.Vxew- of the excellent’ agreement. verified for the electromagneti¢ moments; in Ta-

- ble I¥; the magnetic dipole and electric _qu_adrupole-moments calculated for.some low-lying

' statesim }F‘I?Gs-,}f?}?_‘iﬁ,‘;&nd- M5B isotones:are displayed. We thought it unnecessary to show
the results.for:**?La. and - '**Pm as most. of them fall in. between the corresponding results
for:_:_the'indghbpuﬁng;.nuclei.. ‘Fhese theoretical foresights are. presented-in order to furnish-

2 guide for:future measurements..

IV. SUMMARY AND CONCLUSIONS.

The pfoperties of the odd N = B2 isotones, in the mass region 137 S A < 145, were
performed within the framework of the projected 1qp+3qp calculations (PBCS) using an
SDI force as the residual interaction. The.different input pa.ra.metérs, proton single particle
energies and interaction strength, were obtained via an overall fit to- 1qp- states excitation
energies and requiring a reasonable density of levels at low-energy spectra. All available
data on.the e_ne;'g(_ spectra, magnetic and electric moments, and B(M1) and B(E2) values
were examined. o - ' _

We can state that the present model describes the main features of the experimen-
tal level schemes and the electromagnetic properties of the lcw—lyi.ng-‘sta.tes‘ Significant

improvement. is obtained. with respect to eatlier 1qp+3qp- calcu]a.tionsl’_zi 3 carried. out ..

without numbﬁr_—projgcted,sta.tgs., .
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TABLE CAPTIONS

Table I. Parameters used in the present calculations. - '

Table II.

Table III.

Table IV.

Calculated -wavefunctions of some:low-lying. states iny IV =.82 isotones: Only am-_ .
plitudes larger than 4% are listed: - For: the M5 Eq nucleus- the- plotted: values: were
obta.ine& with the set-of parameters: Bi. The notation:| f > represenit:the: . 1gp’ cbm-.
ponent | sy >, | dygp >, [ dssz >, | grpe> and 5 hlllg >, for J©=1/2%, 3/2%, 5/2+,
7/2t and 11/2% states, r&spectxvely . . o
Comparison between experiment and theory.. ‘The magnetic dipole () and electric
quadrupole (@) are in units eb and uy, r&spectweiy The transxtmn probabilities
B(M 1) and B(E2) are in units of 10~%uy and 10-% 282, r&spectzvely. The subscript
1 refers to g5ff = 2.934 or e2ff = ¢,.2 refers tog‘ff =291 or e/ = 2e, 3 refers to
g, = 3.91, 4 refers to g, = 4.464; and. 5 refers.to gz, = 5:58::For. the:..lﬁEu-nuclems the:

plotted values were obtained with parametrization (B). .

Calculated electric quadrupole and megnetic dipole ';n:oments, in units.of ek and uy,

tespectively. @, refers-to €57 = e, iy, sy refer to g7/ = 2.91 and gt/ F = 4.464,
R P Fd -

respectively. -
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FIGURE CAPTIONS

Fig. 1. Calculated and experiment‘.txl8 specirum of '*7Cs. Dotted lines connect one-quasi-

. particle states. The spins are in 2J form. All theoretical states have positive parity

- unless noted otherwise.

Fig: 2.
Fig:. 3.

Fig. 4.

Fig. 5.

Calculated and experimentaig spectrum of 39La. See fig. 1 caption.

Calculated and experimentall® spectrum of 41Pr. See fig, 1 caption.

Caleutated and experimentaln spectrum of 3Pm. See fig. 1 caption.

Calculated and experimentall? spectrum of 43Eu. See fig. 1 caption.

1

- 1E

TABLE I
137[:5 139La 141[;.'. 143Pm NSEU (A) 145Eu (B)
¢, M| 00 0.0 0.0 0.0 0.0 0.0
o, MV 077 1077 | 071 0.40 0.40 0.35
c,, (MeV)| 260 | 2.60 | 2.50 | 2.60 2.60 2.20
e, | V)| 262 | 2.50 2.50 | 2.30 2.30 - 1.90
g, M| 2.30 | 205 | 215 | 2.05 2.08 1.85
¢ (MeV) | 0.17 | 0.17 | o0.17 | -0.165 | - 0.165 0.13




TABLEN
|osgt foet LT
| 0.893 | 0.982: 3
gt [yt |yt | syt | syt iz, | ezt | wet | st | st
‘_‘[tgﬁz} iS40 . 0.068  0.986 0.958 | 0.943 0.924
_ l"ﬁéf?}%ﬂf‘_, .02 0.240 0.754 0.96¢
: Ei_}s’},éff’%,g—t . 0.443 - .0.420 a.208 0.809
[(Qﬁa..’_.?f'-':‘sfz'?._”i- 0.2z | 0.402 |- 0.376
'j(d’sﬂ;_zf?.-gma-[_ orr | ooste:|
I lqs,z_).?ﬂ_.y_-‘, s |- 02541~ 0.250
e ' 0:824 - 0678
.139;‘_;'3:—- stz," | aret} nry”
[ 52+ 0.991. :4- 0.989. | 0,983
_ vzt |y .3/zlf“- gt | e 5/22;‘ may | st | wsyt | awztyoasyt
'l-('-‘?,;z)_-zz-"s,rz’ - 0858 (9361 | 0.564, - 0.638 .| - B.g87 | 0.712:) 0.924
'[(9'”_2_)%.‘15‘,2: 0.416 | o371 |- 050 | o.283.] 0.311 [ 0.952 | 0.821
|-y 135.‘6'5,2?__ 0.2z
g o 2y 0471 0.308. 0.401
| (#5;21.5‘-'97”’ 0337, .
tsg) %8870 - 0.33 | 0.2e3 | 0.425 0.272 - 0.382
I(ds'jzlz".ds,f 0.332
|(97,2}29.97,2> - 0.626
l4> . g.324 | 0.914 | 0.346 0.754

TABLE II (Continued)
141 L I =
Pr sizt | wiet | ey
53 0.991:} . 0.990 [. 0,981
tatg, _ vt [owgt | st wzt | st | osret | ot | ezt | et Lot ] skt
i(dm),z?.gm>- 0.533; 0.714 |- 0.3a1 | . 0.866 | 0.933 | 0.833.
' 3 . ' : -
Mg/ Hugp o> | 0:402-|- 0.680 - D.230 - .0.348- 0.296 .§ - 0.976: | 0.993.
2 ' . _
Happd 05> |- 0333 | 0,421 - 0.329 0:225:
2
[{dgyg) 4idgp> 0.817
; —
Hagrp) Oty 0.789.
' 3
1t /a) Ot ppr - 0.308
|3~ 0.813 | 0:543 | 0.703 - a.63t
[C. iyt
14 T
i N E e R . NG CETRCg R .
12, sz, |t et | onszg |t 18
|t ) 20875 niszt| .89 0.911
_|(65!2}24,97l2>. Corse| 0.207 |- 0.248 |- 0.253 | 0,351 ] 0.975 { 0.593
|(5; ) 2105 - 0530 |- 0.233 | - a7
2 . - ) v B
Hay e % 950 ' 0.3
}[d5/2)24.d5/2> 0.925.: [ - 0.936
[a775.d57a) 357 02034,
4
[t87,5)"0. 85> - 0.57%
| [ds,'z)_?d?ds.fa’;" 0.345
[dm;- N T 4.821 - 0.500




Table I

TABLE 1 {contirved)
45, VA BV A IR B A B
= 0.961 |  0.845 | 0.980 | o0.58¢ 0.945
vzt wzt | syt gt | et | wet| v
Jttg 1?23, o 0.900. | g0 85> 0.212
!(65;2122_.:63',5 0.655 0.588 |(dm;zd,s[ /2 0.822 0.662
[0 d5,p> 0.221 [0 %.0y50 - 0.556
oyt M0ty | 0.832 My gdspp)diny 7 -0
|{57/2-85 0325122 0.208 | Jigy/p.05,15.5 0 - 0.445
'l(g,-,z.:qg,a}_z.a'm? 0.3%8 (9772852050050 | 21 | o222
R LCT R LR 0.207 [(87/2-95/206.5, 5> 0.58¢ | 0.952
572005/ 0.275 | |la7 75506030 - u.258
[(9/91%0.5, > - o [tay0%8.5,,> 9.240
(521052 0549

Hueleus Quantity Experiment Theory
1 z 3 4 5
13705 T + 2.8413 taz02 |+2.75 [+237 [+2.8 |+1.72
1
0y + + 0.051 1* | +0.024 | + 0.048
1
138, N b
ta bysp + +2.7614658 22° | +3.02 |+ 278 {+2.37 |+215 |+1.72
1
&+ +0.22 P +00 |40z
1
s szt - mat ooooesre | <10 e [0 [c10® [<p07?
9/2," = Hzl* 0.00077*  17% | o.00018 | 0.0004s | 0.00t03 | 0.00146 | v.0025¢
vzt -zt oo 1P <107 | <10 [e10? [<10? | <0?
A A B R S R U R L PRT B PT i Pt
BlE2) szt -2 | s@b 8 d2
< 2" ] s | o7
/2, 172)" | 40 | s 2
B
B X 0.00. | 0.0
s, e szt | Le 2| 1 | osee
s/2," 2" | 12 0 oue | s -
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