UNIVERSIDADE DE SÃO PAULO # PUBLICAÇÕES INSTITUTO DE FÍSICA CAIXA POSTAL 20516 01498 - SÃO PAULO - SP BRASIL IFUSP/P-897 PROJECTED QUASIPARTICLES CALCULATIONS ON THE N = 82 ODD-PROTON ISOTONES L. Losano Departamento de Física Universidade Federal da Paraíba C.P. 5008, 58059 João Pessoa, Paraíba, Brasil H. Dias Instituto de Física, Universidade de São Paulo Fevereiro/1991 ### PROJECTED QUASIPARTICLES CALCULATIONS ON THE N=82 ODD-PROTON ISOTONES* #### L. Losano Departamento de Física, Universidade Federal da Paraíba C.P. 5008, 58059 João Pessoa, Paraíba, Brasil and #### H. Dias Instituto de Física, Universidade de São Paulo C.P. 20516, 01498 São Paulo, SP, Brasil #### ABSTRACT The structure of low-lying states in odd-mass N=82 isotones (135 $\leq A \leq$ 145) is investigated in terms of a number-projected one- and three-quasiparticles Tamm-Dancoff approximation (PBCS). A surface delta interaction (SDI) is taken as the residual nucleon-nucleon interaction. Excitation energies, dipole and quadrupole moments, and B(M1) and B(E2) values are calculated and compared with the experimental data. NUCLEAR STRUCTURE: ¹³⁷Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴³Pm, and ¹⁴⁵Eu; calculated levels J, π , μ , Q, B(M1), and B(E2). Number-projected one- and three-quasiparticles. Surface δ interaction. Theoretical studies of the Z > 50, N = 82 isotones, in the mass region $135 \le A \le 151$, show that the properties of low-lying states of these nuclei can be described by pure proton-quasiparticles excitations 1-6. In Refs. 1-3 light odd-isotones $(53 \le Z \le 65)$ are studied with the usual Bardeen-Cooper-Schrieffer (BCS) formalism within the one- and three-quasiparticle space. The structure of light even-isotones $(54 \le Z \le 62)$ is investigated in terms of zero and two quasiparticles in Ref. 4, and, including particle-number projection in the formalism, heavy even-isotones $(62 \le Z \le 68)$ are explained in Ref. 5. More recently, using a seniority truncation method, Andreozzi et al. 6 performed a calculation of pairing effects in even-isotones, with seniority $\nu \le 4$ states and, in odd-isotones, with $\nu = 1$ states. In the present work we study odd-mass isotones ($55 \le Z \le 63$) by means of a standard Tamm-Dancoff approximation in a number-projected one- and three-quasiparticle space (PBCS). The projection is performed after the minimization of the ground state energy. As a residual two-body force we take the surface delta interaction (SDI). In a earlier paper 7 the formalism and some applications are presented. By comparison with low-seniority shell-model calculations (LSSM) we demonstrated the importance of including particle-number projection in the BCS approximation, and that the PBCS yields results very close to those obtained with LSSM. For odd-mass isotones previous calculations generally are restricted to seniority-one degrees of freedom. Exclusively in Refs. 1-3 three-quasiparticles excitations are incorporated but without particle-number conservation. In addition, in recent years several experimental studies of odd-mass N=82 isotones have been carried out, which provide much new data on spectra, electromagnetic properties, and high-spin states 8-12. Theoretical studies were performed, in some cases, by restricted shell-model (SM) calculations $^{13-16}$. The 137 Cs isotone is analysed by Baldridge 13 in the small proton space $(g_{7/2}, d_{5/2})^5$, and only for states with spin and parity $I^{\pi} = 1/2^+$, the single-particle orbitals ^{*} Supported in part by the FAPESP and CNPq. $h_{11/2}$, $d_{3/2}$, and $s_{1/2}$ have been included. In Ref. 14 the ¹⁴³Pm nucleus is described by Prade et al. within a space where proton configurations of the types $(g_{7/2}, d_{5/2})^{Z-50}$ and $(g_{7/2}, d_{5/2})^{Z-51}(d_{3/2}, s_{1/2})^1$ have been taken into account. The structure of positive-parity high-spin $\leq 11/2$ states in ¹⁴¹Pr were investigated by Prade et al. ¹⁵ within the same space of Ref. 14, and for negative-parity states in ¹⁴¹Pr and ¹⁴³Pm the configurations $(g_{7/2}, d_{5/2})^{Z-51}(h_{11/2})^1$ have been considered. Assuming ¹⁴⁶Gd to be doubly-closed shell nucleus, Kaczarowski et al. ¹⁶ have interpreted the negative-parity high-spin levels of ¹⁴⁵Eu nucleus as members of $(d_{5/2})^{-2}(h_{11/2})^1$ and $(d_{5/2}, g_{7/2})^{-2}(h_{11/2})^1$ multiplets. In this paper a systematic examination of the properties of low-lying states of odd-mass N=82 isotones are presented. Our study encompasses the isotones ¹³⁷Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴³Pm and ¹⁴⁵Eu. We focus our attention on the positive-parity states. In future work, the study of the positive- and negative-parity high-spin states shall be developed. #### II. PARAMETERS We describe the states of N=82 isotones, with $55 \le Z \le 63$, assuming $^{132}_{50}Sn_{82}$ as a inert core. The low-lying levels are assumed to come from 5-13 protons distributed over the single particle orbitals $1g_{7/2}$, $2d_{5/2}$, $3s_{1/2}$, $2d_{3/2}$ and $1h_{11/2}$. A surface-delta interaction (SDI) is used as the residual nucleon-nucleon interaction $$V_{SDI} = -4\pi G \delta(r_i - R) \delta(r_j - R) \delta(\Omega_{ij}) .$$ Our starting point for the choice of parameters was based on the values used in Ref. 5, for $55 \le Z \le 61$, and in Ref. 17, for Z = 63. The final values were determined by requiring a good overall fit of the energies of one-quasiparticle (1qp) states, and a reasonable density of low energy levels. Parameters used in the present calculations are summarized in Table I. It should be noted that the single-particle energies decrease with the mass number. The same behavior was observed experimentally 18 . The density of levels above 1 MeV and the energy of the three quasiparticle (3qp) states are sensitive to the relative single-particle energies $\varepsilon d_{5/2} - \varepsilon d_{7/2}$ and $\varepsilon h_{11/2} - \varepsilon g_{7/2}$, and to small variations in the intensive strength G. Our values for the parameter G agrees with that obtained by Chasman¹⁹, using the method of correlated quasiparticles, in which the correlations arising from particle number conservation, usually neglected in BCS approximation, are included. Blocking effect is fully taken into account. The electromagnetic properties were evaluated with the usual values^{1,3,14,15} for the effective electric charge and the effective gyromagnetic ratios, namely $e_p^{eff} = e$, and 2e, for electric transitions, and $g_l = 1$, $g_e^{eff} = 2.234$, 2.91, 3.91, 4.464, and 5.58 for the magnetic ones. #### III. RESULTS AND DISCUSSION #### A. Energy spectra The experimental and calculated level schemes of the energy spectra for 137 Cs, 139 La, 141 Pr, 143 Pm and 145 Eu are compared in Figs. 1–5. We have calculated all possible low-lying positive-parity states with excitation energy below 2.0 MeV, for $Z \leq 61$, and up to 2.20 MeV, for Z = 65. In order to complete the results for 1qp states the negative-parity $11/2_1^-$ states are included. We connect by dotted line 1qp states and those with mixed 1qp and 3qp components with the probably correspondent experimental ones, based on the spectroscopic factors calculated by Wildenthal et al.²⁰. Due the high density of levels above 1 MeV excitation energy, the one-to-one identification of the experimental and calculated 3qp states turns out to be, in general, quite difficult and uncertain. Therefore, in the following discussion of the 3qp states only a tentative identification with experimental levels will be presented. In Table II, wave functions calculated for a few low-lying states are listed. There is good agreement, in general, between experimental and theoretical energy spectra. The differences in energy for dominant 1qp states is ≤ 50 keV, and for states with (1qp+3qp) mixing character is ≤ 100 keV. All other experimentally known levels below 2 MeV, can be assigned as being 3qp states and differ less than 200 keV in energy. Below, we present a short discussion for each nucleus separately. - (a) ¹³⁷Cs. Our theoretical spectrum is similar to earlier calculations^{2, 3, 20}. All theoretical results indicate the sequence of low-lying levels to be $J^{\pi} = 7/2^{+}$, $5/2^{+}$, $5/2^{+}$, $3/2^{+}$, $11/2^{+}$, and $9/2^{+}$. It reinforces the $5/2^{+}$ and $3/2^{+}$ spin assignments for the experimental levels at 0.849 MeV and 0.981 MeV, respectively, and suggests $11/2^{+}$ and $9/2^{+}$ spin and parity assignments for the levels measured at 1.184 MeV and 1.273 MeV, respectively. In addition, we predict a $15/2^{+}$ state at about 1 MeV, and two states with $I^{\pi} = 17/2^{+}$ and $15/2^{+}$ at about 1.5 MeV. The 3qp $1/2_{1}^{+}$ state may correspond to the $1/2^{+}$ experimental level at 1.49 MeV. - (b) ¹³⁹La. The experimental density of levels in the region 1 MeV-2MeV is well reproduced by our calculation, in contrast with that carried out in Ref. 1, in which the same SDI force was used, and in agreement with those calculated in Ref. 2 and 3, using Elliott and Gaussian interactions, respectively. Similar to the spectra obtained in Ref. 2 the number of levels for $J^{\pi} \leq 9/2^+$, up to 2 MeV, is the same obtained experimentally. No state with $J^{\pi} > 9/2^+$ was calculated in Ref. 2. In Ref. 3 the number of $5/2^+$ and $7/2^+$ states is smaller than the experimental one. For high-spin states with $J^{\pi} \geq 11/2^+$ our results foretell one more state by spin than those obtained in Ref. 3, and an additional $17/2^+$ state at very low energy (about 1.5 MeV). - (c) ¹⁴¹Pr. The theoretical spectrum reproduces the experimental sequence for the first four levels, i.e., $5/2^+$, $7/2^+$, $11/2^+$, and $3/2^+$. The density of levels in the region 1 MeV-2 MeV is in good agreement with experiment. Similar results have been obtained in Ref. 2, where only states with $J^{\pi} \leq 9/2^+$ were considered. The two low-lying levels measured at 1.29 MeV and 1.45 MeV probably have $5/2^+$ and $7/2^+$ spin assignments, respectively, which may correspond to the theoretical $5/2^+_2$ and $7/2^+_2$ states established - at 1.34 MeV and 1.44 MeV. The 3qp states $3/2_1^+$, $9/2_1^+$, $9/2_2^+$, $5/2_3^+$ and $1/2_2^+$, may be related to the experimental levels at 1.44 MeV, 1.46 MeV, 1.52 MeV, 1.58 MeV, and 1.66 MeV, respectively. Just as in 137 Cs and 139 La, $J^{\pi} = 11/2^+$, $13/2^+$, $15/2^+$, and $17/2^+$ states are calculated. The agreement between our calculated spectrum and that obtained with shell-model 15 is remarkable. Both present the same number of states by spin. Two states with $J^{\pi} = 13/2^+$ and $15/2^+$ at about 1.5 MeV, and one $17/2^+$ state at 1.8 MeV are predicted. The 3qp $11/2_1^+$, $13/2_2^+$, and $15/2_2^+$ states may correspond to the levels measured at 1.49 MeV, 1.77 MeV, and 1.80 MeV excitation energy, respectively. - (d) ¹⁴³Pm. The experimental sequence of low-lying levels $5/2^+$, $7/2^+$, $11/2^+$, $3/2^+$, and $1/2^+$ is reproduced. For the density of level in the region of 1.5 MeV-2.0 MeV, we have analogous results, as in ¹⁴¹Pr case, to the comparison with experimental data and the spectra obtained in Ref. 1, 2 and 3. J^* states $11/2^+$, $13/2^+$, $15/2^+$, and $17/2^+$ are also calculated. We propose a spin and parity assignments $13/2^+$ to the level measured at 1.94 MeV, which can be related to the $13/2^+_2$ state. The 3qp $5/2^+_2$, $3/2^+_3$, $1/2^+_2$, and $15/2^+_2$ states probably correspond to experimental levels at 1.51 MeV, 1.75 MeV, and 1.90 MeV, respectively, and the measured level $11/2^+$ at 1.66 MeV corresponds to the $11/2^+_1$ or $11/2^+_2$ state. Our calculation foresees two states with $J^* = 15/2^+$ and $13/2^+$ and one $17/2^+$ state, at about 1.5 MeV and 2.0 MeV, respectively. The resemblance with standard shell-model calculation 1^4 is again remarkable. - (e) 145 Eu. In order to illustrate the sensitivity of 3qp states with respect to the parameter G, we present the theoretical spectra for G=0.165, Theory (A), and for G=0.13, Theory (B). There is very good agreement between Theory (B) calculated spectrum and the experimental one. The same prediction of weak proton pairing interaction strength in this mass region, near Z=64, was antecipated by Chasman 19. In our calculated spectra (Theory (B)) the experimental density of levels above 1.5 MeV is well reproduced. Earlier calculations had quite different results. The spectrum obtained in Ref. 3 is similar to that calculated with the parametrization (A). In Ref. 2, the experimental energy gap at about 500 keV above the single particle levels does not exist, and the 3qp states are lowered too much. The theoretical spectra performed with parametrization (B), (Theory (B)), suggests spin and parity assignments $7/2^+$ to the level measured at 1.60 MeV, and predict 3qp spin $11/2_2^-$ and $1/2_1^+$ states at 1.79 MeV and 1.89 MeV, which may correspond to the levels seen at 1.60 MeV and 1.88 MeV, respectively. Only above 2 MeV excitation energy, states with $J^* \geq 13/2^+$ are prognosticated. #### B. Electromagnetic Properties The available experimental data^{8 - 12, 14, 15} on the magnetic dipole (μ) and electric quadrupole (Q) moments, and the B(M1) and B(E2) transition probabilities are presented and compared with the calculated values for the odd N=82 isotones in Table III. With the exception of the $\mu_{5/2_1^+}$ in ¹⁴⁵Eu nucleus, the experimental moments are fairly well reproduced by theoretical calculation. It should be noted, however, that the measured magnetic moments for the ground state in the neighbouring ¹⁴¹Pr and ¹⁴³Pm isotones have magnitudes close to the single particle estimative, about 4 μ_N . Keeping in mind the uncertainties in the measured values, there is good agreement between theoretical and experimental B(E2) values, and B(M1) values for transition $5/2_1^+ \rightarrow 7/2_1^+$ in ¹³⁹La and ¹⁴³Pm nuclei, and for the transition $15/2_2^+ \rightarrow 13/2_2^+$ in ¹⁴¹Pr. The discrepancy in the other M1 transition seems to come from the fact that the role played by the tensor M1 operator $[Y_2 \times S]_{15}$ very important when the transition-due to l-forbiddeness — is weak, is not considered in the present work. In view of the excellent agreement verified for the electromagnetic moments, in Table IV, the magnetic dipole and electric quadrupole moments calculated for some low-lying states in ¹³⁷Cs, ¹⁴¹Pr, and ¹⁴⁵Eu isotones are displayed. We thought it unnecessary to show the results for ¹³⁸La and ¹⁴³Pm as most of them fall in between the corresponding results for the neighbouring nuclei. These theoretical foresights are presented in order to furnish a guide for future measurements. #### IV. SUMMARY AND CONCLUSIONS The properties of the odd N=82 isotones, in the mass region $137 \le A \le 145$, were performed within the framework of the projected 1qp+3qp calculations (PBCS) using an SDI force as the residual interaction. The different input parameters, proton single particle energies and interaction strength, were obtained via an overall fit to 1qp states excitation energies and requiring a reasonable density of levels at low-energy spectra. All available data on the energy spectra, magnetic and electric moments, and B(M1) and B(E2) values were examined. We can state that the present model describes the main features of the experimental level schemes and the electromagnetic properties of the low-lying states. Significant improvement is obtained with respect to earlier 1qp+3qp calculations^{1,2,3}, carried out without number-projected states. #### **ACKNOWLEDGMENTS** We would like to thank F. Krmpotić for fruitful discussions and W.A. Seale for critical reading of the manuscript. #### REFERENCES - 1 M. Waroquier and K. Heyde, Nucl. Phys. A144, 481 (1970). - 2 N. Freed and W. Miles, Phys. Lett. 32B, 313 (1970). - 3 K. Heyde and M. Waroquier, Nucl. Phys. A167, 545 (1971). - 4 M. Waroquier and K. Heyde, Nucl. Phys. A164, 113 (1971). - 5 G. Wenes, K. Heyde, M. Waroquier, and P. Van Isacker, Phys. Rev. C26, 1692 (1982). - 6 F. Andreozzi, A. Covello, A. Gargano, and A. Porrino, Phys. Rev. C41, 250 (1989). - 7 L. Losano, H. Dias, F. Krmpotić, and B.H. Wildenthal, Phys. Rev. C38, 2902 (1988). - 8 L.K. Peker, Nucl. Data Sheets 38, 87 (1983). - 9 T. Burrows, Nucl. Data Sheets 57, 337 (1989). - 10 L.K. Peker, Nucl. Data Sheets 45, 1 (1985). - 11 L.K. Peker, Nucl. Data Sheets 48, 753 (1986). - 12 L.K. Peker, Nucl. Data Sheets 49, 1 (1986). - 13 W.J. Baldridge, Phys. Rev. C18, 530 (1978). - 14 H. Prade, L. Käubler, U. Hagemann, H.U. Jäger, M. Kirchbach, L. Schneider, F. Stary, Z. Roller, and V. Paar, Nucl. Phys. A333, 33 (1980). - 15 H. Prade, W. Enghardt, H.U. Jäger, L. Käubler, H.J. Keller, and F. Stary, Nucl. Phys. A370, 47 (1981). - 16 R. Kaczarowski, E.G. Funk, and J.W. Mihelich, Phys. Rev. C33, 2711 (1981). - 17 C. Conci, V. Klemt, and J. Speth, Phys. Lett. A148B, 405 (1984). - Y.A. Akovali, K.S. Toth, A.L. Goodman, J.M. Nitschke, P.A. Wilmarth, D.M. Moltz, M.N. Rao, and D.C. Sousa, Phys. Rev. C41, 1126 (1990). - 19 R.R. Chasman, Phys. Rev. C21, 456 (1980). - 20 B.H. Wildenthal, E. Newman, and R.L. Auble, Phys. Rev. C3, 1199 (1971). #### TABLE CAPTIONS - Table I. Parameters used in the present calculations. - Table II. Calculated wavefunctions of some low-lying states in N=82 isotones. Only amplitudes larger than 4% are listed. For the ¹⁴⁵Eu nucleus the plotted values were obtained with the set of parameters B. The notation $|j\rangle$ represent the 1qp component $|s_{1/2}\rangle$, $|d_{3/2}\rangle$, $|d_{5/2}\rangle$, $|g_{7/2}\rangle$ and $|h_{11/2}\rangle$, for $J^{\pi}=1/2^+$, $3/2^+$, $5/2^+$, $7/2^+$ and $11/2^+$ states, respectively. - Table III. Comparison between experiment and theory. The magnetic dipole (μ) and electric quadrupole (Q) are in units eb and μ_N , respectively. The transition probabilities B(M1) and B(E2) are in units of $10^{-3}\mu_N$ and $10^{-3}e^2b^2$, respectively. The subscript 1 refers to $g_s^{eff}=2.234$ or $e^{eff}=e$, 2 refers to $g_s^{eff}=2.91$ or $e^{eff}=2e$, 3 refers to $g_s=3.91$, 4 refers to $g_s=4.464$, and 5 refers to $g_s=5.58$. For the ¹⁴⁵Eu nucleus the plotted values were obtained with parametrization (B). - Table IV. Calculated electric quadrupole and magnetic dipole moments, in units of eb and μ_N , respectively. Q_1 refers to $e_p^{eff}=2e$, μ_1 , μ_2 refer to $g_s^{eff}=2.91$ and $g_s^{eff}=4.464$, respectively. #### FIGURE CAPTIONS - Fig. 1. Calculated and experimental⁸ spectrum of 137 Cs. Dotted lines connect one-quasi-particle states. The spins are in 2J form. All theoretical states have positive parity unless noted otherwise. - Fig. 2. Calculated and experimental⁹ spectrum of ¹³⁹La. See fig. 1 caption. - Fig. 3. Calculated and experimental 10 spectrum of 141 Pr. See fig. 1 caption. - Fig. 4. Calculated and experimental 11 spectrum of 143 Pm. See fig. 1 caption. - Fig. 5. Calculated and experimental 12 spectrum of 145 Eu. See fig. 1 caption. TABLE I | | | ¹³⁷ Cs | ¹³⁹ La | ¹⁴¹ Pr | ¹⁴³ Pm | ¹⁴⁵ Eu (A) | ¹⁴⁵ Eu (B) | |--------------------|-------|-------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------| | ε _{g7/2} | (MeV) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | ε _{d5/2} | | 0.77 | 0.77 | 0.77 | 0.40 | 0.40 | 0.35 | | ε _{d3/2} | | 2.60 | 2.60 | 2.50 | 2.60 | 2.60 | 2.20 | | ε _{s1/2} | | 2.62 | 2.50 | 2.50 | 2.30 | 2.30 | 1.90 | | ε _{h11/2} | | 2.30 | 2.15 | 2.15 | 2.05 | 2.05 | 1.85 | | G | (MeV) | 0.17 | 0.17 | 0.17 | 0.165 | 0.165 | 0.13 | #### TABLE II | 137 _{Cs} , | 5/21 | 7/21+ | 11/21 | | | | | | | | | |--------------------------------------------------------|----------------|---------|-------|-------|---------|-----------|-------|-------|--------|--------|---------| | j> | 90.99 1 | 0.993 | 0.982 | | | | | | | | | | | 1/21 | 1/22+ | 3/21 | 3/22+ | 3/24+ | 5/22 | 7/22+ | 9/21+ | 11/21+ | 13/2,+ | 15/21+ | | [(g _{7/2}) ² 4,g _{7/2} > | | | 0.966 | | | 0.956 | | 0.958 | 0.943 | | 0.924 | | (g _{7/2}) ² 2,d _{5/2} > | 0.922 | 0.240 | | 0.754 | a d | | 0.964 | | | | | | (g _{7/2}) ² 4,d _{5/2} > | | | | 0.443 | - 0.420 | | | 0.209 | | 0.909 | | | (g _{7/2}) ²⁶ ,d _{5/2} > | | | | | | | ÷ | | 0.229 | 0.402 | - 0.376 | | (d _{5/2}) ² 2,g _{7/2} > | | | | 0.277 | 0.509 | 2.
2.8 | | | | | | | (d _{5/2}) ² 4.g _{7/2} > | - 0.254 | - 0.250 | | | | | | | | | | | 11> | | 0.924 | | | 0:678 | | | 7. e | | | | | 139 _{Ca} | 5/21+ | 7/21 | 11/2 | | | | | | | | | |---|-------------------|-------|-------|---------|---------|---------|---------|-------|--------|--------|---------| | د ز ا | 0.991 | 0.989 | 0.981 | s
V | | | | | | | | | | 1/21+ | 1/22+ | 3/21 | 3/22+ | 3/24* | 5/22+ | 7/22+ | 9/21+ | 11/2,+ | 13/21+ | 15/21+ | | (g _{7/2}) ² 2,d _{5/2} , | - 0.854 | 0.361 | 0.564 | - 0.638 | | - 0.687 | 0.712 | 0.924 | | | | | (g _{7/2}) ² 4,d _{5/2} | | | 0.416 | 0.371 | - 0.550 | 0.283 | | 0.311 | 0.952 | 0.921 | | | (g _{7/2}) ²⁶ .d _{5/2} ; | , | 3- | | | | | | | | | 0.922 | | (d _{5/2}) ² 2,g _{7/2} : | | | 0.471 | 0.308 | | 0.401 | | | | | | | (d _{5/2}) ² 4.g _{7/2} | 0.337 | ÷ ;- | | | | | | | | i | | | (g _{7/2}) ² 4.9 _{7/2} | > . 1 | | | - 0.336 | 0.223 | 0.425 | | | 0.272 | | - 0.352 | | [(d _{5/2}) ² 4,d _{5/2} | > | | | 0.332 | ļ | | | | | | · | | (g _{7/2}) ² 0.g _{7/2} | > | | | | | | - 0.626 | | | | | | . di≯ | 0.324 | 0.914 | 0.346 | | 0.754 | | | | | | | #### TABLE II (Continued) | 141 _{Pr} | 5/21+ | 7/21+ | 11/21 | | | | 1 1 | | | | | |--|---------|---------|-------|---------|---------|-------------|---------|-------|--------|--------|--------| | j> | 0.991 | 0.990 | 0.981 | | | | | | | | | | ¹⁴¹ Pr | 1/21+ | 1/22+ | 3/21+ | 3/22+ | 3/23+ | 5/22+ | 7/22+ | 9/21+ | 11/2,+ | 13/2,+ | 15/21+ | | (d _{5/2}) ² 2,g _{7/2} > | | | 0.533 | | 0.714 | - 0.341 | 0.866 | 0.933 | 0.933 | | | | [(d _{5/2}) ² 4,g _{7/2} > | 0.402 | - 0.669 | | - 0.239 | | | - 0.348 | | 0.296 | 0.976 | 0.993 | | (9 _{7/2}) ² 2,d _{5/2} > | - 0.333 | 0.421 | | - 0.329 | | 0.225 | | | 1. | | | | [{d _{5/2} } ² 4,d _{5/2} > | | | | 0.817 | | | | | | | | | (g _{9/2}) ² 0.d _{5/2} > | | | | | | 0.789 | | | | | · | | (d _{5/2}) ² 0,d _{5/2} > | 2 + 1 | | | | | - 0.309 | | | | | | |]j> | 0.813 | 0.543 | 0.703 | | - 0.631 | St. St. St. | | | | | | | | 143 _{Pm} | 1/21+ | 5/2 ₁ + | 7/21+ | 11/21 | | rantski kilori
Primski sina | en e | erg wasterestig
https://de | | | |---|---|---------|--------------------|-------|---------|---------|--------------------------------|--|-------------------------------|-------|--------| | | [. | 0.971 | 0.994 | 0.992 | 0.976 | | | | | | | | | | 1/22+ | 3/21* | 3/22+ | 3/23+ | 5/22+ | 7/22+ | 9/21+ | 11/21 | 13/2 | 15/21+ | | 1 | (d _{5/2}) ² 2,9 _{7/2} > | ļ. | | 0.409 | 0:732 | 0.521 | 0.895 | | 0.911 | | | | | {d _{5/2} } ² 4,g _{7/2} > | 0.764 | | | | 0.207 | - 0.249 | - 0.253 | 0.351 | 0.975 | 0.993 | | - | (g _{7/2}) ² 2,d _{5/2} > | - 0.539 | - 0.233 | | | - 0.317 | | | | | | | | (g _{7/2}) ² 4,d _{5/2} > | | | | 0.234 | | | | | · | | | | (d _{5/2}) ² 4,d _{5/2} > | | 0.925 | | | 291. | | 0.930 | | | | | | (9 _{7/2} , d _{5/2})1, d _{3/2} > | 0.203 | | | | | | | | | | | : | {g _{7/2} } ²⁰ ,d _{5/2} > | | | | | - 0.579 | | | | | | | | (d _{5/2}) ² 0,d _{5/2} > | | | | | 0.345 | | | | | | | | d _{3/2} > | | | 0.821 | - 0.500 | | | | | | | TABLE II (continued) | 145 _{Eu} | 1/21 + | 3/21 | 5/21+ | 7/21+ | 11/2 | | | | | |--|---------|-------|-------|-------------------------------------|--|-------|---------|---------|--------| | j> | 0.961 | 0.945 | 0.990 | 0.989 | 0.945 | | | | | | | 1/22+ | 3/22 | 5/22+ | | | 7/22+ | 9/2,+ | 11/2,+ | 13/21+ | | [(d _{5/2}) ² 2,s _{1/2} > | | 0.900 | | {d _{5/2}) ² 4 | ,d _{5/2} > | | 0.212 | | | | (d _{5/2}) ² 2.d _{3/2} > | 0.655 | | 0.688 | (d _{5/2}) ² 4 | s _{1/2} > | 0.922 | 0.662 | | | | (d _{5/2}) ² 4,d _{5/2} > | | 0.221 | | (d _{5/2}) ² 4 | .d _{3/2} > | | - 0.556 | | ••• | | (g _{7/2} ,d _{5/2})1,d _{3/2} > | 0.432 | | | (g _{7/2} .d _{5/} | /2 ^{)4,s} 1/2 ^{>} | | - 0.227 | | | |](g _{7/2} ,d _{5/2})2,s _{1/2} > | | | 0.208 | (g _{7/2} ,d _{5/} | /2 ^{}5,s} 1/2 ^{>} | | | - 0.445 | | | (g _{7/2} ,d _{5/2})2,d _{3/2} > | 0,398 | | | (g _{7/2} .d _{5/} | /2 ^{)5.d} 3/2 ^{>} | 0.241 | 0.221 | | | | (g _{7/2} ,d _{5/2})3,d _{1/2} > | | 0.207 | | (g _{7/2} .d _{5/} | 2)6,51/2> | | | 0.584 | 0.952 | | [(g _{7/2}) ² 0.d _{5/2} > | | | 0.275 | (g _{7/2} ,d _{5/} | (2 ^{)6,d} 3/2 ^{>} | | 0.258 | | | | [(g _{7/2}) ² 0,s _{1/2} > | - 0.344 | | | (g _{7/2}) ² 6, | \$1/2 | | | | 0.240 | | (d _{5/2}) ² 0,d _{5/2} > | | | 0.549 | | | | | | - | Table III | Nuc leus | Quantity | Experim | ent | | | Theory | | | |-------------------|--|--|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | | | | | 1 | 2 | 3 | 4 | 5 | | 137 _{Cs} | ^μ 7/2 ₁ ⁺ | + 2.8413 | 4.0 | + 3.02 | + 2.76 | + 2.37 | + 2.16 | + 1.72 | | | Q _{7/21} + | + 0.051 | 18 | + 0.024 | + 0.048 | | - | | | 139 _{La} | ^μ 7/2 ₁ ⁺ | + 2.761465 | 8 22 ^b | + 3.02 | + 2.76 | + 2.37 | + 2.15 | + 1.72 | | | Q _{7/21} + | + 0.22 | 3 ^b | + 0.10 | + 0.20 | | | | | | 8(M1) 5/21 + 7 | 2, 0.00257* | 4þ | < 10 ⁻³ | | | 9/2, + + 7, | 2, + 0.00077* | 17 ^b | 0.00018 | 0.00044 | 0.00103 | 0.00146 | 0.00254 | | | 7/2 ₃ ⁺ + 7/ | 21 0.070* | 16 ^b | < 10 ⁻³ | < 10 ⁻³ | < 10 ⁻³ | < 10 ⁻³ | < 10 ⁻² | | | 7/2 ₃ ⁺ → 5, | 2, + 0.11* | 16 ^b | < 10 ⁻³ | | | B(E2) 5/21 + 7, | 2 ₁ ⁺ ≤ 8 ^b < 2 ^{b*} | | 8 | 3 2. | | | | | | + . | | 6 ^b | 0.02 | 0.07 | | | | | | 9/2 ₁ ⁺ → 7/ | - 1 | 1.1 ^{b*} | 6. | 24 | | | | | | 0/0 + 6 | 7.5
2 ₁ 1.79 | 24 ^{b*} | 0.01 | 0.06 | | | | | | 5/2 ₁ + 5/ | 21 1.79 | 4 ^b | 1.41 | 5.62 | : | · | | | | 3/22 - // | 3.7 | 1.3 ^{b*} | 246 | 986 | | | | | | E/2 + - 7/ | 2, 15.0 | 1.5 ^b | 0.6
867 | 2.3
3470 | | | | | | 3/23 - 7/ | 4.7 | 5b* | 2.0 | 8.1 | | | | | | 7/2 + - 7/ | | 1.5 ^b | 131 | 523 | | | | | | ,,,_2 | 3.5 | 4 ^{b*} | 0.3 | 1.2 | | | | | | 7/2 ₃ ⁺ + 7/ | | 6 ^b | 6 | 24 | | | × | | | 1,-3 | 14.0 | 1.4 ^{b*} | 0.01 | 0.06 | | ĺ | | | | 7/23 + 5/ | | 10 ^{b*} | 0.6 | 2.4 | | ĺ | | | | 7/2 ₄ ⁺ + 7/ | | 5 ^b | 8 | 30 | | | | | | * | 13.8 | 1.2 ^{b*} | 0.01 | 0.08 | | | | | | 3/24 + 7/ | | 7 ^b | 109 | 436 | | | | | | . * | 22 | 4 ^{b*} | 0.3 | 1.0 | | | | Table III (Continued) | Nuc leus | Quantity | Experiment | | | Theory | | | |-------------------|--|--------------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | | | | 1 | 2 | 3 | 4 | 5 | | 141 _{pr} | ^μ 5/2 ₁ ⁺ | + 4.2754 5 ^c | + 3.12 | + 3.45 | + 3.96 | + 4.23 | + 4.79 | | | ^μ 7/2 ₁ + | + 2.8 2 ^C | + 3.01 | + 2.74 | + 2.35 | + 2.13 | + 1.69 | | | ^μ 11/2 ₁ | + 7.2 4 ^C | + 6.1 | + 6.5 | + 7.0 | + 7.2 | + 7.8 | | | ⁰ 5/2 ₁ + | - 0.0589 42 ^C | 0.08 | - 0.17 | | | | | | B(M1) 7/21 - 5/21 | 1 | < 10 ⁻³ | | | 15/22 + 13/22 | | 15 | 32 | 74 | 119 | 207 | | | $B(E2)$ $7/2_1^+ - 5/2_1^+$
$3/2_1^+ - 5/2_1^+$ | | 0.6
5.9 | 2.4 | | | | | | 5/22 - 5/21 | 23 2 ^C | 198 | 795 | | <u> </u> - | | | | 3/23 - 5/21 | | 7.5 | 30.0 | | | | | | 15/22 - 11/22 | 4.0 4 ^d | 9.4 | 4.8 | | | | | 143 _{Pm} | ⁴ 5/2 ₁ + | + 3.9 6 ^e | + 3.2 | + 3.5 | + 4.0 | + 4.3 | + 4.94 | | | ^μ 11/2 _] | + 6.27 50 ^e | + 6.13 | + 6.48 | + 6.99 | + 7.28 | + 7.85 | | | ^μ 15/2 ₂ ⁺ | + 7.50 43 ^e | + 7.08 | + 6.85 | + 6.51 | + 6.32 | + 5.94 | | | B(M1) 7/21 + 5/21+ | 1.64 12 ^f | 0.12 | 0.30 | 0.69 | 0.98 | 1.71 | | | | 0.00094 7 ^{e*} | 0.00007 | 0.00017 | 0.00039 | 0.00055 | 0.00095 | | | B(E2) 7/21 + 5/21 + 15/22 + 11/21 | 1. *** | 0.02
4.3 | 0.08
17.2 | | | | | 145 _{Eu} | ⁴ 5/2 ₁ * | + 1.1 3 ^g | + 3.20 | + 3.58 | + 4.15 | + 4.46 | + 5.09 | | | μ _{11/21} | + 7.458 44 ⁹ | + 6.15 | + 6.50 | + 7.03 | + 7.32 | + 7.90 | *Reference 8 d_{Reference 15} g_{Reference} 12 b_{Reference} 9 e_{Reference} 11 *in VU units CReference 10 f Reference 14 | | | 137 _{Cs} | | | 141 _{Pr} | - | | 145 _{Eu} | | |---------------------|--------|-------------------|----------------|----------------|-------------------|------|----------------|-------------------|-------| | Level | Qį | μ ₁ | ^μ S | Q ₁ | μ ₁ | μ2 | Q ₁ | μ ₁ | μ2 | | 7/21+ | 0.05 | 2.76 | 2.16 | 0.27 | 2.74 | 2.13 | 0.34 | 2.69 | 2.03 | | 5/21+ | - 0.25 | 3.44 | 4.20 | - 0.17 | 3.46 | 4.23 | 0.28 | 3.58 | 4.46 | | 11/21 | - 0.44 | 6.45 | 7.21 | - 0.43 | 6.45 | 7.23 | - 0.42 | 6.50 | 7.32 | | 3/21+ | - 0.02 | 1.18 | 0.92 | - 0.11 | 0.82 | 0.27 | - 0.22 | 0.91 | 0.43 | | 1/21+ | - | 1.11 | 1.60 | - | 1.39 | 2.12 | | 1.53 | 2.37 | | 7/22+ | - 0.12 | 3.89 | 4.20 | 0.07 | 3.18 | 2.92 | 0.20 | 4.23 | 4.82 | | 5/2,* | 0.10 | 1.99 | 1.57 | D.04 | 3.26 | 3.87 | - 0.02 | 3.84 | 4.92 | | 3/22+ | - 0.03 | 1.47 | 1.45 | 0.07 | 2.03 | 2.45 | - 0.09 | 1.65 | 1.77 | | 1/22+ | - | 1.45 | 2.24 | | 1.49 | 2.30 | | 1.26 | 1.87 | | 9/21+ | 0.006 | 3.62 | 2.90 | 0.11 | 4.36 | 4.24 | 0.02 | 6.30 | 7.76 | | 11/2,+ | - 0.03 | 4.36 | 3.44 | 0.17 | 5.62 | 5.72 | 0.23 | 5.81 | 6.06 | | 13/2 ₁ + | - 0.22 | 6.44 | 6.40 | 0.04 | 7.19 | 7.74 | 0.41 | 7.56 | 8.42 | | 15/21+ | 0.06 | 6.06 | 4.88 | 0.11 | 8.33 | 9.00 | 0.32 | 7.22 | 7.00 | | 17/21+ | - 0.30 | 8.18 | 7.92 | 0.22 | 8.18 | 7.92 | - 0.21 | 10.11 | 11.42 | Table IV FIG. 2 FIG. 3 FIG. 4 F1G.5