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Several different discretization methods for the single particle continuum in nuclear
structure calculations {notably when using the Randor: Phase Approximation (RPA} are
currently used in.the literature or are reportedly being implemented. They include
projection- methods: in - a number of va.riations[l_'s], including the use . of Weinberg .
"-quasi—particles"w, .and the use of Gamow states[4]. Their common. aim is to provide for
a sound schéne aﬂowing one to- include the relevant features of the: continuous
single—partic_lé: spectrum;; notably, single—particle resonances with the corresponding escape
widths, at reduce_d-,compuba.tiona.l::cost.. The vaﬁety of adopted methods eventually reflects.
the fact that a.unique or priviledged way of meeting such practical demands. actually does
not exist. ‘This implies, on the other hand, that considerations of convenience . are
applicable and legitimate: The - purpose bf this note is to discuss in some detail the
accuracy and stability of the simple and yet flexible and physically transparent projection
method of ref. [1], with-the‘-expecl;at;ion that this may. contribute both to technical and
conceptual uniﬁca.tiou.

The bésic scheme behind the method as used in connection with an isolated .
single—particle resonance lies in writing the scattering solution |1,£:+> of the

single—particle hamiltonian H..at energy E a8

147> = ju><u|gt> + Py (1)
where |u> is some normalized single—particle state and P = 1—ju><u| projects onto
the complementary subspace of the single—particle Hilbert space. Projection and formal

manipulation of the Schrddinger equation [E—H]| ¥t> =0 then gives

Plo"> = %> + GH(E) PH|u><u|pt> {2)




, ot
: <u|H|p" >
<uly®> = : - . (3)
E ~ <ulH[u> - <u|HGL (E)H|uw>

where (,‘1;','},(]:"))'= (E+in-H and |zp+> is the scattering solution of the projected
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hamiltonian. My, at-energy E. As noted in ref. (1}, this can easily be obiained by
solving the inhomogeneous equation ' '

[E-H]|p*> = Ju> o ()
with o adjusted 30 that- <u|(p+> ={ and ¢ satisfying appropriate asymptotic
conditions. In this case a=—<uEH|tp+>. Similarly, the more involved- object
| x+> = G;P(E)H|u> appearing in eq. (2} can be obtained by integrating

[E-H|xT> = |[u>8+ Hiu> (3)
with B adjusted so.that <u|x+>-=0 and enforcing appropriate asymptotic conditions.
All the ingredients in-eqs. (2) and. (3) are. therefore easily calculable numericaily for any
given single par_ticlé_: Wa_,v_efunction |u> . Furthermore; writing

<uBG{ (B |u> = <ujHix"> = A(E)—3T (E) G

the single—particle scattering matrix associated with II" appeats as -

. - T (E) . '
SCE) S(‘D(E} 1 + izK(E) P KB =5 E — <u}H|u> -~ A (E) @

where 3 ﬁP(E) is the S—matrix associated with the projected hamiltonian Hy, . A crucial

point is, therefore, to choose |u> so that the relevant resonant behavier of S(E) is

essentially carried by the second factor on the right hand side of eq. (7), whichi contains the
reduced reactance matrix K(E). The main content.of ref. {I] consists in showing that this
can be achieved in a simple and. stable way by taking for |u>. the (ﬁ}ormaﬁééd)-_interna.l

part of the resonant wavefunction |¢+>E—E itself. Stability, in this connection, refers
=k, LRI

to relative. insensitivity both to the precise definition of resonance energy- E_o_ _axi_d cut—off
radius to define’ the internal wavefunction, provided it lies outside the single—particle
potential i Tf .

1t should be. stressed, however, that stability. in this particular sense does not entail
the stability e.g. of T (Eo), in view of the energy dependence of .AU(E) and I‘u(E). It
turns out, in faci, that both_» the values and thg energy depencignce of these quaniitites are
much more sensitive to the particular cut—off radius which is used, so. that extra care i3
required to extract resonance parameters from the reduced reaction matrix; K. This:_is,
and: the. 1f,

/2 /2
resonances . in:-the: Woods—Saxon potential -described: in. Table 2; which stands. for a 16y

shown in the column labelled as T'(E;). of Table 1 for the: 1dg proton

target: Tnthis caleulation, we used the smooth cut—off

—Ry - B
<tlu> = Nx | 1400 <rfg™>

. . I

and chose E; as the value of E which minimizes the normalization factor N (i.e., for
which the integrated internal probability demsity is largest).

The stability of deduced resonance parameters is considerably improved, however,

by associating them with the pole and residue of the reduced r'éacta;nce'matrik; “In" this -

way, the resonance energy ER is given by the solution of *

- ER_<_U|H|H>—Au(ER) =0 o (93

3
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and the width ', is given as

T, = Fy(Fg) ) . {9b)

Loae

.

For practscal pu:poses, the energy dependence of A {E) a.nd T (E) is sunple enou‘rh §0

tha.t &hnea.r approximation to it in the vicinity of E By is useful[tcjj ThlS allows one to

apprommate:resonanoe:p_a.rameters in, t_er_ms of quantltl_es evaiu&ted.nume_ncnliy for E=F,; as

o Ay(Ee)
Au(ED) [<u| H I 11>"‘Eo] a’E—

- ERg <t1IH,Iu?+ — Y (EU) — . .(ma).

- ) + Bt W(EL‘) |
S i}

Tp o dAu(Eo} {10b)

The last two coiumns of ta.ble 1 show the valu&ﬁ obtmned in the case of proton resona:nces in

160 or severai choices Hfthe cut—oﬁ pa.ra.meters

A last but xmpm:tant point; ] refers to the use of these prolectmn techmques in the';
fra.mework of nuclea.r strucf.uxe (:‘«1,1(:11133.10113[7 } An obvmus a.nd typleal a.pphca.tlon consists
‘in analysmg the smgle-—partxcle contmuum in terms of 3 seti of normalizéd resonance states
such as [u) plus 2 nonresonant ba.ckground continiim. Iu this context one may have to :

deal m partmnlar, w1th more than one smgle—partm[e resonance 111 I gaven charnel. In‘order’

to-handle this smuat.aon one can (a) solve eq (4) in the energy span of a second resonance and
take the smoothly cut—off |¢> (in the sense of eq. (8)) to define:the second normalized
resone.nce state |u,>. The orthogonality of this to the first resonance state, <iy|u,> =10 , I8
in tiu’s case taken care of by the condition <u,|w> =0 provided the second cut—off radius is

sufficiently large. The twice—subtracted background continuum is then obtained by solving

B> = |u> o+ fup> o ' (11)

with ¢ and @, fixed 50 that <u|y>= <ujp>=90. Alternatively, one- can
{b) choose |u;> and |uy> independently according to eq. (8) in the energy dornains. of
the two resonances. In this-case they will be linearly independent but.in generel

non—orthogonal, If an orthogonal set.of resonance states is sought one has just. (o construct
' o —1/2yk : o '
> = Z {g /)ij—"_jj> with gy = <ugu;>
=

Both strategies are of course imrnediately extended to more than two. resonances per
channel, while the first indicates further how the previous discussioh- co.ncerning_ resonance
parameters is generalized. '

The non—resonant ba.ckg_round co.ntinuum_,: together with the normalized
iesonance—stat.es- and the bound single-f-pa,rtiele states allows for the setting up of & suitably
partitioned single—particle basis in which to express the many--body. dynamics.: In
particular, th,e.oounli-ng of tne. [eS0Nance; states to the background continnlnn will give rise
to energy—dependent shifts -(Auli) _e,nd-widths- (Fui-) which - act in. faet: as. (complex)
one—body selfenergies of the resonance states. These can. easily be accomodated in'
standard nuclear structure calculations provided the energy—dependence can.be ignored for
practical purposes. This then indicates that the most adequate choice-of resonance
wavefunctions <r|u;> is that which minimizes energy—dependence'effects, Even though
we found that resonance parameters can be refiably extracted under less stringent
conditions, it should. be borne in ming that the nuclear structure calculation. will involve
the wavefunctions themseives,_and.,not just those parameters. The numbene quoted.in the
third and fourth column of Tahle I indicate that the energy dependence of the uncorected
width resulting from the present partitioning of the single—particle- basis.is decreased by
taking .large enough cut—off radii- while the shift energy dependence is essent.ialiy stable.
The overall criterion appears in fact to- be that the radia.l node structure of the resonance
state wavelunctions should be preserved up to distances where t,_h_e potential becomes

negligible (or pure Coulomb, for charged particles).
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Tablet—  Single particle resonances in 90 as a function of arbitrary cut—off radius

parameters (R, , A,) in wave functions <r|u> of the eq. (8) (sée text). In
the table H.O. line corresponds the utilization of harmonic oscillator
wavefunction,
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Ulr) = V f(rl + &0 st f'(r)/r
fr) = 1/{1+expl(r—R)/al}

<3
)
Il

—351.8 MeV

a = 0.65 fm

st = 13 MeV-fm

=]
il

3.171m

Table 2 — Parameters of the Woods—Saxon well {for protons in 150).






