2]

,ff:-'a ] R

L TR =

UNIVERSIDADE DE SAU PAULI]

INSTITIITD DE FiSICA

CAIXA POSTAL 20516

01498 - SAO PAULD - SP
BRASIL

PUBLICAGOES

IFUSP/P-902

AN ALTERNATIVE FAMILY OF CHIRAL SOLITONS

F.S. Navarra, M. Nielsen and M.R. Robilotta
Instituto de Fisica, Universidade de Sdo Paulo

Fevereiro /1991




5

AN ALTERNATIVE FAMILY OF CHIRAL.SOLITONS

F.5. Navarra, M. Nielsen and M.R. Robilotta

Instituto de Fisica, Universidade de S3o Paulo,
C.P. Postal 20516, 01498 Sio Paulo, SP, Brasil

Chiral solitons are usually obtained in the non—linear sigma model. Here we
consider soliton solutions of an alternative chiral Lagrangian which is also compatible with
PCAC. Theoretical predictions agree fairly well with experiment and include the value

fﬂ, =78 MeV. .

I INFRODUCTION -

Chiral solitons possessing a conserved topological quantum number were introduced
oy. Skyrme-(l) and revived: by Adkins, Nappi and Witteu(?). Since then, they deserved a
considerable- attention in the literature, and both their static properties and interactions
were widely studied. The usual approach 1o the problem is based on the non—l_inear
og—model,- where the Lagrangian is invariant under axial transformations changing the pion
field « info the fuaction &= \/f%_‘—'ﬁ and vice—versa. In addition to the kinetic epergy,
the Lagrangian must contain terms involving higher order derivatives so as to stabilize the
soliton. Some versions also include a symmetry breaking term which endows the pion with
a mass and is responsible for PCAC.

The predictions of the various versions of the usual model for the static baryon

properties agree reasonably well with experimens, except. for the values of f7r and g L

respectively the pion decay constant and the axial coupling constant. When masses are
used as input, predictions for f?r and g " lie typically around- 2/3 of measured values.
This disagreemént doés not' change much when the pions are either, massless(2) or
massive(3), or when stabilization is: achieved by means .of the Skyrme_term(2’3} or w
mesons(4), suggesting that it _nrﬁght be due to some intrinsic feature of the model. This
could be associated with the fact that one is representing a system whose number of colours
N is 3 by a N-w Lagrangian. Hb.wever, before reaching conclusions about this subject,
one wouid need tb know to what extent results do depend on the use of the non-linear
sigma model. The discussion of this point ih the main purpose of this work.

Long. ago Weiuberg(E) has shown- that the non—linear c—model is just one among
néaﬁy other: possible realizations of chiral syrmmetry. Thus, in order to test the dependence
of results on the use of the av;n_lodel,.-'we construct a chiral soliton employing an alternative

chiral Lagrangian, which is also compatible with PCAC.

2. COVARIANT - DERIVATIVES, PCAC, HEDGEHOGS AND THE BARYONIC
CURRENT. '

The most general axial transformation of the pion field x is generated by(s)
Ras Ml = i (b [+ 1, 7y 8) _ {1)
where X, is the axial charge, { is an arbitrary function of =2 such that f(0) = fvr and g

is given by

g = {2)

primes indicate derivatives with respect to #°.




" The pion covariant defivative is written as
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D¥x’ which are simultaneously Lorentz invariant and isoscalar.

chosen 50 as to allow the divergence of the axial current A =~ to be written ag

a“Aﬂ

= i[x’ﬁssl ,

e m? g
= f M T
Tsospin invariance requires ﬁsn

to be a function of #° only, and we have
i[x, L) = % eyi[X, mlm
= —2L, (f+7g) =

Comparison with (5) yields:

“@

-1
G = = T+ 7%)

(7}
The form of the function f can be determined when one characterizes the symmetry

breaking part of the Lagrangian in terms of its transformation properties. The assumption

that £SB transforms. aceording to the (N/2, N/2) representation of SU(Z) x SU(2) allows
us. to write(s) ’

The chiral invariant part of the Lagrangian i obtained by constructing functions of

The symmetry breaking term of the Lagrangian endows the pion with a mass and is

¥ B [ £, 00]] = NOS2) £,
L

(8)
(3) This relation, when: combined with {4) and (5) produces
) = £ T s g
i) = — (3f + mg) . 9
S8 N{N+2) _ ®
Deriving: this.. £op(N).. and comparing with (7}, we obtain a differential equation for f
(recall that. g = g(f)}
1
(4)
(3}

(B0 + g+ %) = ~i (f+ %)
N{N+2) o- g) j( g)

- (10}
In-this work we consider two solutions f(N} of this equation, namely
f{1)y = Jf;—xz (11)
and: -
[(2) =

o +iioae) |

| (1)
which are .as_sociated with the foliqwing éymmetry breaking ﬁerms: |
ESB(l_) = f_ mi,/fjfr— . | (13)
and _ '
L, = [m2 L(1 +2/f2—4r") (14)
The solution with N =1 corresponds to the usual s—model.

The soliton fields in hoth N =1 and N =2 representations are assumed to be of
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the hedgehog form, 5
(15)
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and

(16)
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It
l-.'Jl —+
=
&
=]
o]
B

xvhefe F and G represent chiral angles in the ¢ model and in the alternative version.
The: scale of the flelds are deterniined by the requirement of positivity of the square roots

in egs. (11) and {12).

These: ansitze: allow the spatial components of the covariant derivatives to be

. expressed. as.
. Dy m,(1) = fz{g”h“rl'gﬁka“*(F‘*Si? F) Iy fa}' (17)
and .
D, 7,(2). = fﬂ,{ G2 gt (G- G2y 5 fa} . (18)

AN

This means that Dy x(2) can be obtained from Dy #{1) by means of the replacement:

FaG/2.

In both cases the conserved baryonic current can be written as

_ KN} pedy iy, el N x'
BH(N) = D AN Dy Ny XD A (19_)
T

This definition represents an improvement over the usual one, since it produces a B

which.is chiral invariant. It5 components are given by -

e

BYi) = & K(i) S 00 @/(1) o (20)
2

and

Bi(i) = —61{(1)%9'0) Dy; Dy B - (21)

where ©(1)=F, O(2) = G/2 and the D,; are the usual matrices. containing the
collective coordinates used in the quantization of the soliton; their expectation value in
nucleon states is related to the usual Pauli matrices by <N'ID,|N> =
~1/3 <N‘[racrj[N>. The values of the constants K(N) are obtained by using the
boundary condition F(0) = G(0) = =, Flw) = G(w) =0 and ) imposing the lowest
non—vanishing baryon number 1o be 1. Thus we get K(1)=—1/(127%) and K(2) =

=—1/(67%.

3. THE MODEL

In this work we follow refs. (4) and (6), and adopt an stabilizing term proporticnal
to BMB'” . We do not work with the usual Skyrme term(z’?’) because it does not allow a
solution with baryon number B=1 in the N =2 representation. The Lagrangian

density is written as:
L'(Nj = %D# mN) - D‘“ (N} — b(N) B#(N) B“(N) + £SB(N) . (22}

Using the hedgehog ansiitze, eqs. (15—16). we obtain the following forms for the classical

Lagrangians |

N

. 2
. [ s d m=
L(1) = —f'gr27r'i{ dext| 3 P24 BIOE L gy 0 pe e o pon)| e
. . : x? o x* fif':?r




-1

L) = —:fWQWJ‘.dXXQI[.%[ G.q-_!_dsm GJ_’ +2) sin G{ 2 G'2.

- _ _
oomp .
= _fz..(cos_(_} -1) ] {24}
T
where x =2 r, (1} = - b(l) 32y = —4’T B(2) . Note that for the symmetry
: oot T

breaking contribution does not kold the rule F — G /2.

These results jrield the following differential equations for F and G

{§+g(§151nFl P4
, e

. H H—1
xp - S02E AU SIDE g, o g
X

CSinE = 0 : (25)

el

, .
o oml _ .
+ L)-—Lsz n G- G 7r2 x*ginG =0 . ' ' (26}
lﬁ'f

T
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The usaal quantization pmcedure(“) allows the baryon masses to the written as

- M) = —L{i) + J*/2A() ' (27m)

. where J is the angular momentum operator and the A(i} are given by

M) = —f—3— dv{-[-‘)-senze(l +,3(1)L@ﬁl(e(1))2} . (28)

. In order to compute the static. properties of nucleons we evaluate the vector and

axial cum:ents, whlch are glven by:

Va,o(_i)..':':_u-;s.ig? o) {'f; _+“2l.)(i). (GI{I(i).)..Z. '&:?(ilfgv(i)jz} Cumn Doe Due (29)
l,;:Vaaii(i.)_.g:M{fz ;21)( ) (6K() M(Ll(@'(l))Z} Jm; faDy - (30)
AviG) = -{é- :(235;—@)—1lin @ 5060 o) + %ﬁ(i) .(s_K_(i)f (an o)

| - - ._.+_2co_s=.®;ﬁ.}é.l(.i))%%l(i} } Dj | | | .

Tn writing: equations _(29;31) we have neglected the terms involving two time derivatives

because they. are much smaller than those displayed.

4. RESULTS AND-CONCLUSIONS

Following refs. (2—4), we have adjusted the parameters ‘fvr ‘and b 50 as to -

reproduce the observed nucleon and delta masses. This procedure yields the soliton"sh’;ipe

functions shown in fig. 1 and the static baryon properties displayed in table I TIn-the
latter, for the sake of comparison, we also include the values of Adkins and Nappi{%), who

stabilized the soliton via the o meson.

wb




b

. Our results for. the case N =! can be understood as bein just a reproduction of
g P

those of ref. (4). The model with N =2, on the other hand, possesses two new and

remarkable features. Firstly, it predicts a better value of fﬂ_ and secondly, as it can be

seen from fig. 1, it gives a shape funciion which is rather smooth at the origin. Indeed the

behavior of the function G suggests the existence of a "plateau” for 0 <r < 0.3 fm where

G is ap?r&kima.tely constant and takes values around 7 , implying the vanishing of the

pion field inside this region. This might be in agreement with the picture of the hybrid
model7, in which there are no mesonic fields inside a small volume V where perturbative

QCD: should be valid.
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FIGURE CAPTIONS

FIGURE I: The chiral angle as a funcsion of the radial distance. The continucus curve

represents F (N = 1} and the dashed curve represents G (N = 2).
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_ TABLE ] _
Quantity _&d_kms a,gd This work This work Experiment
) Nappi N=1 N=12 ’ o
my (MeV) input fniput - Input 938.9
m_ (MeV). input - input input 138
£, (MeV): 62 - - 65:1 77.8 93 i
8 - 0.019 0.103 -
/2
<r2> {(fm). 0.74 0.72 0.71 0.72
vz oo :
<r2>, {fm). 106 1.03 0.97 0.88
I=1 :
2 ‘
<r2.> (fm) -~ 0.92 0.9¢ - 0.89 0.82
"M, Te=l:
1/2:
<:2> T gm)y 102 1.03 0.97 0.80
M, I=1 ’
gy 234 2.00 1.99 2.79
fig - —1.46 —1.20 —1.20 —1.91
g, 0.52 0.83 0.83 1.23
Enn 13.0 12.6 11.1 13.5
A 19.5 159 16.6 20.4
B 2.7 226 2.96 3.3
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