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ABSTRACT

It is suggested that the inclusion of the virtual excitation of the soft giant dipole
{pymgy) resonance in the caleulation of the cross—section for very neutron—rich radioactive
beam—induced fusion reactions may enhance the formation probability of the heavj
compound nucleus produced at low excitation energy. Both spherical and deformed target

- nuclei are considered.
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1. INTRODUCTION

The quest for superheavy. elements has been going. on-for sorme time by:now and the

“overall conclusion so far reached is that no elements ‘beyond - charge number ‘109 were

discovered and elements with. Z < 109 became ‘aceessible through reactions involving:. Pb
and Bi targets ) L .

Recently, it has been: suggmtedz) that the bea.ms of neutron-tich-radioactive nuclei
offer a rather unique possfb:ht_y _forrsynthes:zmgm_both-t_he-superheavy;-nuclgl'rl_y_n_lg,around.
the magic neutron and proton numbers N =184 'and Z = 114 .and th‘e’-_héa;vy."isot-opes_
with N » 160 of new elements. Owing to the larger N/Z ratio of these exotic nuclei the
effective Coulemb barrier is basically lowered, permitting the appreciable formation of not
so excited compound nuclei at low-energies. ‘ These cold compound nuclei*-ha,vé-lower fission
probability, thus increasing the possibility of obsérving them.

The theoretical calculation. of  the: survival pmbablhf.y of heavy eIements usmg;

radicactive neutron—rich beams has heen. donie using the ma.croscomc model of
3.

push of Swiatecki Substantial lowering of the effective ﬁssxhty and cousequently 4
lower effective fusion barrier is obtained. The degree of lowering of these physical
parameters ﬁas, however, . been recently que_stioued'-;). .

In the present paper; we address ourselves to-another, _dyna.mica.beffect-involving
neutzon—rich nuclei. It has-been theoretically established that nuclei in-the-newtron-drip
region exhibit appreciable collective behaviour at -quite Jow excitation: energies. In
particular, the soft giant dipole resonance, in nuclel such as ®Li, is predicted to be
situated in the 1-2 MeV energy region, exhausting about 12% of the classica.bdipoﬁe sum
tule and accounting for about 90%, of the observed fragmentation cross—section® 7). We

shall demonstrate -bere that the coupling to. the "pygmy resonance” could enhance the

fusion probability of neutron—rich nuclei by as much as a factor 50 or more.




As figure 1 shows, when a neutron—Tich projectile approaches a he'avy deformed
target nucleus, the inferaction sets in a dipole oscillation of the excess neutrons with
respect. to-the: core in.the: projeétile, allowing a. closer nuclear-contact with the target and
thus increasing: the fusion. probability:- . This dynamic effect should be considered m
conjunction:with the static one related-to-the larger: N/Z- ratio and a,ccordiﬂg‘iy the lower
static Coulomb barrier. We base our discussion on known facts about MLi -and make
reasonable extrapolations o the: Fe: isotopes induced fusion considered in reference 2).

The paper is-organized: as-follows. - In:Section 2-we discuss the salient features of the
soft giant dipole resonance {pygmy reso[_lauce} in neutron-—<zich nuelei. In Section 3 we
develop the theory of the fusion cross—sectlon in the presence of the pygmy resonance for
a reaction involving a spherical target nucleus, and apply the theory to *Fe+%Pb . In
Section & we extend our discussion to deformed target: muclei. In section 5 we present our

numerical results and finally, in section 6 the concluding remarks are gives.

2. THE PYGMY:  RESONANCE

In nuclei such.as. MLi, it has.been suggested.that the two neutrons in the p, /o
level; form: a."halo;-and ds such is very distanced from the 5Li core. When discussing the
collective: dipole: excitation of:such.a loosely bound: system, one is bound to consider two
types of_vibra.tions::,the.usua.l'-(E’f =20' MeV}-isovector proton vs. neutron.vibration in the
core, with the halo neutrons taken as mere spectators, and the osciliation of the whole core
nucleus against the halo néutrons (the pygmy rtesonance). In this latter case the rather
extended distribution of the halo results in a weak restoring force, and consequently a low
excitation energy. of the. pygmy: resonance (also known as the soft giant dipole resonance).

Recent microscopic calculations_T) of the structure of nentron-rich nuclei ciearly

confirmed the above qualitative picture. For the purpose of the present paper, however we

shall use macroécopic, Steinwedel—Jensen, modeting guided with appfop}iate sum ryle
arguments to discuss the pygmy resonance in the Fe isotopes.

In a fecent letter, Suzuki, Ikeda and S&tos) predicied the ’fgilowing excitation
energy of the. pygmy resonance, using the 5-J model-
Z(N—-N_) 1M/2
N(Z+N_)

*
pR 7

GDR {1)

where MGDR is the excitation energy of the wusual giant dipole resonance

{x %-Me\/ ] and N_ refers to the neutron number. of the core. N and Z are the

neutron and protor numbers of the whole nucleus. Thus for the _AFe isotopes with

A = 56, ... * = .
.56,. ;70 , we have, eg., EPR(TO) 0.38 EGDR .

pygmy - resonance. occurs at =5 MeV. This value could very well be lower if the

This shows that in "Fe, the

separation.energy of the excess neutrons is small as e.g. the case in Li. The pygmy
resonance in this latter nucleus is found to oceur at = 2 MeV 6’7).

A pure cluster model supplies slightly different results from those of reference 8).

Within this model, the dipole strength is distributed according tog)

dB(EL) _ 302 Z2AN E (B*—)*/?
dE 2 AA E*

[

@

when, AN refers to the excess neutrons treated as a cluster and ¢ is the binding energy

(separation energy) of this excess neutron clusters. The position of the maximum of

dB{ -
—C(ZEE%% is just the energy of the pygmy resonance and is easily calculated to be



L

thus the smaller ¢ is the lower EpR will be. In a nucleus such as "“Fe, ¢ could very
well be in the few keV region. Of course an ambiguity remains as to what should be the
core. However, equations (1) and (2) should serve our purposes of supplying estimates. .
From the above discussion one may safely a_ss'ume that the pygmy resonance may
oceur in the 0.2 — 2.Me.V excitation energy region in thé. Fe isotopes.
In discussing the energy weighted sum.rule for ueutrén—rich nuclei one may consider

* the usual classical sum rule which reads

S(EL). = 14.8 N2 {MeV fm?? ' @

and the dipole cluster-sum rule for the core pius excess nentrons SyStemlO)

Sc(EI) .= S(El) - Sclusr.er.(El) - Sexcess(El)

N Z
- oiig | Nz _Nete
= 14-8[A—‘T

c

[MeV fm? ez] . (5)

It is usually found that the pygmy resonance exhausts about 10% of the classical rule and

80% of the cluster sum rule.

3. THE FUSION OF AFe + 2py,

Aside from the static, barrier penetration effects considered in reference (1), there
are ‘dynamic effects arising from the virtual excitation of giant resonances. Here we

consider the effects of the pymgy resonances. It has been shown in the last few years that

th_e fusion cross section at low energies.is é,ppreciably increased over the static value, when
channel coupling effects are taken into consideration!), The enhancement is largest when
the Q-value of the non—elastic channel is lowest. We show below how the excitation of the

pygmy resonance may help increase the fusion cross—seftion of the system .*Fe+203pp .

“Although the theoretical description of coupled chanrels effect in the fusion of heavy ions is

well developed we- opt herefor a simple. two channel model that can be solved exactly
9

1“’13). Calling Hy+V, the entrance channel Hamiltonian, HpR+va the pygmy
resonance channel Hamiltonian, - V, the coupling Hamiltonian aud QpR the Q-value of

the pygmy. ‘resonance channel, the t,v.va—cha.nnel Schr(")diﬁger equation then reads,

Hg+Vy : _ vV,
y = E¢ (6)
VC HPR+VPR+QPR ’
Qgp <0

Frory the previous discussion we know that. ‘lQpﬁl is small and we neglect it in
what follows.(the c.m. energy is much larger than QpR)‘ Further HPR-_I-\_I';'R describes
the relative motion of the excited *Fe nucleus with respect to 29Pb.” We are safe in

taking this Hamiltonian to be equal to Hy+V,. We thus have
(Hy+ Vy 4 Voo,) 9 = Ey (7)
where ¢, is a Pauli spin matrix which is introduced here for notational convenience.

Fusion with no coupling is accounted for by the complex bare optical potential V;. The

corresponding cross—section is




b = k<ot —mvilu> = 2 eend, @
R ERT R =

'.Ta.kiﬁg-_into:account' the coupling interaction-to all-orders amounts to replacing %F

above by

oy = BT - I Voiu V> — oy (9)

: T i) . . . .
where- %' is the spinor [1",’0 } and o ., Is the angle integrated inelastic cross—section

1bp_ B pR

for the direct.transition. 9 <~ pR . The fusion cross—section 6y can be written in closed

form after performing a convenieat transformation that diagonalizes ¢, . The result of

O'F' 15

oo =5 [a?-h(_v-c) + o (V) (10)

where: o*R{Vc]. is. the total reaction: cross se(_:tion'obtaiued from the Hamiltonian
HytVo+V, and o (=V} from HetVy—V,.  We should stress, that in all our
discussion above we have disregarded the a.ngﬁiar.moﬂlentum {1) of the pygmy resonance,
which: is Qﬁté valid: considering: the great values of the orbital angular momentum
involved. Equat!ioﬁ (10} has been previouéiy'derived in a slightly. different manner, by
Dasso-et. al. and Lindsay and Rowley.lS}ﬁ'

In: caleulating the enhancement.of o we use the Wong formula1_4) , which reads

. ) R2 E-V,
O = O‘F(Vc=0) = - In {1+ exp R TE (11}
: T

_were hw measures the curvature of the Coulomb barzier and Vs its height. Here the

20(6+1)

Coulomb. barrier is obtained from V(r) + b oI and the Coulomb interaction is

contained in V. We define the enhancement factor E(V_) as

7. (V)
BV = -t o
op(V.=0)

E-V, -V,
In {1 +exp T

RN

BV, +V,
H(b"

E—VB
2in i1 + exp o
At the barrier, E = VB , one has
. VC . . VC
In ].+exp ey + In 1+QXP o
E(V) = 27 Zx (13).

2 1n 2

We now. write fully the structure of V_, guided with the results for stable nuclei supplied

by the collective model

1/2

Ve = Cy (B g(BL)) " F(r) + VEoHlom (14)
where C, is a strength which may be calculatd within the Tassie model, F(r} is the
radial form factor given by fa%- pFe(r')pr(r'—r]dr' , and Vgc’“lomb is the Coulomb

plece of 'V, which is also proportionai to (BPR(EIJ)U2 . Thus

Ve = F)(B o (B)Y? W



.In Eqs.I (14) and (15) BPR{EI) is the B(E1) value of the pygmy resonance, which in a

cluster model (core + excess neutrons) can be written as?) (by integrating Eq. (2) over E™)

e (Z2ANYV1
BDR(EI) = 167 ( AA )E

(16)
where ¢ is the binding energy of the excess neutron cluster with respect to the core. It is
obvious that ¢ is the determining facvtor i the degree of enhancement of apyg,, -
. Thus, we obtain the final explicit form of the enhancement factor E (at Ec m = VB)
showing its dependence on the relevant physical parameters that characterize the exotic

neutron—rich nucleus Ape, with A = A +An, and using Eq. (3)
F(R.)
E = 2—“1?2111 {2 [1 + cosh [—%M—B (BPR(EI))1/2H} | (17)
. T

where F(r} of Eq. (15) is evaluated at the barrier r= I, -
fixed once the care is decided upon, the quantity that varies, as more neutrons are added is

%—E'. The argumknt of the cosh couid become very large for very neutron—rich isotopes

2
Since %—c, in Eq. (16), is

such as ""Fe, where B z(E1) is expected to be large, rendering E to obtain great

- values.

E(R)(B _(E1)Y?
miﬂ!igi—— the value

In fact, if as a feference, we take fbr the factor X =
0.1 for *Fe then E{*Fe)=~1. Using Eqgs. (16) and (3) to obtain a rough estimate of
B(E1} for ""Fe and assuming E:R(mFe) ~1MeV and E:R(sﬁFe) o *EGDR(ssFe) ~
20 MeV, we have X{™Fe) ~ 10 and thus we get

E(Fe) = yils = 7.2

2

10

At B¢V, thefusion cross—section, Eq. (10), can be approximated by taking only the

term with the lowest effective barrier (assummg Vo> 0).

hu,rl’(f1 E—V +V,
Tln i1 +exp 2:1' Tw——

hoR2 _ : .
T;"’Eexp[maa—v,;'+-vc>] S oy

Thus compared: to the no—couphug fusmn, the effect of the /Pygmy resonance at low center
of mass energies can be. represented: by an effective increase in the center of mass energy
E-E+V,.

With Eq. (18), the enlancément factor K  attaing the very simple energy

independent form

= %éxp(h"%) , - B ' (19}

which, with the estimate given earlier, namely X = 2rh— =10 for Fe, we obtain

E("®Fe) ~ 10* ! At higher energies this factor is of course reduced.

4. EFFECTS OF DEFORMATION

When considering the fusion involving deformed nuclei, one has to take into account
the coupling to the rotational spectrum. A rather simple way of doing this is through the
equivalent sphere method based on the adiabatic approximation. If oF{ﬂ} is the fusion

cross—section for a fixed orientation angle then the observed fusion cross section reads
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-ch =f dosind o (0) o (20}
o o T o

Eq. (20) is easily calculable. However, we'aim here to une anahtlcal estimate of the

12) and, more

enhancement factor and thus resort to the treasment. of Lmdsa\ and Rowley
recently, Nagarajan et 31.16). According to Ref. (16), Eq. (20} can be written in an

equivalent form {if a finite number, X , of rotor states are mciuded)

(21)

3=
F’El

N .
Ty = Z wy 0,() ,
=1

where o, (g} .is the-fusion cross—setion-in eigenchannel. @, where- the real potential is
given by V+A Bf(R) with f(B) being the coupling form factor evaluated at R andis
given by ﬁ,}mv Ig[ _ERE] , and -5, therquadrupole deformaticn parameter. The

radius of the deformed nucleus is given by Ry(8) = R’{l + T%Tr B> Ry Py(cos ﬂ)] . In fact
it was shown. in 16} that A, can be obiained from an eigenvalue equation

© Byfeost) £,08) = A 1,08 - (22)

If two states (01 and 2T) of the rotor are taken into account then Eq. (21} becomesl'?"w)

= 0.652 0,(0.73 f, (Ry)) + 0.8 0~ L7 6 f(R) (23)
where arR(X)' is the one—channel reaction cross section with the barrier height shifted by

X, Note that f(RB) , which is the sum of nuclear and Coulomb form factors; is positive.

If the projectile. ructeus that fuses with the deformed target, is neutron rich and has

12

appreciable dipole strength at low excitation energy, then the 'previous 'dis'cussion implies

~ for the fusion cross section the following rather simple form (see Eq. (10))

5, = %{0.652 (o, (Vo + 0.78 4, {(R)) + o, (= V, + 0.73 5, (R))
+ 0348 (0, (Vo ~ 13T B ER)) + o, (- V,— 137 5, f(R))} . (24)

At very low energies the dominant term becomes, the Wong formula

RZ I R E-V,+V+1.37 g f(R} 1]
- S = 0. n exp 27
® Bev, .“’{E‘. hw
(25)
R '
¥ g 0348 exp [22] [E -V, + V, + 137 B £(R )]
348 exp |5 gt Ve + 13756, (R—B)
which gives for the enhancement factor,

p = 038 o [%-j) (Vc+1.37‘,82_f(RB))] . C 2s)

Thus, again, a¢ very low energies the effects of both the pygmy resonance of the projectile
and the defor_rﬁa,tion' of thé target {taking only the 0" and 2" states of the rotor} can be
represented by an é_ffective increase in the center of mass energy E—E + Vc(R )+
1.37 8K R“a) For a strongly deformed target nucleus like 28U and a radioactive
projectile nucleus that exhibit a \ery soft giant dipole resonance with E r <1MeV, the
above effective increase in the center of mass energy can be quite la,rge. The resulting

enhancement of g, can be several orders of magnitude.
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.'Béfore turning to the next section, we comment on the difference between the
constant enhancement factor at very low energies obtained from Eq.(25) and that which
results from an approximate evaluation of the integré.l in Eq.(20) which would represent
the inclusion of all states of the rotor, taken of course as degenerate. Using the Wong
formuta, for JF(Q)- wifh f—dependent Coulomb barrier, .it is easy to. show that after
performing the ﬂ—integrar.ioh,' ;111 Eq.{20), the enbancemeﬂt factor w::thin the equivalent

" sphere approximation and at very low energies is

e (] a7

. where .

R, V g w® RZ 1
2 = 3 mrt Bl B (27)
S A N Vol2 4 u? R2/Z, 2, &) o

Eq.(27) should- be compared to the more realistic expression, Fq.(26), when V, is

dropped {the factor that multiplies the exponential becomes 0.348). As anticipated, the

equivalent sphere enhancement factor, Eq.(27) is about one order of mé.gnitude larger than

that of Fq.(26). In what follows we shall use, for the evaiuation of B, Equations (12) for
the spherical case and the expression that results from Eq.(24) (by dividing over c‘FF) for

the deformed case.

5. NUMERICAL RESULTS

Ini this section we present the numerical results for - E for two systems. The first is

Fe + 208Ph g a representation of a spherical system. The second is the fusion of Fe

14 -

isotopes with. the strongly deformed nucleus 2¥U. _Since the. interaction potential is not .

- known owing to the lack of data, we us_é as a reference the proximity potentiél which is

given by
VprondT) = Vo[l + exp(--r/0.75)] "

r=5fb., §=r-C=C,

Q
)

L= R{I—Ab/R) +.] , Ry = Al

Ng. = —3437(47.90) . (28)

C= C.x 'sz,(.cl--'hzc_'?)
o= 0.9517[1 = 1.7826 1%
L= (N, =Ny = Z; = Z)[A; + A,

In our calenlation of the:barrier parameters. RB , VB and hw, weuse b~1fm

and .ry=1.15fm. We found for- the system . "°Fe -+ 2%Ph f'gi;_wﬂ.’r’fi Mev' and

VB =213, RB-: 10.2:fm.. For the other: Fe. isotopes, these parameters.vary slightly.

For TFe+ ™87 | we obtain g—i;-v.l].?SzMev ,Vy =232 and R,=106fm. Also small

variation in the values of these parameters was found for the other Fé isotopes.
When calculation the fusion.cross section, Eq.(10}, for AFe + 298Ph . we have taken

several values for the pygmy resonance: coupling strength V.. Figure 2 shows. ¢ vis

F
E . for V=0, V,=20MeV and a rather-exagerated case V_ =100 MeV. The




great enhancement ai sub—barrier energies is clearly scen. This means that at cm.

energies of about 15 MeV below the barrier, , for a reasonable value of V_ is still in

i3
the measurable range of a few millibarns. The fusion cross—section for V_ =0 at the
same energy is about 10°* millibarns.

The.over all features of the enhancerent factor B, Eq.(12), is shown in figure 3 for
the same spherical.system. The saturation.to- the value given by Eq.(19) at very low
‘energies is clearly seen. It is seen that a slight increase in- V', resultsin a great increase in
E at low energies. An interesting feature of the results shown in figure 2 is that E vis B

resembles very much a Fermi function. In facf an excellent representation for E for

energies- lower than the barrier VB is

Eq
EE) = 4 —————— , - (29)
1 + exp[g-ggi’]
where: Ey is the saturation value of E at very low energies. The parameters By, By and
A, of course depend om V.

We now turn to the deformed target case namely Fe+ 250 . The deformation
parameter §, of 238U is about 0.27, and thus B, 1(R) , given the type of interaction used,
EG.(26). is.about 7.2 MeV. Again since very little iu_fofma.tion concerning the density
distribution- of, e.g., ®Fe: is known, we allow a variation of the coupling £, f(R). In
figure 4. we show E for V, =4 MeV, and taking for G, f(R} the values 0.0, 3.0 MeV
and 7.2 MeV . It is clear that the effect .of deformation is to enhance much furth(;r the
value of E..

We should mention here that the deformation resuits in & greater value of E than
an equivalent soft vibration coupling. -To exhibit this fact we show in figure 5 the results

for E when taking V,=6.0 MeV, f,{(R)=0.0MeV compared to V, = 0.0 MeV,

8, f{R) = 6.0.MeV . At low ¢nergies the pure deformation enhancernent is about a factor

16

16 larger than the pure soft vibration case. This. is easily understood from Eqs.(18) and
(25):

' 2
E{ deformation) 0.348 exp[m)’[ 1.37 B, f(RB)] )
= . 30

0.5 exp[zﬁ‘% vc]

BE(vibration)

Then if. 8, f(R) = V., we have

E(deformation)

2r '
- 0.696exp[ 0.37 3, (R ] , (3
 E{vibration} : 77 b 1 B) . ( )

which.gives 16.6 , for f, {(R) = V, = 6 MeV.

6. CONCLUSIONS

Before presenting our éoncluding remarks, we warn the reader. that our formula for
E, equation (17) was derived in the sudden limite (QPR = 0} and using the cluster model
for the pymgy resonance. The validity of the sudden approximation becomes suspect Jor
small AN-- and one has to consider equation (17) as a great overestimation. In fact, in’
such .cases, namely large vaiues.of E:R, a more valid approximation is to simulate the
excitation. of _thé PR through an attractive local energy—independent polarization
pote_ntia.l-ls). As far as the cluster model of the PR is c_oncerned-it has recently been
demonstrated that this model overestimates the Coulomb fragmentation cross—section of

ULi+%8ph. at, By ., = 800 MeV-Agl‘lg) and greatly overestimates the cross—section at
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lower energiesgo).-- However the analytic simplicity of the cluster model justifies its use
here for the obtention of the simple estimate for E. _

In conclusion; _wé- have considered in this paper the influence of the excitation of the
soft giant dipole resonance on the-fusion- of neutron.—rici_; auclei with heavy targets. The
echancement over the static fusion calculation, exemplified by Eq. (17), shéws clearly that
the:determining factor is the smallness of the excitation energy E:R or, more pre_ci.sely the
large value of B(E1) as the number TPZI ig incressed. Any static fusion calculation of the
type discussed. in reference 1 must be ammended by the multiplication with E of Eq. (17)
or, even better, by a detailed coupled: channel calculations. We also investigate the
enhancement - resulting from the- fusion of a neutron—rich projectile with a strongly
deformed target. Wefound that the deformation supplies even greater enhancement at low
energies. - ' .

Of course several questions have to be answered before a definite conclusion
concerning the value of E cani be reached. The most important of these questions is the
precise value of .BPR(EIJ and [F(r}, which can only be settled through detailed
measurement and- analysis- of the elastic scattering and break-up of these exotic

nentron—rich nuclei.

18

FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

The figure shows that when a neutron—nch prOJectlle approaches a heavy
deformed uucleus the mtera,ctlon sets in a dipole osmllatlon of the ex0ess

neutron with respect. the. core, 3,110wmg a closer nuclear conta.ct with the

target,

The.fusion cross—sectlon for ""’Fe + 208Pb for several va.lues of the Dygmy

resonance coupling stréngth- V The a.t_r0w..md1c:_1tes_ the Cloulomb,barner

see text for details.

The: enha.ncemeﬁt-,facﬁbrﬂ E-for "Fe + 208Ph- for several values of Ve. The

arrow Indicates the.Coulomb. barrier.

The enhancement factor, E for the deformed system "Fe + 28U | taking
for. V. =4.0MeV and for several values of the deformation strength
potential .5, f(R}'f:_.The_arrow:indicats the Coulomb barrier. .

The enhancement fa.ctor E for 7°Fe + 287 for the pure deforma.tlon case,
V=0, " S f(R) = 6.0 MeV (full Iine) and pure vibration case
V. =60MeV, g I(R).=0.0 (dashed line). The arrow indicates the

Coulomb barrier.
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