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SUMMARY o

In the present. work we show. the analysis of ar approximate solution. for the
connected kinetic differential equations. of a defect invol\}ing_processes-of untrappihg,

retrapping and recombination mznihﬂatiou,‘ using the Dulac—Poincaré theorem.




I INTRODUCTION

The. kinetic decay and growth of defects in crystals and amorphous materials have
heen subje;:t of many studies through luminescence, EPR and optical absorption
techniques [1,2]. Our previous siudies on the kinetics of defects in erystals and amorphous
materials suggested that kinetics of point defeets can be described in terms of
concentrations of defects coupled through differential equé.tions [3-13]. The general form
of the kinetic equ;ition for thie i—th concentration defects, y; , is: &

yi = fi (L rr)"1 N T .ij . ’ (1)

where vy, ..., ¥; 2 Yk .are the concentrations of defects and f; is a non--linear function.

The- thermal dependence of the parameters in f; were analysed in terms of
free—particles distribﬁtion of speeds [14.15} and the non—tinear stability analysis applied to
the kineric differential equations showed that. these equations have stable solutions [16).

The method. of Runge—Kutta [17] used to solve the differential equations. became
unstable forlarge values of parameters and small number of steps. Then, for good
convergence, many- times the time interval mus¢ be divided in large ninhber of steps;
inereasing: the. time of cornéutat;ion. Then, for a fast analysis of the kinetics, an
approximate solution. which reproduce the essential behavior of kineties is wellcome.

In the present report we show the analysis of an approximate solution for the kinetic

differential equations (1}, using the Dulac—Poincaré theorem {18].

" IL THE APPROXIMATE SOLUTION

The kinetic decay of a defect, in the simplest case, involves processes of untzapping
of trapped particles, retrapping of free—particles and recombination annihilation of these
free particles with._tr_apped antiparticles. Let be y, concentration of trapped particles; y, _
concentration of free particles; v, concentration of free traps. of particles; y,
concentration of antiparticles and y; concentration of free traps of antiparticles. . The

kinetic equations are:

o W= —ant e (2a)
g?“= ey, —T¥3Y —BY3¥5 : .. . (2b)
g%(f': XY= V¥3¥s | _ 7(2(:)'
g? = -8y (Qd)
g—:s = Oy3y; - . | @

Hf the concentration of traps of particles is F, and of traps of antiparticles is By,

then-

F(] = yl+y4 1 ) ) (3&)

Ey = yq + ¥ . ' : (3b)



o

The charge conservation gives

o= ¥i+ys o ‘ (4)

From equations {3} and {4} we disconnect equations (2). The resultant system of

connected equations is:

dy,

o = —entr{Fo-vlys . (5a)
dyy '

o = en—v{Fo-vdys— 8l tyalys (5b)

The kinetic equations (5) form an autonomous dynamic system: a set of first order
differensial equations with two variables, y, and y,;, whose right hand of the equations
are not explicity time dependet.

For the analysis of an approximate solution let us rewrite equations (5) in the form:

Vo= Ayt ey, - v Yt TN (6a)

.

8y, ¥.—8y5 {6h)

Ye

where a= o+ vF; and c=7F,.

The equations (6) can be rewriten as a sum of a linear term and a non—linear term:

:A{Y11+{7(y‘[_)’1§;2)} ‘ ) «

3 (ya—¥3)

where thie first term {s the linear term and the second term the non-linear term, and with

10

The equation (6) can. be hest analyséd in a system of coordinates in which $he linear

.

term is diagonalized through the transformation

¥ A ‘
HEENE
Yo My I

where T = [v,v¥] . ‘The column matrices v! and v? are the eigenvalues of the secular
equation:

A-Afv=0 . (©)

Solving this equation we-obtain, A, =—a , A, = 0:and

where &, = c/y a+c? and £, = a/y a®+c?. Then

¥ & ) {10a)

il

Yo = &y - : (10b)

The transformation T changes equations {7) to:




-~

o= A Fag T ag htag iy (11a)

flz.= by BH+bamh V {11h)
where: ay =7, 2= (1) §({ - &), ap= 2y M6 -6, bp= 86— &} and
b= 5. ' - _

According to the Dulac—Poincaré theorem we.can write the solution of equations

(1) as: - _
€L €9 i
=2 G XX G (12)
=0 w=0 :
where:

o 0'(1} n
Ci - CI E - C2 1
n=0 :

el

T

n=0 ‘

(]

From equations. (13) we obtain

3 ' - ’
[ e ., s
0 T gD ' '
e 3 3
t| o ’ . A
n[qwrco) = [ | Rl g ar (130)
. Y 0in= :

For second order expansion we have:

2 3 1 1 2 '
gg) = by, gg) = 2, Xt()z) = a—_zz/a-a Xéo) = —ay,/a, Xgl_J=—b-12/'a._ and. -
X{'= — b, /22 =0: Then

g 1. '
1D 4ot
gl - F e—a.t +TIn Cq | (14b}
where D.and F are arbitrary parameters,
r = affy a¥+c?
r = a— 2y — 8 — 1)k
off
From equations (12) and (i4) we ohtain
a9 11
- LY
o=t G (15a)
— bl? . . -
L ' (15b)

0L RESULTS

From equations {10}, (14) and {15) we can evaluate y, and Vg ﬁsing initial -

conditions. y,{0) and y,{0) to evaluate D and F. The application of these conditions

leaye.to'the equations:



y‘l) = _UI(D_,F;D) + 3 WQ(D,F;O? = }’I(D,F;{)) . . (16a)

3 = & 1DF) = D0} S e
whlere .

7,D.F0) = -4 ST .

A _C — 4

a' 7
a 4 a? + ¢*

We calculate D and F using the method of Newton—Raphson. First we define the

functions: .
F(DJF) = y(BF0) -y} | {17a)
Fy(D.F) = y,(D.F0) ~¥3 . ~(17b)

where y? and y? are the initial conditions. These functions are expanded to second order

giving:
aF,  aF,
FiD,F,) BIT; a}: Dy — Dy
+ =10 (18)
arF aF :
FQ[Dan) .aD_?'. -CTFE ; Fn+l - Fn

n

"
' o dy, 8yt o
Duny . Dot aps  oaF | |91 (DoFa®)-wy ) _
L F, “a;% 3;3 [ ¥2 (DwFui0) — 5%
~ Neglecting the secbnd_orde_; terms in (16), we evaluate Dy and Fy as
Dy = Gfys & {20a)
S r . C ' S S
Foo= [y]—¢/Dg Dy _ {20b)

which are used as initial value in applying equation (19).

In Pigure 1, we show-the résult of the calculation of ¥, using approximstion

INSERT FIGURE 1

developed here. The curve is compared with the exact solution for the differential equation )
obtained using the Ruhge—Kutta:{RK) method. ' The parameters-used here ‘are ¢ 5= 10,
n = 1000, F, =05, y,(0) = 0.5, y5(0) =035 a=1, f= y= 10. We see that for times
fonger than 3, the approximation is good. 'I"he difference between the RK method and the
apprdximation is in general small.

Figure 2 show vy, ' for ‘changing the paranleter B=7y=1. We see that the

approximation result is poorer in all range of time.

INSERT FIGURE 2

In Figure 3, we show the result of the calculation y,. The approximation is good

fortimes longer than 3 and with J= + = 10. For small times the approximation show




INSERT FIGURE 3

faster decay than the RK result.
In Figure 1. we show the result for ¥, 3= y=1. The approximation method is far

apars from the RK method. In the present case the approximation introduced a

INSERT FIGURE 4

disiocation of the origin of the reaction, This introduce an scale translation. givin the

maximum. for ¢t >0 In reality this maximum is expected to be at t =0 in exact

solution, and: the time transiasion is attributed to the scale change from the approximation.

In:Figure: 5. we:show the.results for. y;. We see.that the present approximation ig

INSERT FIGURE 5

good: for. times, longer: than: 3 using 8= v :{10;. The: y; raises from zero- to & maximum

and. then: decays. faster: or slowly accordingly to. the kinetic. processes involved. The RK’

method results are.at shorter times and bigger values.

I Figure 6, we show- that for #= y=1, the approximasion gives poorer results in

INSERT FIGURE 6 -

" all range of time. Also, we see that the maximum of RK is known smaller than the

approximation results.

n

IV. CONCLUSIONS

For times long enough the sofution is mainly dependent of ¢, , because (; decrease
fastly. In this case we see that for a< v, 8, r~a 8/y2 vF,. Thus vy, and y, show the
same for a constant relation « 3/ . Th.us for a fixed value «, we obtain the same curve
for a-constant.relation #/7y. We reported this behavior in a previous v.vork f16].

The- approximation for the solution of the kinetic differential eguations leave to

smaller or bigger values of solution, as compated 1o the "exact” numerical solution. The

results, although /7 is constant, becames worst for bigger absoluse values of 5 and 7.
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