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ABSTRACT

The modified. Bessel function of imaginary order Ki 1;(‘5) is evaluated using the

unifornt approximation.. It is found that Ki n({) represents basically a rainbow scabtering

problem.. Numerica} Comparison between the uniform representation and the direct-

integration is made. Corrections to the yniform formula are assessed.
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1. Infroduction

The modiﬁed,Bessel function of imaginary order Kin(g)' is discussed in-most books
and handbooks of special functiongi2). No tables, however arg given. Numerical
integration of: the integral that Tepresents ‘this function is hecessary. This - procedure,
however, conld g_euer.ate large errors, depending on the value of 7 and 5 - It is the
purpose of this paper to perform & uniform approximation analysis that permits writing the
function' in terms of tabulated Airy funciion and its first derivative [n section 2 we
present this analysis and derive formula for the corrections, In section 3 we present
nurmerical comparison. between. the direct integration of the function and the uniform
approximation.. Finally' in- section 4 we discuss the general results obtained and present
several concluding remarks. We have encountered this function in a recent investigation of
the Coulomb dissociation: of neutron—rich._n&cleiS) and were quite marveled: by its
pbroperties. In particular, we- discoveredi that Kiﬂ(_;f)_ represents: basically 2 Tainbow. -

scattering problem. -

2. The Function K; "(_f)- and its Uniform Representation

The integral represéntation of Kiq(f) is given by in e.8., Abramowitz and Stegunl)
(pg 376),

o

Kin(f) = f g é cosh t cos 7t dt ' (Iarg &l < %) . {1
0

Now since the integrand is even in ¢ » We may rewrite (1) in the following form




oa
f e—{ cosh t eu]t at

%

- 1
_Kiq(f) =3

We now change &=t +ir/2 and perform the integravion along the line defined by

ot ir <t < +o+in/2. This leaves the result enchanged since the integrand in an '

analytic finction. Using the relation cosh (p+ix/2) = + 1 sink ¢ we bave

Ki”(f) _ %e—wn/?, J' .efi(é sinh & —78) 4y

)

3)

Eq.(3).is' our- starting point for applying the uniform approximation.. According t0 the

iﬁﬁo:-
- 3
Esinht—nt = %L—+x,u,
thus’

0 = 3 0BT (B

)

Before:we procede, we remark that the phase of the integrand in (2) is stationary when

o or

Ecosh+t = 7
t = i—cosh'l-g n>é
and:
t:iicosg n< €

nsual . procedure-of Chester, Friedman and Ursell4), we map the function {sinhx—nx

(4)-

(5)

(6)

. The situation-can be easily understood from fignre 1 where £coshtis plotted vs. t. The

minimum.of €cosht isal t= 0 and represents £=7, which is the "rainbow" 7. For

5> £ one is on-the bright side of the rainbow whereas 7 < £ represents the dark side

exemplified by two pure imaginary stationary points' (complex conjugate of each other).

When. looked at from the cubic map, eq.{4), the stationary points are given by

po= =y | (M-

The fuisction- dt/dp is, as usual, expanded as follows

o ; . o
dt \ LI ’ :
I N CEE ®
=0 ' :
The coetficients in (%) are to be found -by"repea.tecl'differentia.tién’ of: (4) at the stétio_nary
points (7). Thus, for ag, 4. and a,, we need, ag = (db/dp),  + 2.26= (d%/dg?),, and
2a, -+ 8play = (d3t/d,u.3}s‘p_ . Accordingly

(gcosh—n)%ﬁ-z p+x o ' (9.2)
2 2 .
gsmht[%]_ +(Ecosht—1n) gp = 2 (9.b)
oo [481% 4 gg sinh ¢ 84470 4 (€ cosht— &t~ : (9.¢)
geosht jgg TSI aE T ngs = -

. de)* dt12 d’t . d%)? o oode d¥
§smht [-d—#] . + BE cosh t {—d—#} aﬁg -+ 3£ sinh t \:a-ﬁg] +4£ sinh aﬁaﬁg—i‘

+(Ecosh‘avn}%% =0 . _ {9.d)




o

At the stationary points. £cosh by =0 and g = —x, and thus eq.(9.b} gives

[cil’.}2 - '. Zp, _. 2u :. 2u _ o 2x ,—,[ ~4x. -JUQ
W gsinhn £ VEHET ¢ FE T £ EE it -
or . | .

o= (20w
Egs.. (9—.(::)-?.1_1(1-_(9.(1} gi-ve,- _

o 13/4
T (% 2o _ 2 {?J;EXET] L N a1
Ay —jﬁ[aﬁi]sp = 6 W [nmji_x]l Iz, (__x)l/‘l |
and:
dit].

4 2 2 2

o ol B o,
5.p. .

s )

5.p-
From eq.(4}, we have for x' that appear, in {10), (11) and (12}, in the illuminated region,
N> '

| ~ =g+ ncosh"l-gZ = +%(—x)3/2 . .(13)

In the forbidden region, 5 < &

Jop—gt—psint | 1 ~§E = 2207 : (14)

Inserting (8): (kepping: up to. second—order. terms) into (13), we have finally the. desired

formula, in terms of Airy's function Ai(x) and its first derivative . A'i{x)

Kiyf6) = [a0 A ~ 20, A5(9] - (1)
o . 3 3
Ai(x). = %}f el(#/ *id du

where a, and a, are given by egs. (10) and (12) respectively. Notice that the a., term.

given zero since it is odd. FHigher order corrections can be easily generated . (see

Appendix I).

3. Rainbow in: the Order

The discussion in the preceeding section can be made more {ransparent when
compared with a scattering problem“} . Here one speaks about the scattering at a given
angle, which is the conjugate variable to the integration variable, the orbital angular

mo'mentum. The representation eq.(1) of Kirf('f) identifies the order 5 with the "angle".
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For a given value of - n two values of t contributes, which are the two stationary points

determined from the equation

Ecosh () = 7 _ (16).

where the function Ecosﬁt represents a defflection function. The analogy with a
scattering probient is a bit. ill-based since both positive as well as negative t contribute.
In a scattering- situation. only positive value of the angular momentum enter is the
discussion: In any case K”? for a fixed value of ¢ exhibi{ a deouble rainbow form. as a
function. of 7., The rainbow 7 is just 7=¢. For 7 < & one is the shadow of the
rainbow, where as’ 77 > § " represents the illuminated region (oscillatory behaviour). -Both
positive and negative valuesof # can be considered. '
[u-Fig.(2)_we present Kin(‘f) for £=01,035 10,50 and 10.0 wvs. 5. The

rainbow in-the order of K.m( £} -is clearly exhibited.

4. Rainbow in the Argument

The analogy with scattering becomes more sound when discussing the behaviour of

K. {£) vs. £ for a fixed 4. To make full use of this analogy it is more convenient to use

in
another representation for the function. This new representation is obtained from eq.{1) by

a change of varibale sinht = A . Then

olf sinhTA—AE ’ (17)

K. (§) = J._@Z\_
K J 1+A2

which when integrated by partsy yields?

Ky (6) = gjdxei“i”h'”‘“i’_‘f . P ¢ )

_ The stationary points-are determined from the condition

n}(}lj—&sinh‘1 A=E=7g L. B (19)

R A2+1..'_

which is just eq.{6) rewritten with the new variale: X. Thé deflection function - n/yT5A2"
is plotted i fig.(3). Again the rainbow value of ¢ i € fé:i] -Iﬁ'ﬁgﬁre—f(é)l.\ée-: show
K108 K (&) K6 and -Kim(f)l ﬁh'ich'_clea.rly'i show: the’ Airy!;'pa.ﬁﬁém that

characterizes the rainbow in the argument. . -

5. Conclusions, . -

In this paper: the uniform approximation: is used to express the function Ki’n(a" in

“terms of Airy's function and its first derivative. It is found that Kin(f)_. represents, as a

functions of the order n and argument £, & rainbow scattering situation. Further, we-

verified that. the uniform series, Fq.(15) is rapidly convergent. In fact ay/ag is almost
always less. than 1% . At the rainbow, 7= ¢, we find the relation L

“or L | . and thus, as long as #7(£) is not very small, the second term in (15}
g g3 T
would contribute by, at most, a few %.3 .

a2 —_— .
25 23 70 2
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APPENDIX I

- In this appendix we.derive the necessary formula to calculate the higher—drder
corrections. not taken into-account in our calculation based on Eq.(15). To be specific, we
calculate the coéfﬁ(_;ient- a,b,_ 4y, 39, 23 and a,. The first three coefficients have been

already. uséd_._ _

: Fr.om.Eq,(IS_), up to-_.‘é,j,‘._,. we have
%ﬁj':ﬂ ag + (W) + ap(iP+x)? + ag(iP+x) + a,(p2+x)* (L1)

The following rel:i_tioné then follows at 4? = —x .

a‘!—[ ”—' g
.42
g.....E = 2“3'1
dg -
3
iL—'; = 2, + 84, . (12)
i 3,
— = Upa, + 484 ay
dpt '
dst g2 4
— = 24 2, + 284p° ay + 384yt a,
dpf :

The systems of equations (1.2} relates the coefficients ag, ay, a,. a,, a, to the derivatives

2 3 4 5
g!—i_, %ﬁg,_ g—#g, gﬁ{ and gﬁg These derivatives in turn are evaluated from the




11

mapping relation; Eq.(4). We find the relations 9.b, 9.c. 9.d and
5 £sinh ¢ dit] fdt 4+ 10 £ cosh t dst dtg-l-"
dut) [di de?] |dp
e dst) [d2t dzt]? (dt ' .
+ 16 gSlﬂh 1 [aﬁg] [aﬁz] + 15 ¢ cosh t [aﬁf] [aﬁ] —+ (13)
; d2¢) fd dts
+4€sinhs [ﬂiﬂ] [ ] + € cosh ¢ {aﬁ} =0
Eq.(1.3) supplies a relation that relates the first, second, third and fourth derivative of t

with respect to p. For the obtention of the coefficient a,, we need to have one more

relation that tnvolves the fifth derivative. We find

6 fsulht [3115] [%] + 15 Lcosh t [gﬁg] [gi] +
26 € sinh ¢ [gﬁf] [454] + 66 € cosh [%ﬁg] (4] 144 +

+ ld;fsinht [%E’} [gi] +16 ¢ ginh ¢ [%_ig]g+ e

+15 ¢sinh t [gﬂg] +27 £sinh t [%’ﬁ} [gﬁ}u

+9£éqsht {%Eé] [%&]4+ £ sinh t [Sﬁ]ﬁ =0

From Eq.(18} for [g%] , one can then use Egs.(11), (12}, (1.2), (1.3} and (1.4), to obtain ag 7

12
and Ay - Notice that taking terms up to a, in the evaluation of Eq.{5) we find

Kif6) = = &2 [(ay — 432x a,) Ailx) — 28,AY(x)] . (L.5)

The terms with  a; " and a, .do not contribute. The next order contributing corrections

proportional te ag would supply a term proportional to- A'i(x)..

i3




W

13

FIGURE CAPTIONS

Figure 1.
Figure 2. .

Figure 3. .

Figure-4.

The order "deflection function” £ cosh t vs ¢ for several values of £ .
& h

, ; - - N+ .
2) K;,{0.1) -b) Kmu_) ¢) Kq,(5) and d) K;,{10) . Plotted is e K 6)-

The argument "deflection function” &= 5 » for several values of 7.

I+A?

2} K1 (O, DK (6), ¢ Kij(€) and d)K,,((£) . Plotted is ¢™/> Kin(_f)~

The insets in a) and b) are Kin(f) for very small ¢,
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