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ABSTRACT
C.é

An expression is derived for the magnetic scalar potential due to helical currents
in toreidal surfaces. Nonlinearity of heli(,;al windings and noncircularity of the cross
section are taken imto account as the work resulted during an attempt to quickiy
evaluate the spectra of sinusoidal modes produced by instability currents in
tokamaks. Taking the inverse aspect ratio as the order of magnitude reference
parameter, 4 successive approximations method is developed that provides a solution

with any desired accuracy.

Shors title: Toroidal Helical Fields II

Classification number: 32.55

1. Introduction

The knowledge of the magnetic fields generated by specific toroidal helical
currents is of interest in plasma physics of toroidal devices such. as torsatrons,
stellarators and tokamaks.

In stellarators and torsatrons the magnetic field configuration is determined by
a number of current carrying conductors, wound on the chambers,

Some experiments on instabilities in tokamaks ahre'performed with external
helical currents (Pulsator team (1985)).

Ekperime_ntal 'investigations have demonstrated that the m=2, n=1 tearing
mode plays a crucial roie in disruptures in tokamaks (Fussmann et al. (1980}).
Currents. flowing along:field lines on & rational magnetic surface of a tokamak plasma
in equi!ibrium state may form magnetic islands structure at each rational surface
(Kucinski et al. (1991)) causing the disruption of the plasma. The formation of
chains of islands in di:fferent rational surfaces is determined by the intensity of
different helical modes; the position and the shape of the rational surfaces and the
direction of the field lines are determined by the equilibrium conditions (selution of
Grad—Shafranov equation). Therefore, it is interesting to have aralyticai expressions
for the magnetic field due to some more general windings as found inside tokamak
plasmas. '

Basically three approaches have been taken up till now in similar calculations:
direct determination of the magnetic field using the Biot—Savart law (W.N.—C. Sy
(1981)), direct determination of the vector potential (Mirin et al. (1976)) or
application of'Boundary conditions on the scalar potential expression (e.g. Kucinski &
Caldas (1987)). In ali the referred works the surface current is taken on a circular
toroidal surface. The expressions for the vector quantities leok awesome even in

these simplést cases.




In order to determine the field due to nonlinear windings on noncircular toroids
we made option for ﬁéiug the scalar potential approach.

In part 2 the expression for the surface current due to filamentary currenns. is
written in terms of suitable curvilinear coordinates.

Boundary conditions for the scalar pokential.is derived in part 3.

In: part 4 a method for quick evaluation of Ehe spectra of helical modes is
presented. By successive approximations-the solution can be improved to a desired

accurancy.

2. Surface current

Two-systems of coordinates have been used: standard toroidal coordinates, in
order to write the scalar potential as a solution of Laplace's equation and a
non—orthogonal system where a set of the coordinate surfaces is formed by not

necessarily circular toroids and the helical windings are coordinate curves.

2.1. The standard toroidal coordinates (£, w, )

These are defined in terms of circular eylindrical coordinates by

Ry sink £ Ry sin w
R = oimimmmme— 1= (1)
cosh £- cos w cosh £ - cos w

where R, is the major radius of the circular centre; ¢ is the torcidal angle.

Equivalently,
n = eosh § and b = 7w (2)
are used because the scalar potential appears as a direct function of cosh £ and
because f, has the meaning of poloidal angle and is taken in the same direction as
the local polar angle whereas:: w: is measured in opposite direction.
2.2 The helical windings
Explicit expressions for the boundary conditions on the scalar potential are

most easily found if curvilinear coordinates x! ‘are used, where x' is a toroidal

surface label and x?=constant represents a modulated winding law.

B3

We are especially concerned with currents flowing along magnetic fields in

1

rational surfaces of & tokamak plasma in equilibrium. x! could be a magnetic surface

labet.

Here we assume noncircular toroidal surfaces described by:
7 o= F(x}) + pxcos b, . (3)

For an axially symmetric equilibrium fietd f’.o a local safety factor can be

defined as (Kucinski et al. (1990)):
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d 0
qs 82 o . (4)
El% By ¥4,
In tokamaks this {s very neariy:
q = q{x') +qix')cos 4, . (4"

Filamentary currents are considered here on a rational surface alorg a line:
dy m, .
H%; = 7+ dlxp) cos HE‘_ .

This modulated winding law is written in terms of the coordinate
x* = mf,—ny+ngsi {(5)
as x® = x} = constant.

We take x*= 4, .

2.3. The current density

Filamentary currents on x! = x! surface along x2 = x2 can be described by a
¥ G o i v

current density vector:

J= Cax' =) st —xd) ey | (6)

An effort is made in order to use the most familiar notations in she litterature: e
and e' stand for covariant and contravariant bases vectors; g;; and gl for the
metric elements and g for the covariant determinant.

The flux through a swface element d& = g dx' dx®e® must be the total

current IH . Thus:
f J.a = f vE dx' dx* C 8(x! — xb) 8(x — x3)

can be used in order to determine C as I,=vsC.

- The expression (6) becomes:

I ' ,
T= A g —x) s -x) e, . 6
7T xp} 627 —xg) (6}

If a single filament is considered at x"=0, &(x*-x2) can be written in a

periodic form as:

6()(2) = +

--:‘QI»—-
==

Cw )
Re Z elNx
N=1
Re stands for real part. In what follows complex expressions are used. The physical
quantities are obtained taking the real part.
If pairs of equally spaced conductors either in the same direciion or in opposite
directions are considered, the current density is still given as a series of terms in the

form (Kucinski & Caldas {1987)):
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_J = 8(xt — x5) i (7) .
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Scalar potential for this current is determined here,

3. The boundary conditions

The boundary conditions on the magnetic field B can be written in & single

expression:
e

8] = s [ aty 3 ®)

1

Square brackets are used to denote the jump in the enclosed quantity from inner
to outer region, through the discoatinuity surface. The suffixes e and i are used to
desighate._the quantities in the outer and the inner regions, respectively.

dt, isa displacement normal to x} surface and can be written:

gr. = ehdxt (9)

n
Sl
=]

The integral in (8) is performed through the discontinuity surface.

Using (7) and (9) the condition (8] becomes:

conditions are written:

4. The scalar potential

potential is a superposition of terms:

¢, = (7 + cos 67t)1/2 Z(n}e

regular, inside the toroidal surface Z)zQ

.#o{ o 2 12
—= &N (e —Eppel) (10)

©

In terms of the scalar potential ¢, B =V¢= —g—f—ei and' the. boundary

= | G

Only'twdof_ these conditions are-independent. .

Laplace's equation is separable in standard toroidal coordinates and the scalar

w8, iN{mé—ny .
te( ) (12)

where Zu(n) are associated Legendre functions. Requiring that the potential be

nN

N1 /B(rg) and in the outer region,




It the winding law is given by (3) and %61 and ©/% are of the order of the

dmverse aspect ratio €, the coatribution to the potential by each term o, is of the

order of =l vl - This is confirmed by the resuits.

The coordinate x* (3) is used 1o write the general expression for the posential

a8
tm L .
) 1. iH 1 179 iy (6, —Nnq sin 4} it
cp=—i~Nﬂ,—q0/ (r)-‘rcos.ﬂt)" Zs- ICUZVe gttt ¥
BRI
(12)

7o 18 the value of 7 at the boundary.

Using x*= 4, and = nx*, 8.} the boudary conditions (11) are written:

- m . e
; ivf, _ i Nng sin 8,
Y [e, Z,,(nJ]e = 7 (n+cos 477 (13)
r=—n
and
o : iwf, . L iNpgsin ﬂ.
Z [E§Vl CVZ;{n)]e = —Tyl/‘zé(n—i-cos m—s/le fy
v=—mn '
12 g2 7 9 1 —ija [N sin 6, | .
-7 /7iN EH ( F;(IT ) {n+cos ) e . (13"

The prime denotes derivative with respect to she argument.
Writting explicitly the surface equasion {3} the second members are exactly

expressed as Fourler series { Appendix A):
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i ief :
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Y [eMe,zmle t = Y ISl

M=—y. =—m
. and

to i i .

Y [e“‘" C, 7 Z;}(q)}e =y ¢S B oS0
Y=o . S=—w

4.1. Circular toroidal boundary (5 = 0}
En this case; (14) bécome:

ICgZg = Cgzg-C

glg—CgZg = Ag
and
[Cs m 2 = C¢ a2y - Cf
{15')

The constants are comfortably determined as:

ce = {(a.—-B -2 PQ!
5= s *1.QPQ —PQ
¢l = {A.-B _P_)_m_h

g S 7 P’ PQI _ PIQ

where. Z%' were subtituted by P.Q

(14)
(14')
(15}
7 I3 = By
1
P
(16)
1
Q
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All'the quantities are taken on the surface.

CS are real numbers and the potential takes the form:

+oo

IR T R . .
b= w2 {1 %‘“ SIS 1Yl e,z () sin(m + v) 0, — Nng)
1]

V=—x Vs

It is evident that Cg P and CSi Q are of the same order of magnitude as Ag

and BS‘ B
The expression is more general than in above cited papers as it fully takes into
account the nonlinearity of the winding law {§ # 0} . The intensity of each helical

mode can be evaluated with any desired accuracy.

4.2. Elliptic toroidal boundary (7 # 0)

Legendre functions are expanded in Fourier series {Appendix B):

o = - o F i —i {0 : R
Z f+qcos b)) = Z,,(7)+ 2 sCZM(e“mL L) (17)
£=1

10 derive:

12
+ao . o
X . . Coa lﬂ'gt 1Sgt RN )
Z [€|Vi C, 2,7+ fcos HLJJ e = 2 8 {elsi (CS ZS,U(T?}] +
V=—m S=—m
g [ols-el4¢ s+l | |
|54l S+€|+ ~ o
+ ; [E CseZsgit® Core Zs+€,€” : (18)
= _

Using analogous series for the derivatives. squations (14) yield:

Elsl[C'S ZS-O]- = ;lsl AS—Z z§8;€'+6[0 ;Ezs;u] = I3 A

= :
- (19)
Isi] Sip ¥ LIS+ ' |
S b i " | S=f]+£ — . _Is
eSlegnzy | = <5t sg 52 (CorgZepd = <58,
_ . =1 )
The sohrtions can be formally written similar to {16):
g = (482 ) 2 1
T T T
(20)
' I
cl = -5 L L
S (AS S—vpl)?o!_?lg Q
‘_Vhefe- 7= Zg,o = P;§+s—1/2(m +0(=%
i . nN PRTE. P '
and 9= Zgy = Qxispl 7027
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First order approximation

Keeping the dominant ternis in (1%} ’{S are derived as:

‘{0 = A + O(z%)
5

A = Ag= Y [Co %y} + 06 for $21 (21)
=l :
5]

A = AS—;I [ js1e%ois)red + O for S<

Similar expressions are derived for BS .

The first order coefficients CS are determined following the scheme:

(- B)) = Cy () B ) =€y v~ (g B )~ Oy (22)

The scalar potential with the first terms in this approximation is writtenin

Appendix C.

Sueccessive approximations method

Once the first arder coefficients are evaluated ((S . 3'5) are written in terms of

these coefficents using {19} in order to determine the next order solution. This

procedure can be repeated until the desired accuracy is achieved.

Conclusions

The magnetic structure and consequently the stability of toroidal plasmas are
strongly dependent upon the helical modes of the magnetic field (La Haye et al.
(.1981), Kucinski et al, (1991)). Very oiten it is more relevant to have the
appro&ima.te values of the whole spectrum of helical modes in the plasma region
rather than a higly accurate value of the magnetic field especially if resonance
phenomena are concerned (Kucinski et al. {1991)).

The present work provides a method for quick determination of these specira.
A general expression for the magnetic field has not been derived as the relevant
components of the magnetic fieid differ from case to case. These can be obtained
without additional complication switching to appropriate cfordinates. In tokamaks
the widths of the magnetic islands depend upon the component perperdicular to
rational magnetic surfaces; equilibrium magnetic surface coordinates are most suited

in this case.
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Appendix A
The basic identities:
' ~1/2 _ 42 5 ¢ i6, '
(ntcos ()72 =42 % (1fQpy_ e (A
==t

{7+ cos ﬂt)ﬁwz = —32 gﬁ {n+ cos 6?,)_1/2 _ (A.2)

iNngq sin 8, iK g,

e 2 J_(Nog) e (A.3)
N x

0 s L(,:JOS =2 2 ¢ 2 gin nw (Ad4)

are used here. Qf-i-/z are associated Legendre functions and J, are cylindrical

Bessel functions.

Ag and By are defined by:

iNnq sin ¢,

172 e [5] i58 ~1/2 '
o / Z gl”l Age = (g4 cos §,) e : © (AB)
S=—w
s is4 - iNng sin &,
?;"3/2 25|S1Bée b s (n+cosﬂ) 324 ' ' {A6)
S=—w ’

16

iNnq sin gt ( ) :
AT ~

o0 ( g% .)I_l (n+ cos GL)_I./2 e

and

‘Using (A.1).to (A.3) the expressions for Ay and B are easily obtained as:

ISI Ag = £ Z (05 ¢y (0 3 ANnd) . (A®)
B = _
Elsl Bé. - ﬂ_ﬁ 2 (—l)E 43/2 Q:tf_1/2(0 JS;Mf(Nna) ’ (AQ)
where o |
(= Jl_
7oL

" In order to.determine Bg . x! and x® are explicitly written in terms of

standard toroidal coordinates (&, w, ¢):

n = cosh £ = H(x!) + H(x'") cos 6,

o




: S 12 mN _— g $—1 s+
. : elfBS;-—?-—e o’(al%—%%ea)(s% fASHI-.;I'J"IAS_H)-i-
2 : . |
where 6 = 7w ® , :
. N € — 5— |5+
Using; +g1 (1~——qcosha Z (—1)'e e15-4 AS-€H°I IAS+£)
; ] £=2 '
= VxlPxd ;g2 = Fylyy? :
. _ ' Mathematical table edited by Erdelyi (1953) was most " often consulted for
Vf-‘?szﬁL-‘?ﬂt ; vs-va:vp-wt_:o .

formulae.

and sih €7 éh= g 750 9 7y,

the following expression is derived:

: - sin 4
; , 012(-5%) I‘__——~“t__

- {m + 2§ cos d) =
2% cosh @ + cos 8, :

. e
m —g ng. —ay . m - g
==e ( e } sin BE—T(lHI%_q__'cosh a) Z (—l)ge asmé’fit
Vi : ’ n /=2
: {A.10)
where '
ol
cosh & = - ;
2nh

Using (A.5), (A.8) and (A10) in (A7) and reordering the terms, an exact
expression for B§ is proved to be: o

o

A
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Appendix B~
© 7 ( m)
ZV(T; + Feos 6) = Z F-;Tr— (7 cos 6,)"
=0
where-
m_ 4"
7y = L
The identity:

m
{CO'S 3t)m - 2—m (e.IGf, + e'"igt)m — 2'—m Z E'_- el(2k“m)€5
li=0

is nused in. (B.1) and the terms are reordered to give (17) with:

o gD okl

£ v
e Z = |z
wt ga k! (k)1 (

hs
R

. £30

I

(B2)

Appendix C -
Potential in first order approximation.

+w

Ha Iﬁ(n +'_ios b, )1/2 Z'MV Z,(n)

N~ B o

v T

_Jp_mN g _mN 1
M =5 =7 1}‘}9 mN—i—l'—_JO
] a5
o I mN g miN—2 L
ME = 3 — T Jo ~ mN=T o 0
n N
L4y miN 7 CmN+2 1§
Mp= -3 r%sﬂfmg;]%'

— ). sin((mNJrv)rﬁt—

i

Nn cp)

&

All the quantities M are evaluated on thé discontinuity surface.

~ Jy = J(Nnd) are Bessel functions.

@
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