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ABSTRACT

We derive & formally exaet rormal ordered boson expansion in terms of harmonic
oscilia.tof bosens; for: the nuclear. charge and.current densities. This expansion separates
the dependence on the momentum transfer, from the dependence on the nuclear structure,
and is exact in: the case of the harmonic oscillator shell model space. Our boson expansion
provides. & mechanism. for expressing: the-multipole operators- in terms of SU(3) tensors.
Thus;.we perform an:: $U(3). tensor analysis. of the multipale operators, since this is of

major importance for; shell-model calculations:in an - SU(3) basis.

(]

1. Introduction

In references 1 and 2 it was shown that the charge-and current density multipoles,
when restricted o & harmonic oscitator shell-model space. can be written as a gaussian
times a polyromial in the momentum transfer, q, where the coefficients of the powers of g
are specific one—body operaters. In turn, these one-body operatofs are expressed as a
normal ordered munber—conserving polynomial in terms of the oscillator hoson creation
and annihilation operators. ‘ -

A consequence of this result is that different sheli-model determinations of ﬁhe form
factors must differ from each other only in the values of a few parameters, defined as the

'matrik elements of the one-body operators. Thus, for example, it was found that in the

sd—shell, the shape of the loggimdirzal F;’ gt (q) and transverse F: T {q) and

Fr;‘ - (q) form factors are independent of the nuclear wave functions, all harmonic
-

oscillator sd—shell model caleulations giving identical shapes {and this includes calculations

for different nclei and different states in-a given nucieus)z). ‘

Although all the discussion in references 1 and 2 was focused in the sd-shell this
boson expansion has a much greater significance and generatity.

In this paper we will deduce a formally exact boson expansion of the charge and
current density multipoles. The general form of the expansion is analogous to the one in
reference 2, only now the series in powers of q is not limited and fhe one-hody operators
have boson nurmber conserving and boson number ﬁon—conserviﬁg terms. Noticing that,
for states restricted to the sd—sheli, we can annihilase at most two oscillator quanta per
particle and only the boson number conserving terms contribute, the series expansion
terminates &s in reference 2. However even in the general case the boson expansion should

be rapidly convergent as can be seen by noticing that it reduces o a polynomial with a

finite number of terms when we restrict the many body Hilbert—space to a space




constructed with a finite set of harmonic oscillator single particle wave functions.

o The boson_expa_nsion_.r.ha.t we employ can be regarded as an application of second
quantization techniques.” We recall that the shell;model makes substancial use of fermion
second. ‘quantization. Iﬁ particular, it uses the fact that any one—bhody operator can be
expanded: in & ba313 of elementary one—body operators with the result that the matrix
elements. of one-body opérators can be expressed as known linear combinations.of the
matrix elements of the basis operators. References 1 and 2 and the present paper not only
show tha.t sumla.r remits are obi:amed with hoson expamsions but that there are very

" substancial: pra.cmcal advantaves to: this aitematwe approach:

" One advar_ltage is that there are only three dxffe;ent Earmonic oscillﬁtor bosons per
nucleon, as opposed-’ﬁo'a.n infinite number of single—fel_;mien :states. “Therefore the boson
expanSiOn-' cam: I")&'-.rﬁu(':li more economical and, as ilustrated. in ref. 2 for the case of the
harmonic: oscillator: shell—modéi',_ the ma.trix-.eiements of thie charge and current density

' multipoles- dépend. om a smaller: set of independently basic matrix elements than fermion
second’ quantization:might lead one to supj)ose. 'Admitedly, only a smali number of
ferrﬁion states contribute on restriction to-a single h.o. shell. However, the finite fermion
expazision relévant. f_br' one h.o. shell have nothing to s;iy about the ,correspoﬁding

expansions for a different h.o. shell. In contrast a boson expansion is simultaneously valid

for all nuclei and all h.o. shells. For example, by considering thie action of an arbitrary'

one—body operator in-nuclear states with one nucleon:in the h.o. sd—shell’ one can déduce

ail the one—fermion matrix elements needed for application to any- other h.o. sd—shell

nucteus. But, in a similar way, one can deduce all the one and two—boson matrix elements

needed for application. to any aucleﬁs, restricted to a h.o. shell.

A second motivation for considering the boson expansion of operators is_beca.ﬁsé of
the importance of microscopic nuclear collective models that make use of the boson
structure. of the harmonic oscillator shellmmodelg). For example, it has recently been

pointed out that enormous benefits may result from the symplectic sheil model, in which

calculations are carried out in an LSVCC)upZed basis that reduces botk the symplectic group
SP(S,R) and its SU(3) subgroup.3) Such a basis provides a natural interpretation. of

shell-model wave functions in collective model: terms and is expected to give more realistic

results for nuclei in which deformation correlations predominate. The importance of the .
hoson expansion arises from the fact that the boson creation and annihilasion operators are..

respectively ['10] and [01] SU(3) tensors. Therefore symmetrical polynornials: of. boson ~

operators are readily coupled to- irreducible: SU{3) temsor operators, a property’ of
considerable practical importance for calculations with sheil-model wave fuﬁctidns i an
SU{(3) basis..

In this paper we will deduce a forma;lly exact boson expa.néion for the charge and

current density multipoles. In practice only & -relatively small number of terms in the
expansions should be relevant. For example, the low ¢ . beliaviour- of the: lowest. order. '

charge and current density multipoles: for all. nuclei is dominated by terms: up: to-quartic-in .

a normal order expamsion: in terms. of: the: harmonic oscillator: boson:: creation:: and

annihilation operat;ors

This paper is orgamzed as. follows. Ill section: [T we: wnte expressnons of the: chaxcre:

and: current densu;y.'multlpolea which. facilitates our task of finding its boson: expansion: -

The boson expansion: of the: charge density multii:oles is'deduced in-section IIF and the ones

of the current density multipoles in section.IV; The SU(3) tensor analysis of the charge

and curren$ densities multipoles is- performed in section V. Our concluding remarks are

presented in section VI

II. Charge and current density multipoles

II.1. Charge density multipoles

The Fourier transform of the charge density operator, (%),
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e = ) A" Yy (9 (@) dg ) (2.6)
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is equal to
X
MHa) = f e px) &% = As will be shown below, with the help of eqs.(2.5) and {2.6), once we find the boson
expansion of the charge density multlpoies, thé boson expansion of the current densmy
—iq-(n) mult:poles follow immediately.
- 2 ) (2.2)
o IL2. Current density multipoles
This operator can be expanded as . .
' ) The Fourier transform of the current density operator i(x)
- . AL . '
Ha) = Y 4r )" Y (@ (0) bppyla) (23) Cigex
L ife) = f e i(x)d @7
where: ﬁLM(q) is the charge density multipole operator
can be expanded as
s = [ 14009 Yoy (0 () i) e (24) . (0 gy 0
f@) = Y ar 0| YA (0 () §{ L9 q) +
: . J¥
The charge density multipole ;‘JLM(_q) is a one—body operator and can be written as (2.8)
. YU @ @) W@+ Y @ @) Jiea
5 = (1 7 5
pLM(q} = 2 I—'-{-_‘Ira(yl.ﬁng{n;q) : (2‘5)
w o
gt (n) : . where the j‘g;{““g)(q), Jgfll () and JJ(;‘;ag (q) are, respectively, the longitudinal,
where we see that the operator 37 M(n q} appears in the mul&lpole expansion of e

transverse electric and transverse magnetic multipoles of the current density operator +5)

:( long)

it leneg) f P i) ¥y () el (292)
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Jg;])(q) 1 J- Y * jJ(qX) Y J.\[(Q {x) 'j(’.‘) ({3"5 (2.95) 7 I1.3:  Longitudinal, tra.usvel:sé- electric "and ' iransverse magnetic 1rultipoles of the 2
o convection current s
{mag) . v BTN ' R .
J:lM (q) f Jjlax) Yol B)-i(x) &%, (2.9¢) The convection current, i “(x) , and its Fourier transform. j°(q) , are respectively 5
, ST _ equal tor '
_where:- iJ “(Q(x}']i :'are the vector spherical harmonics (eq: 2.17} and -Y(' ! °ng)(ﬂ((1}) 7 . _
Y{el) ) d Y(mag) Q o - S, N N
(Ug)} an {Q(q)) are respectively, the longltudmal tra.nsvezse electnc and | i) = %Z'!l + ;3(11)1% an} §(x— £n)) + &x — () E;n)
tra.nsverse maguetlc spherical vector fields 6) n '
. _ (211)
f-lsng}. L S and’- 7 _
y{ieshogg)y = [HEL p G(mq)) £ (0@) = 3¥,(%%a) (2:10a) e L o
L VRIE | _ b s 1 [y EE® e E®) 5y
2 ) - - T ). L : =
. ._ . . _ l_c(‘_!): m_czg——él—n H3n Z{Rg—l?l_'ea._: o +.e. - T] .
: 4 1% ! e % S ) ; ] o e . S )
vie }m(qn - B2 | P20 &, (@) + Dy (@) &, (2a)) (2.10b) - (212)
. Y;(ﬁag')(ﬂ(ii'}) . i]-i— [ \4[-1(9( q)) f {Q( 9}) -D ;\{I ;(9(9))- §i_ (Q(ICMI)) J ’ (2.10¢) Next, we introduce the oscillator boson creation @d annihilation operators -
- ) . ) ) 4 . : N . gy - o . . ) . . . ) . ~ 1 i. Y ) -‘. n .. . .
Tn q.(2.10}, the vectors gﬂ(ﬂ(g).)i are-unit spherical basis vectors in a coordinate system o ' by(n} = E [ éﬂ + by TE } _ _ (2.132)
whose z direction coincides with the direction of q and D}\JJM,'(Q(Q)) is equal to, ' ) .
' : Cbi) = @), _ " (2.13b)

where by is the oscillator size parameter and, j =1, 3, 3, iabel cartesian axes to write:

where: tp&. and: 4, are the azimuthat and: polar a_hglgs, which determine the direction of g.

" Ih- what follows: we: will- consider sepéu‘ateiy the convection and magnet.izat.ioﬁ. ' mig-ftn} ' —ig+E{n)
' ul {e bln) —be(a) e

. . . . . te
current densities™®). In each:case. we will find expressions for the current multipoles which - : ' (CI) ﬁ Z

reduces- the task of finding its boson expaﬁsion 10-the one of finding the boson expansion of ' (2 1 4)

~ the charge density multipoles.

=
I\D -p
- .




where B*(n) is a vector whose components, are {byln}, bz(n}, by(n)), with an analogous
definition for t:)(n). _
To proceed, we introduce the spherical components of the vector boson creation and

annihilation operators (b} ONS b B)s = 1,2,3) which are shown below:

br(a) = - - [b;(u) +15; (n)J - (2.158)

by_(n) = E[ ;(n)ft b2(n)} : (2.15b)
big(m) = Bi(n) . : (2.15¢)
bum = U o]t , o (215

and we use eq.(2.6) to write:

i%q) = 2 fr ()" JLM(Q(QDEELE (L+ '%égngl .
on

{2.16)
« [[ig(n;m b)) g+ (M i) x,é;(n;q)]m} :
where: Y, L Ml 2ah) a,ré the vector spherical harmonics,
¥J[‘.;M(Q(g”: = EC{f‘fI:mM L\{_#(Q(Q))f o (2._17)

£

10

To find the desired exprassions of the comectlou current nlulmpcles we have oniy
to expand the vector sphierical “armonics in terms of the spherical vector ﬁel_ds, egs.(2.10}.

This can be done in a straightforward way, with the result:

o) = [ OB Y0 2 i ol iz
' ' T (218

7; 1+ e y(mss) (Q{q))J

Now we use eq.{2.18) for the vector spherical harmonics in eq.(2.16}, replace the
Clebsch—Gordan coefficients b its explicit expressions and compare with eq.(2.8), to find
the following expressions for the transverse and longitudinal multipoles of the convection

current:

(o ~ (143 12 [, A
i@ = me; w“ﬂ?&’m] “’J_—L(’-“‘”*" B -

- [Bita %_l(n;qﬂm} + (] " {Pﬁl(n;q) b))y -
- [BI{H) A (_n;q}] JMH , (2.192)

o0 = by X050 i ] -
n .

. . . . J /2 |- N
— [b{(ﬂ) x/ﬂ;—[(n;QJJJM - [mﬂ J_H(n;q.) x bl(n]jJM -
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f._[gt(n).-"%;l(nm)]JMH , - _ (2:19D}.

| 5“‘;‘51( ) .1_15'mc af‘“—'lz “—*‘?Ul [Lo'(n,q) x bl(n)]m { t{n) = 7l ;q)]JM] -

{2.19¢)

.

IL4. Longitudinal, - transverse electric: and transverse magnetic multipoles of the

magnetizatiomcurrent:

The.:mgnetizationa_ current. is given by.

e Y O

where: p{x}: is-—‘theimag_netizaltion dénsit.y'_ .

) = Q—Zgn) s d-iey e

In (2:21); &(n) Is given by,

g(n) U—";i@%ll f1—+gsﬂll

_ whe:ce g‘[L a_nd Sg are respectlvely, the neutron and proton magnetlc moments in units of

the nucIear magneton _
To-firid the desxr_ed' expressions: of the magnetization current. multipoles. we consider

its: Fourier transform,

—ig+i(r) |

i = ghi Tawarame . (@22)
Remembering that
(a5 = =i [ 2 m(ﬂ(q)}a (@) o en
: v o

. g+ r(n}

and using: the- multlpole expa.nsxon of e , eq (2 6) ﬁhe Founer t,ra,usform of the

magnetxzatmu_ current cain be written as: . -

(m)(q) _,O_Em-l) B [ w(n(q)) Yu(n(q))]

mJM

JIM. e .
: (224
'x:qbu g(n) {/(n,co = aa(n)] |
Now we use:the expansmn
| . _ n VT R
[YLM.(Q(Q))--"¥11(ﬂ(9})]‘11\{;-_:2 [1%{%1_3} [ [ s )L+J] Conl Yg?g)(p(ii))'—
1 AT} LT ] -
-2 [l + )] } Coi1 Yim Q{‘l))]
to find the following expressions for the-_inag_niéifzatidf;-current multipoles:
(long)(q}_ =0 _ S . o (2.26a)

@

&
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: r;e;&(q} _ Tqbozpﬁ_lwll,q)xgl(n)JJ\E . : .- ..l.(g-.?ﬁb)_

'rﬁ“’;i)(c.:) . qu%i{ [ﬁi—ﬂ}m@?—x[“;‘;)“f ?’i-(n)]m\.{'f. g
o [’2%_1}”2 %I(n Q) * al(n)]m] - (2260

Our aim in this section was to derive 7eqs.(2.19) and {2.26) for tl'leA current
multipoles. Looking at these equations we see that, once we find the boson éxpaasidn. for
the chaxge--densitx._ multipdles, the: boson expansion: for the current density multipoles

follow: immediately:.
TH: Boson expansion -of-the-cha-rge density multipoles:.

To find the boson expansion of the:charge density multipoies'-we have first to write
- —ig- #(m) _ '
e in normal order form. This can be done by expressing 1t in terms of the
oscillator  creation and  annihilation  operators, €q.(2.13), - and using  the

Baker—Campbell—Hausdorff formula to writez)

o ibo o, ibo ¢
Sget) paegy = tg-btn) ——2q-ba)
e = =e Oq/e.ﬁ e V2 ey

Expanding the exponentials in a power series, we have

14

—iq-f(n) blg? SEETRL: 5 .
—bga’/4 ib K. X
¢ =" [“_ L (g b (g-bla)’ 5.2)
el e KIK"!
—iq-i{n)

Now that we Eave written e in normal order form, eq.(3.2), our next step is to
write it in terms of spherical ténsor operators. This is easily accomplished once we write
eq.{3.2) in terms. of the sphe;ica.l.‘compan_ent_s of the momentum tragsfer, qlﬂ , and of the
vector hoson creation and annihilati_qn operators, eq.(‘2.15).:

To see hm;r this can be done, consider the generic term (q-_i:)*(n_))K. The unitarity

of the Clebsch—Gordan coefficients allow us to write it as

. - « J(K) '
(q-br(n)X = q(K} Bl (n), K>0.(3.3)
92 " Z.J Iy il My Wy Ja e My |
2730 Kl :
JK MK-
where
. = [ Jis- o i
q =g x| |agx (g * qp)
N ydy g My 1 S G CYR PO SN S5 S
and’ . .
o ® = [0 v, 1, ]
132 R Y \1h(n) () %[ [bi{n) x | bi{n) = bi{n) B agJ3 oMy

K—1

with

(Lt} o

qlM = U

By m) = bry(n)
Using

L @q Yp (@)




and: -

: o - CLilL
{YLI.(Q@)"YLQ(Q@)_]W = I):ZIH Gooo2 Y ()

we-easily find’.

o

q +—7.Cr @ Y5 e (a) (34)
1J2 JK * I M K | mKTH_) Uyedy 3 T M
where.. - )
e - ISR T P POk I
¢t 3. = Sooo Coo 'CUUIS: e
PURSIK o
Cli_ =1

Our notation: is such that J; - means: the f‘h angular momentum that occur in.

C . ‘Flie passible values of J are-
1J2 JK_IJK Z

Jg_.l= £ Lf-—2',"...' Lor0 .

Smce the COmponents. of the vector boson creatnon operator commute, analogously

to-eq:(3. 4) we havey...

S (K)o & '
le . (0 = I Cyg

(b)-br@)™? ¥, - (be(n)))
Kl’K K K 27K-~1"K KK

Eq.(3.5) suggests:to define

¥y (0 = (o ()2 ¥y ag (0@ - (3.6).

3.3)

16

These operators, which- are a. generalization: of: tlie- solid' harmonics, are homogeneous-
polinomials of order XK in the components of B’(n) and they transform under rotations as
a spherical tensor of order T When he=K, it reduces to the solid ha.rmomc of order

. This can-be easily seen by rewriting eq: (3 6) as
YL ) = b g )
. (b* = (b*(n}-b*(n)).- . o
5 2tn)-bM(n) Fro 2

where: %‘KMK(t}_’r(n))'- is the solid harmonic-of order J K"

- Using eqs.-(3.4)—'(3';6) we find:-

(@b = 27 A(K) m o vy e (n(qn Y;‘,K;{ @*(n))s-:-;.._-f---: G
. T Ik ,
whé're- .
o R 15,2 [ 13,3,12 [,
K): S it f I PRk ] ERN P (G b (o .
A§-- ) = 2 {Cooo} [-Cﬁeo.---J-g.'" Cooo: } S
K J2--' ’JK__ 3 7 i .
with
ay _
A1 =1
()
2 AJK 1

Adopting the convention -

RO
A0 =y
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Y @) = T (br(a))

the eq,(3.7):is alsovalid for K = 0. -
Analogously. we find

@ba)* = Y A}? %”— 9 Y5, 00 Y )

J K}!'K

Thus we-can use eqs.(3:2), (3.7) and (3.9) to write:

migi- f(n)

[‘iéz’@(n)). x?}E}(é_{nn}m_Y;M(n.(g_n: :

Given eq.(3.10), the.use.of eqgs.(2.5). and:(2.6):leads: immediately-to:. .

2/4 Oq =K+K|
1 (L—K—K"
pLM(q) = e Z F;J \ 1
: fxrW2 ) KK 5t

i _
(4r) AR (R .
[{2L+1)(_‘2.IK+1){2.II](‘,1.-1]J._ A A Coog 2

JUES ) [if‘é?(@*(n)} RRCO)

Jim
with:

(3.11)
LM
Thezefore the charge density multipole can be written as
—bja’/4 BKAL & (2K+L) 319
(3.9) piag@) = e Z (o) HE 5 (3.12)
where-
’ K
5’:5;4(} Z!l + r.s!ﬂll z 25°(3>(_K'J'K.,K_K'JK_K.;CL)x
n K'=0 T g g :
* [ VI Br ) = Y gy J (3.13)
DR K-K" :

20Oy KK, sCL) = e ir
kB KT e SR/ (KK J(2L+l)(2.II{,+1 T 1) ™
(3.10)
o Jo
K Kk
R (K'Y (K.—K') :
=G0 A‘II:i SR .o (3.14)

K—K'

The eq:{3.14). shows that 250(3)(1( I K= K'JK K,,CL) is symmetrical in the mtercha.nges

K' ZK—K' J' 6— JK X' and is different from zero only if J, + J

which'] lmphes tha.t K-L is even.

KK + L is even,

In wntmg eq.(3.12) we used two propemes of the charge density multlpoles whlch

are, of course satisfied by eq.(3.11). One is that the even (odd) multipoles have only: even:

(odd) powers of q.

expansion starts af, qL.

The other is that, for a given multipole of order L, the series-
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In the  particular case of the harmonic oscilator sheli-model space, where the

valence nucleons are in-the N harmenic cscillator shell, the series terminates since, in

this case; we cam annikilate at most N oscillator Quanta and only the b030u number

conservmg terms- contnbute As a.consequence we have only even multlpoles and K and -

L ineq: (3 12)is: restncted to. (2K+L) ¢ <2N.

(ZK+L}

I this pa.rtlcular Case, the expression of p A reduces to:

'~ (2K+L) Z (I + Fa(n)}. Z

I/ ka2

S0(3)
7S {K+L/2 Tz K+L/2 Jk . CL} x

[(+/) . (K+L/2)

|8 e Yy (t}(n))] . - RO
CTKALf2 K+L/2 - EM . o

Our dlscussmn ups to this pomt* have shown that. the. charge density mulmpoles can be

—baZ/4
expanded: as. e

pow_er,jﬁ; the pqunouﬁal-'expansion_:are. the opera.tors; p£M) . In turn, these operators are
giver: by-'-a"normali: order expa.nsio’u» i .terms of the harmonic oscillator creation and
annihilation: operators " This expansmn has: the _property that, in a many—body Hilbert
space-constructed with .a ﬁmte set of harmonic oscillator single particle wave functions,
only: a: ﬁmte number- of p(K) -has non—null matrix elements and, as a consequence, the
series. terminates. A particular example is when we restrict the many—hody Hilbert space
to the harmonic oscillator shell-model space, as shown. above.

Eq.(3.14) completely defines the-operator péy‘[) and it can be used to calculate
matrix elements of this-operator between many-~body wave functions. However in what

foliows we are going to derive an expression for p&}) in terms of coordinates of the

. times:a polynormal in boq where the coeff' cients of ‘the ' Kt -

20

nucleons: which: gives further: insight: into thie physical meaning of this opera.tor and’can be
usefil in-the-caleulation-of ltS matrix-elements.

The derivation starts by comparing.eqs.(2.4) and (3.12), which gives:.

. 4
Z(boq)”‘“ P Z“—‘*‘?@D M i) T, (O 0) -

Now, by.considering the expa.nsionT)

o

22[4 -‘L(xz} 2 - 1.

L L+1/2(x2) SKAL
2K(2K+2L+1)"

on'é; finds:

= B et (] 1 o

Prag:

(3:16)

where LE+(x) is an associated Laguérre polynomial ).

" IV: Boson expansion of the current; density rﬁlﬂtipoleif :

IV.1. Convection current density: ..

To find the boson- éxpansion- of the’conveetion. current multipoles- we use eqs.(2.5)

and (3.12) into-the eris.(2.19)_ to.write:

-3 24 _ -
((:l?;ig)(q} TL Z( b)J 142K 3 (long)(J 142K} . (4.12)

cJM

L&




—b%q2/4
(el h I—1+2K (eI ) (J——1+2h)
I J\)[(q} : Z {_qb o’

(4.13)
ém‘?&)(q) h -b Fa2/ & o zo (qb }.]+2K (mag}(J+2i\} (4.1¢)
where:
-(go\lzg).(z_mzx) 2 {1+ 3(n)) “ } MJ 1+2“(n) x Byfn) — ~Bi(n) =
(4.2a)
1/2
;LJ H42K) } et [ J+ilJ {,g.r ~1+2K) Yn) « % B,(n) ~ bi(n) j(.J 1+2K)(n)}JMJ
“(el}u—mx) 2 (r + m(n)z “ g+i1] Lv‘:_‘*m.)'(n)xﬁl(n) —.B;(rz)x
: (4.2b)
. SN2 '
A1 0 e ] ) 8 — ) #4500 )JNJ
. ‘Em;’\g[)(l+?K) :ﬁz (1 + ;3(]1})%‘1+2K)(n) N f)l{n) + 5'{{n)_>;é§J+2K)(n)J
n L
' (4.2c)
When. K =

=0, only the first terp: survwes in egs.
/pi(M {n}: follow: from. eq. 2.5

z 1+T3(Hg}§

L\«I

422} and (£.2b), and the definition of

Using eq. (3.13) we can casily fi

nd the expression of the OperaLors A
from it and eqs.(4.2)

() and

follow the boson expansion of the convection current multipoes.
They are:

(long)(K) Z (I + 75 n} Z

(K-+1—2K )
=0 T Jger g

{(4.3a)

<2 K1k g, K KI5 .0) gy””(b (1)) x V{EHKY g ))LM ,

K-H ~K'-

1K I +
e

2 ke1xc 5
K0 gy, ]

Ketog K0 BI) -
K+1-!

750 P KH1OK! Tt ; BJ )J [Y(K Ybr(ny)x Y(?:_IK.)U}( ))LM E

(4.3b)

Em;ﬁ}(K) Z__Tajﬂll Z 2

[250(3)(K+1—1{'_J
Kiz .

K1t BV o5 M)+

+250) (e

KK M ]x(ﬂ) [Y( (b(n)) « ¥Ry
K KK JK-H—K' M
(4.3c)

The coefficients which appear in egs. (4.3h) and {4.3¢) are given by

(K+K'+1-Jj/2
— K )
H 1 EJ) = Vg(h-‘-” A(
K+1 K KTZFK K+1' h,
KiK'1 2 ; :

224 5

e st
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JK+L 'H C‘TK+1 Igrd
1 01

1 1
J&H)@JK; NGRS i'[”( -)

'250(3)(0 0 K+1 J

K+1'EJ} = 0 _ ' {4.4a) -
and: i
50(3) ) (= 1(K+K 2 g (K')
(K‘” Tk r'K K"M . K,K.12(K+K 7E ”‘( it Ay
; ——fr — 1 '1 = }JK+1+JK'+J CJ'K-z-ij‘J
m“‘l')(”’k;r“)(”"fé“Ll) 3 1o
50(3)(00 K41 JK+1, Mi), =0, L ' . (4.4b)
- with ' : = -
: T1 T 1T, 3
K41) _ (K} K K+l K K+1
Mékﬂ» ZA Cuo o Cro. 1
K

and, where: the: subst.:riptr. ¢ means that 'these_.coefﬁcierrts: r_efer'. to the expansion of the
convectron current. S . _ '

) The transverse eiectnc coefﬂcrents, eq. 443, are different from zero-oaly if
Jar -I- Ix: + J is even, which implies that K+1+K'—J isalsceven. In the e\cpansmn of
_ the transverse elect.rm multipoles. of the- convecmon, ‘current. eq. 4.3b; only occur the
combmatron a.ntrsymmetnca.l in: the intercharige K+1—K'(Jh 1 K,) = K‘(J ! .) . On the
other:hand;. the transverse magnefic coefficients, eq. 1.4b, are different from zero only if
: J ‘ +.} y ;+JT is: odd- which leads to K+K'-J - even. In the expansmn of .the: transverse
magnetrc multrpoles, eq. 4.3 only occur the- combination symmetrical in the interchange
KA (JK T K‘) K'(JK,)  To derive egs. 4.4 we performed a. recoupling of the..

angular momentunt. followed by the use of well—known. identities -betwee 3— and 6

'symb‘olss).

In eqs. 4.1 weli—known propertres of the current densrty multlpoles are exphcstly
showm.. These properties: say- that the even. (odd) longitudinal-and: transverse eléctric
multipoles have only odd (even} powers of q_ and that, for a given multrpole of order’ J,
the- power. series: gtarts at: q , . (except the, iongrtudmal monopole for whrch the serles
starts. at q}- Om the: other hand, the even: (odd) transverse magnetic mult:poles have only
everr (odd) powers of: g and, for<a: grverr multrpole of order J, the power series starts at
q o These propetties follow. trivial[‘y-from- eqs:2.19 once: we remember that the polynomial
expansiow. of the even (odd) charge: densrty multrpoies have only even {odd) powers of q
whichi start:s at g~ for- tbe multipole of order L '

: In the case: of the harmonic: oscrllat;or shell—model spane, where the: valence nucleons

are i the N harmomc oscrllator shell the serres termmates since,. in: this case, we can

annihilate: at. most. N- oscrl[ator qua,nta, and only the. boson uumber,- conserving . 1erms

contribute.. Thus; thé-eqs: 4.3 shom-tha.t:;K: must: be-odd’ and’ the-boson expa.ﬁsipn. of the -

~ convection Current; multipéi%areduceé:ta;;-_-

s(lon g) (2K+1)

Jeam _ o o o - S ST (4Bay
s(el ) (2K+1) _ 1 + T3n ' -'50(3): : ", _
je et 2 E—ﬂgul Z { (K+1 3% K4 JM_l, £J),
JK+1 ']i\+1
- LS00 (K413 K JK_H . EJ) ]
(KD e} .1 k el
YJ__ (b* ()} = Y (b(n)) S . {4.5b)
Ko+l K+l 1 SR
ma g }{2K+1) _ §1_+_;3jg)1 [ 50(3); '
g 2L Z v (K+1J Ky Ry VIJ) +

ka1 JK+1
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L 80(3) .
2O KL T R M) J

JME

AR (K+1) . o '
- —YJ (b)) Y, _(b(n))} (4.5¢)
B T Tt _

-where J“"ngJ(gK"'l) vanishes. since;, as: we. can see: from- eq.. 4.3a, the boson number

conservmg terms. do not. conf:nbute to the Iongltudmal multipole of the convection current.

As & consequence we. only: have even eleetric: and odd: magnetic multipoles and the..

m eqs. 4.1 are: restricted to. J + 2K < 2N for- the: electric multipoles and

(J + I 2K) <N for the magnetic, multipoles. For the electric raultipoles we have the

ﬁu:ther- Testriction: that (e”a =) vanishes identically; since. ounly - the term with. .

1 /2 = .I/Z contnbutes i this.case: This results show that the harmonic oscﬂla,tor '

J'/‘_

shell—-modei :convection: current is solenmdal and chat the Siegert theorein, which imposes

that the:low: q behaviour of the elect.nc multlpolas is: qJ —L4) » Isviolated in a qualitative
way, as pointed out in reference 2. o

Analog;ous 1o the case:of. the charge: deusm nultipoles we ‘can find expresstons for
the boson expansion . of: the: comzectmn eurrent. multspoles in: terms of the coordinate and
momentum of the: nucleons: WhJCh‘ can: be ‘useful in the calculation of its makrix elemenf;s
between. many—body: states « To. show: this,. we first express the boson creation and
annihilation. operators in terms.of the coordinate and momentum operators to write egs. 4.2

as:

fgze0-im0 _ w25 o 5,

172 T
+B~}%] [pl(u),p” 1*"“)(11)}3&1! o  (46a)

by . 1/2 . .
T < gt 3 e B [ A -
R I L
: 172 - o
-l o f‘ﬁlmm }JMJ o e
b . . A . -
jgr??fj.){1+2l{-) =  _2_% Z .fl +. 73(n)) [ﬁl(n) ’}J‘-]-FEK)(H)]JM (4.6¢)

B | I

“In egs. 4. 63. and 4.6 when K =0 only the first term: surwves, and the anti~commutatar -

_{Dl(ﬂbﬁ‘ (ﬂ)}m means,

s oK) C_ 1 L[ EHE—)
{pl(n)ﬂ"i n) }JM = z <, Mg M {pm /'f[(.\b,u i~ ‘—l) e \1«;4(“ pl;ﬂﬂ) J
B

with an analogous definition for the commutator [f)l(n J,}‘?K) ()] I _
Using._the‘expression.for--/}( ){n) extracted from. the eq. 3. 16 in eqgs. 4.6 we find the

expressmns of the opera,tors 4 6.in terrns of the coordma,te a.nc[ momentum of the nucleons
IV 2. Magnetization current density multipoles
Using. the eqs. 2.96, the boson expansion of the magnetization current multipoles

follow trivially from the boson expansion of the charge density multipoles:

Writing the transverse multipoles as

=
=]
oy

A _
(el)ry = _ B i 2K+ 5 (el ) (2K+T+1)
Jm;JM(Q) - mcEU € Z {qbo} Jm;JM :
k=0

Pl




[
-1

;,m;,fl}(q) - 2 ()7 (15D (4.7b)
it follows that:
(el ) (2K

_JnEl }‘31( i + ) E gL.l J;J'ZKH)(H) X }] - (4.8a)

(mag)(mm z g(_l

m,.I

{ 1 ]1/2 Pﬁzuzl{}(n) . &!(n)]m_

: - [%}1/2[4@”2&(“)*alfn)]m (4.8b).7

Thu's-‘ f‘:om the 'boseu' expansion of }éﬁ](n) . we can easily find: the boson expansion

of the: magnetlza.tmn cu:rent multlpo[es

oI the case of the Harmeonic. oscﬁla.tor shell—model space the magnetization current
mulmpoles are gwen by eqs: 4, 8, only now f”’L )(n), is given by' eq. 3.15. : -
_ " Since: when we restmct thé cha.rge densn.y multlpoles to:the harmonic oscillator shell
model space we have only even charge densn:y multlpoles .one sees that we have only even
* electrie- and: odd magnetlc multipoles and:: K and- J 'in eqs. 4.8 are restricted to
JH2K < 2N for the- electnc multipoles.and: J—1+2K < 2N for the magnetic multipoles:

LM)(D.) ‘extracted from eq. 3.16, and the eqs. 4.8

(el y(K), (maE)(K}
i IM

- terms of the coordinate and spins of the nucleons.

Fma,lly, usmg the expressmn of /('

we. find. an-expression of the operators j and im given .explicitly in

[
[+

V. SU(3) tensor analysis of the charge and current density multipole operators -

To be able to do a fulb shellimodel: calculation for the matrix e[_éméntS'of the
multipole opetators in an SU(3) basis,. & SU(3). tensor analysis of i;he one—body: épémors

that occur in the boson expansion of tbe charge and current densxl:y multlpoles is’ reqmred

That these one—body operators are SU(3) tensors fo!low from: the’ observatzon that :

1"‘) However, we are

B;(n) and b[(n) are, respectively [E0]- a.nc[ [o1 SU(S) tensors
interested in ° temsors that - transform accordmg . the ! subgroup . chain
SU{3) 3 80(3) 2 SO(2) . The basis states of the 1rreduc1b[e representatwns int this cha,m are
labelled’ by the Elliot labels: XpkLM; where. A and™ g are SU(3) labels, k-_ is a
mult:phmty labelgweubyg) - IR

k=" miri {)«,u,},rrun {A;L}~ 3. LTot0
and - R o

L= k ki+ 1, k + max {/\,u}
except when k =0, in which ¢ase -

L = max{Au}, max {\ug} —2,lor0

Tb find the SU(3) ﬁeﬂéor character of the multipole operatoss, consider again the

generic term

K
[ 2 a5, b1,/n) }

Since - B;V{u) and q, are lv components of {10] SU(3) tensors,

K




(&3

b3, w) = bt
. 10,
g, 0= g,

it foildws:_ﬁ_hat‘ :

2 q;yb;y(q);,_z a1 by W00y

From; the unitarity. of. the:.. SU(3)-2.86(3) 2 SO(2).  Wigner coefficients and the.
property: that. symmetnca.i pulynomlals of order . X can couple only- to: the  [A0] SU(3)...

represent.atzon the wenenc te}:m can be: wntten As:

[zqw ” } z Rl e
where - | _ ' .
(ke) _ [ e . [10] . gl o ©(5.2a) -
.qJK"‘?K‘ ' [il ¢ ' . ]JKMK o
K terms _'

- ' Ko |
by Ii{‘;;](n) - [b-*[mi(n): w bty b+ﬂ°](n)]_JKM-K . (52

s

K terms:.

Now remembering the decomposition of the SU(3) 2503} 2 80(2) Wigner coefficients?)

30
<Ay ] Ky Ly My, [Ag gig] kg Ty My || g [Ag i) Kp Ly Mg> =

R
= <[/\1 i k L,,{;\z #2] ky Ly E[ #3 [Ag #3] kg Ly> CM M, My ‘ _(5-3)

" where the first, term of the second member in eg. 5.3 is the SO(3) isoscalar factor, and.the

results.of the previous section, we can. easily show that -

[Kg] _ B.(Kj' ‘47 Ky ' . .
= Bl AT _q . (g (5.4)
s R J_KB;IK?' S e

where:- B}K)' is. given: by

’ LE], 1F
K Y 2 2
BgK? = Z Cogo  <[10]1 [10J1 || [2013> Cyyg

J
® <[10)1 (209, | [30}9,>

J
c K—1 K<:[10]1 [&~10]y

Kli!{KO}JKz;_. 6y

1} _
Bl = 1

In eq, 5.5, as in the previous section, the posmble values of J ¢ e £ &2, . 1or0.

Equaily well one has
pelE0y = p(R) [T 9(K) (g ' _
for, ) = By mKTij My (8 @) (5:6)

Putting all this togheter one sees that
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N o : ™
. R . .IK MK_ o 7
: Compai;i_ngze_q_s::&_.’if- and 5._'? oﬁé_dérives..the noa-trivial identity.
. 9 . o
piKE o g (K)

T ko

'.th_i'c.ing.; ‘r_,.hessy_riﬁmetr'yf; prqpertym),' :

I

| <[10]1 [AOJE, [ A1 0JL;> - .<'[01:]1 [OATL, |f .[0A+1]L.2> .

we.can also¢asily. show that:

VKO BLOKI G
E‘IQJKMK K K( }

where: - .
' [0K].
IM

gK N ';01- | ALLIFIeE.
b.gKM}]c(u) B [b{ o)« H0my kMK

N

x 6[013(11)]

K terms:

The:-SU(3-). tensor 6}:05].(11_)' can be written. as
KTK

.5[0K}(n.='B(K) ¥R (bm))
T My ) I EZIKH 3 M

L K. . ‘ A
ok - % B ATy, 00 ¢ @) 1Y, @G

(57

.(5.8)

(5.9)
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These results are all that we need to write the charge and current density multipoles in

terms of SU(3) tensors.

5.L. Charge density multipoles -

" Eq.-(3.13) for the: f)r(‘hl? can be written using the resulés.of i‘.hié-?égf_:iqu,_,__;.%: e

K'KK'L'.

i?.]:—[—li 000

;}{K) _ i iL'_‘K' o Z
.LM gl K/2K|,(K K')'

IJK KI
x BgKl) B(K—K') Z ‘1 +- T3gn“ |:b+ [K. D](n) b ﬂ KK](H}]
K K K! —K
' 'I‘he -5U(3) coupling of an [80] and [Gs} SU(3} tensors is muItlphCity free a.nd gwen byu}
‘ inin{'s,s’-}.- o
BOxos] = Y fpsal
p=0".
Therefore one has,
K -qain{!{."i,K—K’}' o ) .
M Y X Y AU KKK RK'—plk; CL) x.
K'=0-- p:O k - : .
(5.11)
2 (L + 73(n)) [b+[*‘ i) « b[o KK )] {K!—p K-K'—p]. '
kLM _'

where




Jf;"i 0 Zf——éﬂ 2 z

A{[_Kfp}_{q;k_.—_m} b-p K—_K‘—p]k; CL). =

1[1{ p K—K'—plkL>

<[K'0]Lh.,[0 K-KLy .

ZSU(?’)(K'L' _K' K K"

(5.12)

where..the;-expr&ssi'on--pff 75U0)- (K'_L' K—K L CL} is identical to the one of

K KH
S0 (g T - ( ) (X')

Z: KL K——K L .. CL} w;th—- the replacement f\ -B;7! and
E k) k)

et P T g kg
In the: nuelear-'ha'rmonic' oscillator: shelt model: space. oaly. the number conserving

terms contnbute In this case. K. is  an even: uumber and p( ) reduces to

2= ST ([ Pl bl

s B g ] 2El
n Lo _ .

(5.13)
kLM
5.2: Cui'r_en&i.density multipoles: ' :

Here: we. only give a. brief d:scussmn of how to perform the SU(3) ténsor analysis of
the current density: multipoles.” ' '

Usmg the: results of section 5 L we can wrife the operators j ) (K} ag

K+t

SU(3) 1 _
[z (K+lh ki s KT BT) =

JK“IK+1 £

i J!(4-1\—1{-' Jf{'
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: r
=25 KK EJ)CH Oy 610 K LK

}\+1 —K' JM

(5.14)

where. the -coefficient: ZSU{3)(K+1 J E‘., EJ) is given by an- e_xpression identical-

K+17

to z59GN K117, KU

K41 VK"

: I A (EY, p(K) .
and: EWAJI'(I . -+ BJ{(‘ Wh.efe.. E

J
K4l1) _ 1{} Ik K+1.
3(“_ E‘ B cm 1 <[10] KO ] [K+1 (}]JK_H
: K

’I‘he last step consists of performmg, the SU(3) couplmg t0- get:

EJ): with the replacement, Q'J‘_- ./E(R'H) FKHD)
€ Sy l(+_1+1 Tket Ik

C(5.18)

. K'-l-];‘.,min{l('",l{i_-l.—-l{\"}
(el ) (K) . '
deam 2

K'=0"" p=0::

2 ll_“"gi(ﬂll [b+[K Ol(n b[0 KK, )] [K'—p K+1-K'—p]

kIM

¥ AK010 141K | [K'-p K-1-K—pl; £3),

- (5.16)

where:
A(K0)[0 K+1-K | [K'—p K+ 1-KpJEI) | =

SU(3) SU) prryp s
[z (RA1-K'Ty h,,KJI,,, BN~ 28O KK K,,EJ)]

<[K* 0}7, o K+1-K')J, p1gel! (K=, KHI-K'—pjkT>
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The steps necessary; to-find a cofresponding expréssi_on- for jirf];fi)a{) are analogous to. the

. Ones: ab_(_)._{re 4nd here-we only present the final result. It is:

Kif min{K! Ke1K')

it Z . Ej, 24({1{'«0][_0-1{%1*1{'] I (K'—p K+1-K'—pli; M), «
- [K —p K+1—K'—IJ]
. (_IJE {I + rggnn [b,[Ko}(n) b0K+I K]( ) |
where: :--

A([K-'G?{U-"K-H-—_K;].Ii[K?p. K+1-Kpli MJ), =

K4+1-K"

_ [ZsU(3)(K+1 K'J . K,,\/IJ)J

KM+ 25O, K1k
Ti ke, '

K'—p, K+1-K'—pjkJ>..

. <[K' 0 "]' K K]JKJJ el

R S SO .
where: to: find: the: expression. of % (K+1 ‘IK+1 . K K !

expréssion of ZSO(3}=(K+1 J K'J! MJ‘-)-c and’ do the same replacement as in

K+l’ Klr
SU(3)
z (K+11K+I, I BY), -

In the harmonic oscillator shell mc)del space only the boson number, c0nsemng
terms contrlhute Asa consequence K. is an odd number and the transverse electric and

trangverse magnemc multipoles of the convection current reduces to:

K+1
e 3 2 A [[KH 0] [0 K+1] || [K+1—p K+1-plk; EJ]
p=0" n: :

ot ‘vIJ)- we- st.ait with the
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| (Kt bp K1)

X.Z‘:l + ;r?‘:n:: [&(n)[l{ﬁ-i 01 i} B—(n){n #+1]

i kiMm
< .
. - K+1 ' ’
jﬁ’??fi)(mﬁ} Y. Y a0 Sl |(K+15p K i-plk; M =
p—0 n

[K+1—p K+4-p]
kiM

Given the-tensor analysis: of the. charge denmsity multipoles, eq: 5.13. the.'SU(S)- tensor

anaiysxs of the multipoles: of the m&gnet.lzaf.mn current foliov. m ‘a-straightforward: way,

' ONCe we use eqs 2.26.

VI Conclusions.. -

- In this paper we have derived a forinally exact expansion for: the charge and current
dengity- multipoles.- - This expansion:-is-given: by a gaunssian. times é_ power series: on the

momentum- transfer g , where the coefficients of the ;So.we;S.._of. .. are specific one—body

operators. These one~body operators. are-normal—ordered homogeneous pelynomiais of the '

harmonic—oscillator boson: creation. and. annihilation operators. - Therefore; one. separates
the dependence on the momenturn transfer, given by the prescribed functions of g, from
the dependence on the nuclear siructure;-given by the matrix-elements of the one—hody
operators. In the special case of the harmonic dscillafor shell-model space the series
terminates and only the béson number conserving terms of t]_ne one—hody operators survive.
As a consequence, there are form factors: whose shape is iﬁdependent of- the nuclear

structure, as pointed oui in ref. 2 for the specia'l'case of the sd-shell.. For a N—shell

O
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: 2
nucleus, egs. 3.15, 4.5 and 4.8 show that the shape of the form factors™ Fla, Son+l@) s

T 2 T (ol e i i des..
Fo. ﬂ_ZN,,(Q)_ and Fo. oy +1__,,(q) are independent of the.nuclear structure. Besides,

the last. two form- factors depend.only on the magnetization current. Ailso, as shown in

ref. 2 for. the- speeial case. of the. sd—shell,-. the: harmonic oscillator: shell madel current is

. purely-trasverse.and, as a.consequence; it violates: the Siegert, theorem in a-gualitative way.

Thus weﬂsee-_ﬁha.ﬁ, if one. takes for- the: nueclear. current, the sum.of the convection and

magnetization. currents, the B(EJ; 0% J*) rdepend's_.on_ly_ on. configurations outside the

ha,rmonid oscillator- shell: model :space.. _This,. we think, indicates. the: need to. consider.

expressxons f(}l‘ the transverse. electnc multspoles whtch mcorporates t.he c0nst1 aints of the:.

12):

Expamsmns of the: form: factors’ 2) of: the type-derived. here are well—known in the:

 literatpre: and: widely: used: i a phenOmenologma.l ana.lyms of the data,l3) They have been

derwed by: a direct: expansmn of the: matm: elemem.s of the multlpole operators. in the

harmonic oscﬁiator bams 4}

denved by & uorma,i ordezed expa.nsmn of: the mult:pole opeza.tors 1n terms of harmomc

osmllatur bosoﬁs ThJs procedure has ma.nv advantages Oue is: t:hat it s, much snnple 0"
find: the oonsequences for the form Ea.ctors -of the restnct;ons of the mdﬁywp&rtlcle Hilbers

spaces:. Other: is that: it exhlblts-,the general structure of the expansmn,.valld for any nuclei

and any state:of a given.nucleus.. Also; what is very- important, it shows that the expansion

can. have a:greater generality then we- would suppose. Tndeed, the sucess of the

phenomenological  analysis of the data}s)- indicates that the boson expansion has a much

greater; Vg,eﬁeza,lity,_. being valid: even:when the. restriction to- the harmonic oscillator sheli

.model. space isinot.. appropriate Oné example-of. this fact is when a renormalization of the

shell—model form factors in. suf 1c1enz; to: descnbe the data. When. this is true one sees that

the: expansmn of the: muEtIpole operators has the number of terms required by the 0. shell

Sl thls pa.per we. h&ve shown that: altemamveiy, it can be.

model restriction, however, the value of the coefficients-depends (in most. cases very
strongly} on configurations outside the h.o. shell model space.: _ '

Finally we- have petforied- an-SU(3}. tensor analysis of .the _charge and current
density multipoles- which i3 of considerable: pramca.l 1mporta.nce for:. caicuiatlons with-
shell-model wave functions in a SU(S) basis.

I would_ like to tha,nk..Dr. D. Rowe for discussions in. the beginning of th.is work and

Dr. P. Rochford for calling my. attention to reference 11.
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