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Abstract

We consider a model (T.J.Martin, ].B.Taylor:Plas. Phys. 26(1984),321) for
magnetic field ergodization in the outer portion of a Tokamnak chamber, by means
of current ring limiters. It describes an analytical mapping for the field Lines
through a Poincaré-type surface of section. We analyse some analylical issues of
this mapping concerning loeal stability, The characterization of some interesting

dynamical regimes in this mapping is shown by using devialion measurcs as well

_as their corresponding power spectra.

The dynamics of maguetic ficld lines in plasma confinerment sysicms, like 'i'okmuah,
Stellarators, RFP's, etc., is an issue of overwheling importance in the modern Plasma
Physics research. It is particularly convenient in situations when irregulur beliaviour is
present, giving some insights on the particle diffusion problem {1]. From a theorist point of
view, there is another spot. on the field line dynamies: its equations, after a Jjudicious choice
of variables, can .bc f.ai&cn as canonical equalions, derived from a Hamiltenian function i2).
This fact enables us to use the power’ful.machinery developed in the past decades to char-

acterize regular and stochastic motion of an integrable system submitted to perturbations

(3.

A common technique to reduce the actual problem to a more tractable one is the

use of a Poincaré surface of section. The successive piercings of a field line on-a surface -

like this produce a map, in which the coordinates of each point are uniquely determined
by the coordinates of the preceding point and so on. Analytical relations between these
coordinates are seldom found in the literature. A recent.example is the vo-called Martjn-

Taylor model [4] for a large aspect-ratio Tokamak with Brgodic Magnetic Limiters. These

are external current configurations that produce resonant fields whick, combined’ with

the equilibrium structure, generate magnetic islands. The resvitant magnetic structure

presents very interesting features, the most important being chaotic-like behaviour. We
have analysed the magnetic "ergodization™ by Ergodic Magnetic Limiters by means of a
theoretical procedure using invariant flux functions and impulsive perturbations, obtaining

an improved form for the field line map, and results will be published elsewhere [5].

The basic geometry to be used in this note is depicted in fig. 1. The original toroidal
Tokamak chamber is wrapped successively into a cyllinder (large aspect ratio approxima-
tion} and a rectangular box (in the analysis of the chamber region close to the inner wall).

The coordipates on the X-axis correspond lo the (rectified}. poloidal circumference in the
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Tokamak. Hence, the period for iliese coordinales is 27b {where b is the Tokamak minor
radius). On the y-axis we depict the radial distance from the torus wall (the ix-plane),
and -coordinates on the z-axis stand for positions in the toroidal direclion. Points with

y > 0 are located inside the Tokamak vessel, whereas y < 0 defines the external medium.

Embracing the Tokamal; .torus, the E;g‘odjc Magnetic Limiter consists of a grid with
m pairs of wires of lengih L (sce ﬁé;u're 1), cohducﬁng ; cu:rcﬁt [in a.l.l.cmal.c dirchiuns
The magnet:c field generated by this kind of conﬁguratmn {alls off rapldly as y increases
{for a detailed derivation see ref. [6]), and is superposed {o a umform toroidal field By in

the z-direction.
The magnetic field line equations are:
B, By, B, )
and is convenient. to meke & Poincaré map by cutting the torus with a section plane ai

z = (.. Integrating (1) inside and cutiside the limiter region, Martin and Taylor haw_'e found

the following two-dimensional map [4]:

Xut1 = F(Xn,Yn) + BG(Xn, Ya) . (2
Yop1= G(X i) _ : {3)
where:
F(X,Y)=X - Pe ¥ cos X (1)
G(X,Y)=Y +1n (%Y—)) (5)

The map variables are related with geometrical coordinates as follows:

T

K=~ | {6)

3

Y=7(v+3) o

The map (2,3) has two control parameters: .

miu IL
= ey (&)

which measures the limiter strength in terms of the field line diffusion, and the "magnetic
shear™: . . . . . . o

p=t | o
where g5 is the safety factor at the wall position. Phase portraits for typical values of P

and 3 are found in the ref. [4],

The Jacobian matsix J of the map (2,3) ha.s determinant equal to the unity, so the

map is symplectic. Its _a.pproximate_,ﬁ;;d point.; are [4]

f={ }-%-Pexp( 2;m) _ ' (102.- .
- g oy

In order to study their local stability one can look for the eigenvalucs of J, i.e., the roots

of the secular equation:

det(J —AI)=0 RO (12)

‘which can be written as:

A=1-2R+2/R(R-1) . . _ L (13)

after defining the "Greéne Residue” [7]

R=—(2 Tr.I) - (14)

If ¢ < R < L the fixed point (X,¥) wi[l“bc:'.'c]]'.'ipti.c; its eigenvalues being complex
conjugates:

A =e:l:2m‘p (15)




(=l

e

where:

5 - :
= — -2 Lo : 16
p=5- arccos( 1—2R) (16)

is an average Totation a.ngie of the hbra.tmn orbits around (X ¥}. Othermse (X Y} will
be h]rperhohc._

The Greene residue (14) for the map (2,3) reads:

k= % {l6 P {cos X + Bsin X,,)] tan [X, — Pe~Ye 08 X,] ~ ftan X, — Pe~¥n sin X}

(17) .

For small values of the limiter current I, we can exp:md (17) in powers of P to obtain:

BPe™Ys cos X, "

f=- 3

(18)
which is.exactly the same as the Chiri._kov-Ta.yloz standard map.

Using the first couple of fixed points in (10 11), namely (X 1r), the residue, for

* typical values of m (around 10} aad 8 (around ), beiongs to'the interval (0,1), since both -

B aud P are strictly positive numbers. So this point is elliptic, whereas the other couple,

namely (¥ ~ 0) is hyperholic. This is illustrated in the phase portraits of ref. [4],

* Fixing values for P and 3, it is possible to analyse different dynamical regimes in the

Martin-Teylor ma.p by selecting a given initial condition and computmg its "radial”:
AY, =Y, ~Y; ‘ (20)

as well as *poloidal”deviation:

AXpn =X, - X, ' . ©(21)
In figures 2 and 4 we show typical oscillations, arising from single initial com:iitions picked
up [rom regions where presumably there is regular and irregular behaviour, respectively,

3

The power spectrum related to fig. 4 suggesis a quasi-broadband spectra in a limited
frequency interval, although a more precise characlerization of chaolic molion (e.g., Lya-

pounoy exponerds or K-enlropy) is needed for a rigorous slalemenl,

Other valuable measurement {mean quadratic deviation) can be made by taking N

initial conditions, equally spaced along the Y = const, direction. It iz defined as:

2 1 N .. av12
<AYE>= 23" [a(i) - Tl e

§==x1

In figure 6 the peculiar behaviour would suggest. the existence of accelerator modes in

. this mapping, but they are forbidden due to the absence of two- dimensional periodicity

characteristic of the standard map {3]. Fig. 7 shows a power spectoum which diverges. for

- small frequencies (the "1/{ noise”), . This phenomenon, well known iu dissipative systems

[8), has been observed also ir a conservativg;éne— [9],,related_ to.ihe cantori structure of the

phase space.

FinaII_y, fig. 4 shows a _c..-.urious‘ example of intermittent transition between regular
and irregular behaviour. fot‘_simple,;'poloida.l'dairjations. Intermittency 2. like 1/f noise, is
widely studied for d.issiéétive'ssrstem&l[S} but it has been: observedm the Chmkov-Taylor:
standard .map as well [10]. At the best of our knowledge there ig no complete theory for

this kind of situation in conserva.hve maps.

The Martin-Taylor map, in spite of its simpﬁcity, provides a tool for studies of mag-
netic stocl:m.sticif.y in situations where an external field acts upon an integrable equilibrium
structure. This. is the case in Tokamaks with Ergodic Magnetic Limiters, but applications
in other areas, like astrophysics , have not been fully explored up to the moment. Other
maps with .simﬂa.r characteristics (seé rel. [5]) are expected to present the same qualitative
behaviour. It is worthnoting that a kind of map analysis had been guided the design of
a ﬁachine implementation of an Ergodic Magnetic Limiter in the TEXT Tokamak. The

6 .




area-preserving maps technology might be applied in these problems, our local stability

analysis. being just: ax example,

While: sf.ocl.ms-ticity_ is con_lmonly recognized in nonintegrable maps like the Mariin-
Taylox."s.ox_).é,. .no.vd.fcn.turcs' nccd: a dccpcr-uxldcrstmdhlg; as pointed by the unexpecled
results: of rﬁg!_.u'_c_ﬁ.!.-f) -and 6. For example, one might.. speculate. the relationship between
intermitient. .cvs;iﬂ;tio.xls'.- and, the behaviour of map points close-enough a separatrix layer,
whe're-{figq_rqué_-gstiumtes.(er Nekhoroshev. bounds) exists for travelling times {12].
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Fig. 1: Basic geometry ‘used in this note (x=be; y=b-r)
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Fig. 2: Radial deviations with P=0.25; B=56.28 and the initial
condition X,=3.00, Yo=1.05.
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Fig. 3:

Power spectrum related
to Fig. 2. The sampling
frequency is taken to
be the unity.
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Fig. 5: Power spectrum

related to Fig.4.
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Fig. 8: Poleidal deviations with P=0.2%; 8=6.28 and the

initial condition X,=0.00, Xb =0,19.
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