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1. Introduction

Interest on the initial value problem for quantum field theoretical models over the

last decade stems mainly from two different areas of physicsi on the one hand, the

inflationary scenario of the early universe involves the control of the time-evolution
of a driving scalar ﬁeldi1]§ on the other hand, properties of hadronic matter mani-
fest themselves through transient phenomena in globally off-equilibrium situations in
high-energy collisions(?]. In both cases fior-perturbative methods must be einployed.

A natural starting point in exther of the two contexts has been provided by self-
consistent. kinetic. descriptions based-on a mean-field approximation. In fact, both
the variational method. usiﬁg, Gaussian trial functiona,ls[?‘_] and the so called Hartree
and: Ha.r.trge—Eock appm:dmdtions[4] fall into this category. Corrections to these col-
lisionless kinetic schemes, on the other hand, ha.‘fe been considered repeatedly in the
context of nuclear dynamics (5], In this work we-fbllow an approach developed earlier

- in that context[a]_ to study collisional corrections to the kinetics of a self-interacting

quantum-field. Th’é; approach iggbasecl‘.qn'time-dependent' predection technigues and
leads to a mean-field expansion. whlchreproduces the results sbtained in the Gaus-
sian functional approximation in its Iqwest ordert]. We are able to explicitly include
and evaluate dynamical correlation effects which manifest themselves through suit-
able memory collision integrals added to the kinetic equations. The main effeci of
these corrections to the bare _meé.n—ﬁeld picture is to produce changes in time of the
coherence properties of the initial state which in turn allow f01; a qualitative improve-
ment in the description of the time evolution of some relevant dynamical variables.
This point is illustrated by the discussion of numerical solutions both in 0+1 and
in 1+1 dimensions in section VI below.

In section II we set up the general kinetic s&eme adopted here for the case of a
real self-interacting scalar quantum field. The projection .i.echm'que and the related

approximations for the dyna.xh.ical correlation effects are described in section III,

Section IV deals with caleulations .w_ithin the lowest, mean-field, approximations,
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-and in particular with the adopted renormalization scheme. The full collisional-

appraximation is explicitly given in section V for the case of spatially homogeneous

systems. Seetion VI shows the numerical solutions of equations of motion obtained

in section V. Some points of a more technical nature concerning the construction of

projection, operators and the numerical work are given in the Appendices.

II. Kinetics of 5 -Self#lnteracting- Quantum: Field-

;"In this séétion;, we shall describe a forma.l treatment of the kinetics of a self-
interacting quantum field. Although the procedure is quite general, we will adopt
the simpleét context of a siﬁgle' scalar field in 1+ 1 dimensions and assume spatial
unifoi-mit:f This will illustrate all the relevant points of the approach and cut down
inessential techinical complications. Features of more general contexts are discussed

in ref. [8] and briefly outlined in section VL.

The: genéfal idea 6f’ our approach(®] is to focus on the time development of a

restricted set of mmple observables. On the basis of the general dynamics of the ﬁeld
we thien derive an effective dynamics for them, which will be eventua]ly expressed in
terms of formal équations qf kinetic type. A systematic expansion scheme can then
be devised for thésé.'eqhations[Q]HWhicﬁ yields numericaily tractable approximations
“of various orders.. The lowest of these approximations, in particular, is equivalent.
te the Gaussian approximation curfently used in connection with the variational
formulation of the functional Schrodinger approa,chm
“In'order to unplement this, the Heisenberg field opera.tor ¢r(:r:) and the canonical

momentum Tr(z:) are first Fourier expanded as

Z [Uk(z) W(t) + vz} (f)]

Il

#z) _
= ey
- m{z)

Il

—i Z ka[”k($)7k(t) - vk(x)‘r (f)]

so that g, 77 are annihilation and creation parts satisfying boson commutation
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relations at equal times - - T o
[*nc(t}, m(t)I = b . (2.2)
The vi(z) are the penodlc bounda.ry condmon pla.ne waves

etk-.r

n(e) = o= (2.3)

L being the lenght of the periodicity box. Here is the spatial coordinate only
and . : : .
ky =k +pt, (2.4)
# being an expansion mass parameter to be fixed latter iz a convenient way.
The state of the system (assumed uniform) is described in terms of a density

matrix- & in the Heisenberg picture.

The first variable of interest is the exl::pectat.ion value of the field operator, Tr ¢(z) F .

In terms of the expansion (2.1} this is related to.the quantities
CTed)i=Tew F , o o o (23)

which. can be .inter.;.).reted as .amﬁlit.ud'&sl"‘of cbherent céﬁderisa.tes In a spatlally
uniform system only Fo(t) is dlﬂ'erent from zero. With the help of the I";, we can

now define the shifted boson operators with vanishing expecta.tmn_ va.iue in F

Bi(t) = vie(t) — Tu(?) (2.6)

and include as variables of interest also the expectation values of pairs of 5, A%

operators at equal times, namely

Rue(t) = TEAE B F =3 p(0)6 0 - (2.7a)
M) = TeA@HOF 28" r(0)b-e ff_ 2Ty

The hermitean matrix R and the symmetric matrix IT are in fact the ope-boson

density matrix and the pairing density for the shifted bosons. The con‘esponding




matrices for the y-bosons are of course easily expressed im terms of R, I and of
the Tw(t): )

An important point is that the plane-waves (2.3) are natural orbitals of the one-
boson density R, which is all one has to deal with when the freedom associated with
the pairing density is not included. In order to. ha,ndle the pairing density one sets
up, as uaua.I[m] an extended density-

Rk(t) g (Rk(t) . m(t).- . ) * anifiem wion)  28)

BE () - 14 Rsk(t).

ftom which-one obtams extended na.tura.l orb1tals mcorporatmg information on the.

pa.u- densxty by solvmg the eagenvalue problem

Gm Xpo= XkGNk (2.9

where:

) 1 (I L . Tr. Yo by 0
Gir= s .xk = Tk yk Nk = : k . (2.10)
R Y 2} : 0 1tu

The-_eiggnvalues\ v can:be interprete_d as shifted boson:ocupation numbers for the
paired. natural. orbltals described by X . F;rom reflection symmetry one must have
vimviel ' .

Since (2.9)is & z;on.hermitean eigenvaluie problem; it is useful to consider also the
adjoi_nt'eqﬁa.tion .

RiGXe = LGN, . (2.11)
from: which one ﬁndé that . _ )
o =GX: . ' (2.12)
The adjoiiit vectors X satisfy biorthogonality relations with the X, which allow

one to introduce the normalization condition

XiX: = XtGX, = G . {2.13) ~
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and the completeness relation
X,GXf = G . (2.14)

Furthermore, one can use the paired natural orbitals to construct new boson operators
N%, nf and shift amplitudes Ay, A} as '

2)m(2) - ()onz) o
nte B Tk e/

which can be inverfed with the help of equation (2.14).

The next step is study the time-derivatives of the various relevant. variables in
terms of the Heisenberg equation of motion for ¢(z}. For the I'y(¢) one finds
imediately

ily = Tefye, H|F = o Telqw, HYF ~yp Tl HVF , (2.16)
H being the field Hamiltonian. As for the remaining quantities, we first rewrite the
eigenvalue equation. (2.9), using eq. (2.13), as .
XiRL X, =Ny . (217) :
from which it follows that
XiRXe = N, - XE R X, — X Re Xs (2.18)

we. now evaluate the left hand side of this equation using the Heisenberg equation of .

motion to obtain

'I‘l‘[ﬂ; ey H] F Tr[’?k’?—k'l H]F ) (219)

iXF R X, = (
Telplynf, HIF  Telgf me, H|F

The right hand side of eq. (2.18) can also be evaluated explicitly using egs. (2.9) and -
{2.10). Equating the result to (2.19) yields

i = Trlnf ne, HIF (2.20)

6.




and _
iy e =z 9)(1 4+ 20) = Tefntnf, H]F . (2.21)
Eqs. (2.16);. (2.20) and (2.21) determine the time rate of change of the relevant
quantities in teﬁs of expectation values of appropriate commutators. They are
however clearly not closed equations since there commutators involve the full time-
evblution of the field operator. One can, however, obtain closed equations which
are férmaﬂy equivalent to them.by expressing mean values in F' as functionals of
a reducea density Fp(t) which is at any ¢ compIeté]y determined by the values,
at- that time; of just the relevant variables. This is achieved though the use of the

. projection. technique presented below.

HI. Projection: Technique and Approﬁcimation Scheme

In order f_.o-evalué.t,e the equations of motion (2.16), {2.20) and (2.21) we start
decomposing’ F in-two parts.

F = Bt} +F(t) , (3.1)
where Fy(t} is the exponential of a one-boson density, which can be conveniently
written as _

F (et
1 U;‘(t) ) i
= . 3.2
’ I,:I 1+ wi(t) (1 + ui(t) (3:2)

Fy(t) has unit trace, so that F'(f) is a traceless correlation density. The next

crucial point is to observe that Fy(t) can be written as a time-dependent projection
of F,ie., '

B =PHF |, P{t)? = P(t) . (3.3}

It is important to keep in mind that P is an operator acting on a linear space

of densities, sometimes called superspace. Such operators are correspondingly called

superoperators. The scalar product for any two vectors of this space is defined as
(X,Y) = Te(XtY) . (3.4)
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In order to ¢onstruct thé projeci:dr P(t) we requir:e that, in addition to egs. (3.3},
it satisfies . _
i Fy(t) = [P(), L) F. = [Fy(t), H}+ P()[H, F] ., (3.5}

where IL is the superoperator defined as -
L=, o (36)
H being the Hamiltonian of the field. Eq. (3. 5) is the He:senberg picture counter-
part of the equation. (& P(#)}F = 0 which has been used to define IP(¢) in the
Schrédinger Picturel. It is possible to prove that conditions (3.3) and (3.4) make

(1) umque

The explicit construction of ]P(t) is a ]enghtly but straaghtforwa.rd a.lgebrmc

exercise, the relevant steps of which are ngen in Appenduc A. What one obtains is

P(t)- = {( Z"" )T()+2Mﬁ(n§m,@)u "

Eikz ”ka_(l + i)

+ Z[Z—k'l‘r(ﬂi ) +
k [

2.1,

'.].”*;[mq_ - Tr(ntinf: )
+ %T‘r(mn_k )}} F.,(t)- o R (3_‘-7)

Using the scalar product {3.4) one can also obtain ]P*'(t) whn:h does not coincide
with eq. (3.7), i.e., PP(t} is not an orthogonal projection (see Appendix A).

The next step is to obtain a differential equation of F'(t), which follows i.mmédi_-
ately from eqs. (3.1} and (3.5). It reads

(i% - P(#) ]L) Fi(t) = QOLF(t) , SRNCYE )

where we introduced the complementary projector @(f) =1 —P(#). This equation

has the formal solution L o _ .
F(t) = G(t,0) F'(0) — i j dt' G(t, ) QY L Fo(t') (3.9)

8
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The. first term aceounts for initial correlations, In the second term &(2,t') is the

time-ordered Green's Function

(e, t‘) = Texpa/ d-rP(r)L . (3.10)

We see thus that F"(t), and: therefore alsoc F (see eq. (3 1)), can be forma.!ly

expressed in terms of Fy(t'} (for ' < t) andof initial correlations F'(0). This allows
us also- to express the. dynamical equations: (2.16), ;.(2 20) and (221} as traces over
functionals.of . Fy(¢): and of the untml cortelatmns Since, on the other hand, the

reduced dmty Fo(t’) is expressed in: terms, of the releva.nt va.nables alone, we see

that the:resulting: equatsons aIe ROW. mtxaﬁy closed equa.tmns Note however that

the oomphcated t;me-dependence of the ﬁeld-opera.tors is exphcxtly probed through

the memory- eifects p::esent in the exprms,lon (3.9) for- F’(t) Apprommatxons are
therefore needed fo:: the actua.l evalua.tmn of th13 oblect ‘ _

A systematzc expansion. scheme: for: the memory eﬁ'ects has been discussed in
ref. (9] in the. Schrodmg,er, picture: An;lmportan_t feature of this scheme is that the
mea.nenergy:sconservedtoallorders,:e, .

= 9 (i, = | (311

where

(s = T HE(R) + T H FO)

F™ and Fiv) being the approximation of order 1 to Fi(t) and F'(£) respectively.
Here we lmplement a modlﬁed version of the lowest order approximation given in
ref. [9]. It consists in' approxxma.’cmg the actual time evqution of the field operators,

when evaluating memory effects, by the simpler mean-field evolution given by
i = e, B - AsHitd ek - diudme— i@ n S st . (312)

The last three terms account, for the (explicit) time dependence of the m{t)
related to the shift amplitudes A.(t) and to the pairing effects. Ho(t) . is taken as

' the effective mean-field hamiltonian

Hy = ®*H+ S0t Tebne, HIF'(8) - o Telnt , H F(8)

’7“ ﬂ d 7k Mk L
* E 2(1izk )“{”*'?th]F-(f 2 2(1+"2V Tt sy, B FC)
| - (3.13)

The lowest Va.pproucimation according to ref. [9] corresponds to taking just first
term in this expression. The remaining terms, included here, represent correlation
contributions to the effective mean-field. Consistently with. this approximation, the

Green’s function (3.10) is also.replaced by

Colt,t) = T expi f: dr P(r) Lo(7) ' (3.14)
where | . P .
| =l o @)

so that the correlation density is written as :

IR

F() % Gt FO)~i [ d Gt t) QULFY) =

._G.g(t,:t') F0)—i jo sjdﬁQ{t’)LFo(t'). . o (3.16)

since it is easy to sce that eqs. (3.12) and (3.14) imply. that Gy "acts as the unit
operator in the memory integral. - - . _ B

Acct_)r_ding to the appi'oximation scheme just described the basic dynamical equa-
tions to be solved are egs. (2.16), (2 20) and (2.21), where F is expressed in terms.
of eqs. (3.2). -and {3.16). Furthermore, for the purpose of evaluatmg eq. (3.16) the
field operators are time-evolved accordmg to eq. (3.12). The resultmg scheme can
be interpreted as follows. The dynamxca.l_ evolution of the field is splitt into a pure
mean-field .pért, related to the contributions to the dynamical equations involving the
projected density Fy(t), i)lus correlation contﬁbutioﬁs, appmxirﬁa.téd by the contri-

butions involving the adopted form for F'(t). These are nouu.n.ir;a.zy, in the sense
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that they change the coherence I:.')i.:c.)i;;‘.arti%:'of' Fg(t) - thﬂ')!ixg"h the :..t.:imé-.ex..r.c')-lut{én ‘of
the occupation numbers vk(t) (see eq. (2.20}). In fact, replacing F by just Fy(t)
in this equation gives bt = 0. Consequently the entropy fu.nctlon associated
with Fy{t) will change in time as a result of the correlation contrlbutlons, which
iherefore perform as collision terms from the point of view of the one-boson density.
Moreover, the correlation: contributions will also meodify the pure mean-field evolu-

tion in eqs. {2:16) and (2:21). The adopted a.p.pr-oximation ammounts to restricting

correlation effects to-second order in' H' (as can be seen by substituting eq. (3.15) -

Cin f.he dynamical equations) while taking full account of the effective mean-field (see
egs..{3.12) and (3:13)}.

IV. Mean Field Approximation: Renormalization and Effective Potential
" We now. discuss the actual evaluation of the general expressions obtained in the

preceding sections for the Hamiltonian

H=[dn o .(4.1)

IR 1 2, M o 8 Mo '
H=g+50@t) + ¢ +56+ ¢+ . (4.2)

2

In this section we consider on_ly the lowest (mean-field) approximatibq, which
amounts. to assuming F'(t) = 0. Collisional corrections will‘be discussed in sec-
tion. V. . _ |

In eq. {4.2), m stands fq.r the renorma.].izedrmass, and a prescription for the
mass oount‘.ertérm ém? will be given below. The last term is an external linear
coupling which will be used to allow for coﬁstra.ining the expectation value of ¢ at

ethbrmm in an evalua.tlon of the effective potentla.l

Cons:stently wnth the orthogona.hty and completeness relations {(2.13) and (2. 14)‘

we pa.ra.metnze the eiements of the tra.nsformatlon matrix X; {see eq. (2.15)) as

11

T

Ye =
with o a,nd T Teal. It is a,lso convement to associate o w:th a clyna,m:c mass

pa.rameter ,u,k(t} through

1/k2+,u2(t) = e“*('l \/k.?_ ut e (4B)
" as shown below in eq (4 S), 7. is related to yk(t) Thls ,uk(t) can be- seet as

an effective mass mcorporatmg momentum-dependent mea.n»ﬁeld mtera.ctmn of the

uniform system

The mea.n—ﬁeld approuumatmn to the dynamxca.l equa.tmns (2. 16) (2 20" aad™
{(2.21) amonats o replacmg F by just FE,(t) Introducmg ‘the mgredxents de-
=To(t) b0

scribed above one obtains, assuxmng.umform condensates only, le, I';,(t)

B = —(xtme) + & <) ‘”Eﬁﬁjk
k

=0 ; (47)

NCEY A

P T

T

M v 1 Bl o '\/k2-+#2 — k4t ke .-
rpz) \ZR e T TR T VR e

Bim g (g 1 V 1

\/k2+pt§4' 2\/k2+pf '\/kz'-i-pti AL 5k 4 pl

Eq (4.7Y, 'in particular, shows that the reduced occupa.t:on um'nbers vknl':é.re

constant in the mean-field apprommatson

12

b & %1—_-’:. B R e Y

sha;, + i T (4.4)

By (a8

-+ 6m®| . (4.9)-
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" It is interesting to look at the static solutions {¢) = ¢o of the mean-field equa-
tions. ‘- They are gnfen as the solut.ions of -
“A+m? q,‘a + 254 g% Z +ém?dy = 0 (4.10)
0 grve f—-——k’z + 2 E : !
and: .

' Fk?‘.z_l m? + ¢o +‘ E m— - (4‘11)

Eq (4 11) shows that ,uk is - fa.ct mdependent of . k in.the static case. The Ioga—

rithmie d.wergenc&s of the sums-in eqs. (4 10). atid (4- 11) are controlled by adjustmg

themass counterterm as
- @12)
The mean: ﬁe[d energy denmty, on the othe.r hand is easxly evaluated as

(L) -1 nHE,J.—z’—“wH w -4_(45).*_.'

a{$¥* < 1 ST S i S ;
fu g(\/k’wi - V’k’+m2)+ﬁ[‘?(\/ﬂ+pz - v'k2+m”)]

g 1 1 m® — puf
- )3 N LY Y Pl
32].?-(,: \/k2+m2) tar - ( + #i 2/ +

+ Ziy;‘ YR ' ' (4.13)
3 |

which is rendered finite after substracting a (divergent) vacuum energy (cf. ref. {11]).

1t is straightforward to check that this energy density is conserved under the mean-

field equations of motion (4.6)-(4.9). _ 4
The mean-eld effective pc.utential. Vesi(¢a) is now easily obtained from eq. (4.13)
evaluated in thie static case. As shown by q. {4.10), the equilibrium value {¢}) can

13

be adjustéd through the external coupling parameter A (which acts as a Lagrange

multiplier) so that

Vea(do) = <%>(¢)=¢o .—-Aqﬁg — vacuum: energy density (4.14)

yielding, in the continmum limit (L — oo)

an? . m?
Vea(do} = ""450"‘ ¢o+_" _"+E; (in ni;‘) "—(P’ m2)+_ n 2 #2
: : ’ -(4.15)

which reproduces the well known effective potential obtained in the Gaussian

approximation [11].

V. Collisional Dynamics for Homog_et_leous Systems .

In order to.calculate the collision terms of equations (2 16), (2. 20) and (2. 21), one

must evalua.te traces of the type
N ¢ .
O, H] [ QU Rt} R CE
where O(t) can be 7, n'n or ny. The density Q(#')[H, (i ca.n be evaluated
in straightforward way using eqs. (3.7), (4.2) and (3.2). One obtains .

e~ (T Foky Hony tay, ot

VIH, Rt )
Q( ol o(¥)] = 96L klkzzk:akq m _’Fl+-'°2+ka.+k1..0.

N [ T, i, i i, Ty s iy Ty ] _
(v )L+ v )+ v I F ) vy v Vg v, ]

i<y <t

X (1 +2Uk + ZV;‘ v + Z Vg, Vi, y;q) 'Fo(t’)
"

g e~ loky Forg tors tag Jy

Sor e i ki
uL ki,?,cm Kotkoakogkos 1 TirtRsTkOD

+
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[ L R Y ] -
(1+yk1)(1+uk2)(l+yka)yk¢ Vk:”*‘zyk;(1+ykt) Iy

®)° Iisz‘ ~ UVpi Vhy Vka + Uk‘ K (E Vk‘) + v, (Zw,l Vk_,)] Fto(t’) .
tr

=y

e-(ﬂ'll. Foxytox, tok, et

+ L e §p ka0
6L, k%e:sk., ForFoakoskos R

- yh Lo yk: 1 + yk& 1 + y'k - "
1~ ‘ . < ot Fy(t
( 4o, L4, vy Vi ks e T Ty F0(t)

e—(ﬂ, kgt ey Yer

g ' '
=T g, T
T {6} h%:h Tty Jathith.o

i<j

S % .
+ Fy(t
[(1+yh)(1+u,,,)(1+%) vkl_vhyh]"( +§:w; }:w,.uk)t u(t)

e—(o' ky FORy R }ot

T (B s s
4 \/i"f{ (qb)! kié:h m k1+kz ks 0

[ 1 ey g e,
(4w )(1+vg)u, v (1+w,)

(o (1 4 2y + 21,) — bty 1), Fo(t)

e

_2(”*1 +"E2)g‘ + + . . T ) . . -
g e 7t 1 T Tt } ,
+ e - Vi, (1 oy, + » Folt
AL i, Forkm [(1 +un)ltm)  vem, f, (Lt v+ v)e Filt)
Py oy e () ( . no) ,
- = - = Bt . 5.2
8Ly ; ko I+vg  wm/f, ot 7 _ (5.2)

The traces in eq. (5.1) still cannot be taken directly, since the aperators in eq. (5.2)
and in the first commutator are at different times. To overcome this we adopt
the approximation discussed in section I and describe the time evolition of the

operators by eq. (3.12). Using also equations (3.13), (4.3) and (4.4) one obtains

- k? k2+
iy, = {{ -;m sy \/k'2+;uE \/k2+uka+§

15

g > Vi g > R Sl wront
. —.I...__ p—
T W ok ppd 8L (\/k""'+#i» \/k”-mi)} VE + 2k

N TS T
s = SRS = filt . 5.3
+ 2 (k2+pi 2 &+l Tet Tl M Fu(t) (5.3)

The operators ;. at different timés are thus related ‘as.

I

q,,(t) - _e-;ok(t,:fn ,;,k(t? I )

the pha,se gok(t t’) bemg given by

exlt,t)

The derivation of the proposed approxlmatlon to the collisional dynamics is now

a lengthly but straightforward algebraxc exercise. The resultmg equations of motion

Bl = —mite) - L - L9 | - ok
t _ 3N 4L % sz_,}_ uE oo VE? + me
g Vi
—or X =Tyl , . : . (58)
w=nOL e
. k2 +#2)5/4 2(102 + Pz)ﬁk
= —2(E? 25174 ( k k , 5.8
i (%% + p?) o e AR (5.8)
k24 il / 1 s = \/kz 2 \/kz 72
JE) S 4l Tt = tpk - VR T T
_ k2 + m2 _ g (¢)2 _‘ L 1 Z Lt ) .
N R R T A e )
.9 1 1 o 1. Py T.(t) . - .(5‘9)
4L \/kz 2 T \/kfz + 2 VEE + m? 1420
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Where the collision integrals I'({) are

Tty =

ru(t) :

rut)

X

L()E

1/2
PE Z 1 BB ! 1 ] S
UL? ks LB b YR ud Rl

: (&,fhm,ofg}m +35{n+h_—h_\_-..61_’:(=3=_h) R (5.10)

N 1/2
9 Z-[ 11 1 1 ] |
8L ok LM+ el NCEY \/’Ci"i-ﬂi; NGRS

1 . . 7
(5;:1 a0 S eokrkok T 30 bl bk .0 Tty

. o
5k.+h+{ea-k,n J:fﬂ,m + 35k+kx-k= k3.0 Jikzkgka)

: . /2
1 1
¢
SL( )kxzkz \/k2+#k, \/’C2+#kz \/k2+.uk]

' ('sh+'==+k,0 T8k + 2itkoin 0 Toney = Bt 0 Tihs) » (3.11)
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P [ 1. . 1 1 1 ]
AP 5 (VB st Bl R Rt

(6, shathart.o Db + 38, +hyth—iy 0 L2 s )

2 3,
.6h+.bz+ka-—.k,0 Ilgllzkgk."' .6k+kl"k‘l wiks 0 If:ka kzl:;;)

1/2
1. 1 /

bk \/k +l-"-k1 \/k +F‘k2 \/k’-i-,u

(6k1+k2+k,0 M+ Wk, 4.0 Ly bty + Obhat,0 lﬁi,k) . (5.12)
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The density energy is

B (H)2 m? g 4 g 2
<E>_ 2 2" +E(¢)+E(w) z*:[\/k2+#-

N +m2]

(‘35) Z ,’— 3_52 \/k2+-“kl %L/kz_*_#kz \/k +m2

1 1

. 2
g W g 1. -
+ S {Ek: m] + 32L2 l:§ (\/k2+,ui S VR m?
Ay | B \/k'*‘-i-.u + ket o | - -£vk’+m2
Ly Erm ¢

+

& [ 1 1 1 1
19212 kn k2 ksky

Vel R e R el Rl

S (/RTINS . SEE T RIS (o S + 38 bkt 0 Lokatons)

r 1 1 1
+ 53 (6}
412 k%ﬂ VR ek B+l R+

4 . : 5
% (6k1_+kz+ka 0L, + Bhbk i 0 ILL_:;,)

In these equations use was made of the abbreviations

1/2

[ [z,
(1+2 YV, +Z Vi, Vg, + Z v, uk,u,,,)y

i<y 41

Iukgk;kg (t)

x

X

Sen{ﬁakx (f, t’) + ‘sz(ti t’) + Pk, (ta t') + P, (ta t’)]
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(5.13)

(5.14)




1/2°
12

hhhh(t) = j dt’ [--\/le-_i_—.Tk}
1 &

x- ( ks ™ Vi Vi Viy + VE, Z Vk + Z vy, ij)
‘<J t
xsmM@w+%mw+%mﬂ—%wm,' (5.15)

1/2

ISL&&(”' 3 f H [m]
i=l kL b

0 -

X [t (L v )L+ 9 ) = 2 vy (14 2, (1 4 2,

X senlgy () + 9as(t ) — a(t, ) = eralts 0] (5.16)

A T
.(:L,m(t) fa I [\/—k?l=,,] (B (1+E Yt 3 i w;,)ﬂ_

. i<ji

X senlpr (1) + pi(L,Y) +on ()] (5a)
3 172 : - : )
(5) o 1 | o
klkzka(t) = f dt H ["Hﬁz"'_zjl {d)e [Vka(l iy 4 o) — vy yh]t'-
o i=1 {4/ k" + I8 v _

X SED[iPkl (t: t’) + ‘r”*z(ti t’} - ‘Pka(t’t’)] ’ . (5'18J
The J¥ are identical to ') with the sine functions replaced by cosines in the

integrand. Energy conservation 3{(%) ={ can also be checked directly by using

the dynamical equations.
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VI. Numerical Results and Concluding Remarks

In this section, we give numerical solutions of the equaiions of motion (5.6)-(5.9).

A useful techaique to treat the ‘memory integrals in these equations is descrlbed
in appendix B. In order to control the:domain’ of vahd1ty of the approximations

involved in the derivation of the equations of motious (see sections IV and V), it

is useful to inspect also correspondihg solutions for quantum mechanics (i.e., 0+ 1.

dimensions)[12] We find, by comparison with the exact numerical solution which

are available in this case, that the coll1310na.l approxzmatmn improves qualitatively -

the dynamical description of ﬁeld va.nabl@.
In what follows we use na.tural units.- As a ﬁ.rst case;, we take: the_pa.rameteré of
the hamiltonian (4.2) a3 m = 1.2, g = 2. The static mean-field solution is then

(7} =0, () =0, ve =0 and pp = g = m.. Figures 1 show the mean-field

and the collisional approximations to. the timerevolution of the various dynamical -
variables. for the initial condition f{0) =0, (8}(0) =1, {r)(0) =0, 1(0) =0
“and px(0) = p. Periodic boundary conditions were '_'impleﬁqented as k=N with
L =40 and —6 .S N<6. A compa.rison. with a calculation involving a larger .
dimensionality indicated substantial convergence for the variables shown. Although

' the mean-field and collisional approximations to {¢)(t}, Fig. 1A, do not differ much,

the former does not show the damping which is present in collisional approximation.

More dramatic difference show up however in the case of the time evolution of mlt) -

and pi(t), as shown in Figs. 1B and 1C; A natural way to interpret these resulis is

that vy = 0 constraint i'rﬁpoéed by the mean-field épproxifnaﬁéh strongly distorts the

dynamical behavior of the extended density R, as revealed by p(t). This effect

can be noted also in the results for 0+1 dimensions .a.s shown in the Figures 2A-2C.
The exact numerical solution is also shown in this case. It shows in fact that the
collisional effects are necessary to describe properly the dynamics of pi(t). However,
the collisional approximation is seén here also to fail for large endugh times, leading

in particular to an overestimation of 1.(t).  Numerical checks in the code (involving
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e.g. energy conservation) demonstrate that this is not due to numerical failures, but

should be: seen as a limitation of the. agiopted.a_,pproximation for the cqll_;lsion terms.

Flg\m 3 refer: to results in the casé of broken-symmetry and initial conditions
(#Y0) =0, (m)(0) =0, 2(0) =0, 1y(0) = 0,08, and ueo(0) = 0,05 = yu. The k-
sum is now.cut-off at. |N] = 12 with L = 420 which indicated sufficient convergence.

Figures 34 and 3B éhow.-dramatic..mﬂi&ional_eﬁects“pn; the time evolution of su(f):

in: fact: yk(t),:: initiaﬂy.;;déctéésﬁ: ini:the mean-field:approximation. while it increases

' whexﬁool!isional?t.erm&:—a_l:e.tt_xmg_c_l—;on..}._.In the: mean-field. ai)pr,c_mimatiou, the pu(t)

_ are the only degreesof freedom affecting the root:mean-square; field (evaluated here

simply as: (¢?) “(96)2 = Ek ;—,*:—:}), and it is natural to expect: that they abproach the
ethbnum vniue, = 0;08. In. the coll:{smnal calculatlon, the root-mean-square
ﬁeld evolves also due to the cha.nge in time ot' the .occupation Vg(t) We see again,

therefore, that the mean—ﬁeld constraint e = 0’ strongly - dxstorts the: dynamical

beha.vmr of mass- pammeters Figure 3E. shows the root—mean—squa.re field (é(t}’)

asa flmctmn of time.. It shows that the mcrea.se of ,uk(t) ig overcompensated by the
change of the vi(t), resulting in the pomtxve evolut:on [{¢?} in the case of collisional
appmuumatlon F:gu.r&s 4A~ C show thecon:espondmg resultsin: 0+1 d.lmensmns It

can be seen that again the co]llsmnal app:mﬁmatxon is able {o-reproduce qualitatively

the exa.ct time evolution of u, and” ey unt:l 1t faa.ls /again due to overestlmatmu of
v for larger times. ' _ '

We _conclude,;;_ﬁ:_om». these ,examples,-;tha_l.tsth& mean-field approximation fails qual-
itatively in: the description of the variables of field. These failures are partially
corrected by the collisional integrals used here. However, improvements of the sim-
plest approxima.tion:td EHeédﬁisi&ﬁal e'ﬁ'ec[-'.:s:%,i as i.rnple'mented“here,. are needed if one
wishes a quantitatively reliable description for larger times. Attempts along this line
are under way;: : ' .

Finally, we comment on the extension of our treatment to non-uniform field con-

figurations. In this case, the spatial dependence of the field operator is expanded

21

in the general natural orbitals of the extended density (2.7). These orbitals can be
given in terms of a- momentum expansion which will also evolve in time according to
additional dynamical equations which are in this case obtained from the Heisenberg
equation of motion for ¢(z}, again in the close analogy with the non-relativistic

many body treatment. Further details on this point are given elsewherel8],
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Appendix' A: Construction of the Projectors P and P+._

I order to simplify the presentation, we shall show the technique for the case of
¢+ 1 dimensions. The same general procedure applies also to the caseof 1 +1 or
higher: dimensions:

In section II, we have stated the conditions to be fulfilled by P as

Fy(t) = P(t) F | (A1)
P(t)P(t) = P(t) _ (A.2)
iFy(t) = [Fo, HI+ P($)[H, F] (A.3)

where Fp{t) in 0+ 1 dimensions is

. . 1 ' v(t)_ ¥ ()n(e) . .
Rt) = 1590 (m) . o (A.4)

The derivative of Fy(t) with respect to time is-first written as

I/(1+ v) v di I+w

. 'y L d oty
iy = D1 gt im, Fj = (_”...) (A5).

where ini the last term :—; - acts only on the operators- n and n¥. In order to

evaluate this term, rewrite the exponential as

MUTTUE | _
v YT mtmtente (A.6)
14+ () :
so that
df . = mﬂ . d . R d
s & amytn m &+ +ooyn—1 Y-l =t

e 2 [z (dt n n) )+ () i {n 7?)]

(A.T)

Using eq. (4.5} and the Heisenberg equation of motion one finds

. d e . s i . -
13;11*17 = [0y, Hl—iA"n—iAn—i(dy—zg)m —i(a"y" — ="y )n , (A.8)
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so that the last term of {A.3) becomes

i@ gy 1 °°' e
Ty @ 1+vn= {[n 7, Hl(n* rr) e Oy {n:v_,H]}

_ 1 O+ m_" _. i '+..-“_1-- Lo B :+ _.n-—l-. B
1+y§ TA{A@T T 4 (i
.1 .m.mn R St .
— IR A lq+7? 77)“ -1 "-"+('7 ,?)n 1£"+
1+ur§, { ( . }
I T = L NPT
-1_}_1,’%.?(3'9_55’) {“J'?(rl ’T).. ++(!7 n) nm}
L e + n—1 n— 1 +.+
1+,,Z ;(Hf—-'cy){wﬁﬂ(n v) +z(17 r)) 7]7]}

(A 9)

In order to reobtain the exponential (A 6), one moves the opera.tors q, r,» . rm, :

A n , tothe rxght and’ obtam, after some aIgebra

1t iemrr*‘u'
1+v dt

[FO,H}+zA‘ il T Rytidg Fu+z(zy =f)(1+20) % ’7” . Py

FEE T )

—2(1 P 7 ('.A_.io)

Using the dynamic equatmns for:the: extended: densaty, eqs. (2:20)-and" (2 21); one

gets,
s mhtn—
if = WFOTFTI TI[HF] + [Fb, ]+ FoTrfI [H F}
o - ) : .
+ 1+ FnTrq[H F]+“—F0Trﬁ' n [H F]+2(1—+TEFD,I‘I'T7U[H F]
i ' - (AL

Eq. (A.3) is therefore satisfied by .
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p. = L2z SRt )+ 1 BRIt ) + BT

w1 +v)

(1+ v)

[+

" -_+ 2(1+ pgp ) A

i3

,_ ()+';(T}Ty—) (ﬂ*ﬂ_w-)af- mzﬁ )+Tm)
Mgy T 5 Tem )} S e

Ti;ei_gons_gp.}c;tigr} of, ]P+ i:'o_!lpws_i:m;a;;ediqﬁqiy from the definition.of scalar product:

s w5

e R SR

+ Tr |yt 2 113 FD] Tr(t]a:)-i»Tr [y+ il Fo ' Tr(n*ntz)

+Tr-+--—”+q+ F]Tr = Tei{ Pt o)t |
1Y sgop B Tlme) = TP*y)*e] . (A16)

=]
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From this, one obtains immediately

Pt o= Tl'[Fu (1 - "1':,”) ] + V(;T 5 TPl —v) ].

+ 2 Te[Fan*t -] + T TEtFoq-] A Tr[an:"n+ 3
v s 1o 22

) bt TrF.. N o . A17_
+ m”—), [Fomm-] . . . (A.17)

Appendix B: Numerical Treatment of Memory Integrals.

In order to cbtain numenca.i solutzous for the equations of motion, we need to

evaluate memory integral of the. type

I

1

o\ VAT AT,

X

(1 + Z v + Y v, Vk,) () ..Siﬂ' (66 (8,8) + i (2, ) + dry(8,8)]
|<] o i . .
S @Y

Using the phase equation (5.6) explicitly this appears as .

1) = —sn{ [ & uO)+ S0y 1O} [ @

. 12 -
X ( L L 1 ) (1+Zuk.+zl’islfk) (&)

NEETA \/ K2+, \/ kE + 1, i

X

cos [ dt" () + fnl®) 4 ]

¥ COS U: &t [fo, () + fi () + fus ()] } f.‘ dt'
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o e . 1/2
1 : 3 1
x T - : 1+Z”k+ U;‘Vk) (o}

(\/kfwzl. \/kawz,\/kswz,),, ( Z .

o sin [ dt [fu ) *I(E) ] (82)

In order to evaluate this a useful trick is to write a differential equation for the mtegra.l
appearing in (B.2). .Thus

i

B = ful®)+ ful® + fult) N (B.3)

1/2
. ( 1 1 1 )
L= : _
VE+ud R +ul B+

x

14 Z v, + E vk, uk,) {¢} COS(If) {B.4)

]

X

i ( 1 1 ).112.
\/’S + g, \/k2+,u,,‘, \/k2+ﬂk,

1+zy,=. +3 ) () sin(Z)) (B.5)

i<y

so that .
I = —sin(Z) - L + cos(I) - I, . (B.6)

The differential equations (B.3), (B.4), (B.5) can be integrated easily by standard

numerical methods together with the remaining dynamical equations.
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FIGURE CAP_-TIONS' -

Time evolution. of the expecta.tmn value of the field. operator (qﬁ) {1A), mean-

- oecupation nu.mbe: vi (1Byand dynamical effective mass s (1C). Full line:

: co],h_sanal _a.ppro:qnmtlon, dashed _hne. mean- ﬁeld_, approuun;ahon. See text

' t‘ot;ﬁaramew'n values. %

- -_Fi_g;..2.

Correspondmg :esults to Fxg :.foE the case of 0+ L dxmensmns Parameter

= 1 1914879 (m.B' =1y a.nd _q = 2 5 g s the mean position,

. _ yg is: the dynamxcal eﬁ'ectwe mass. and" vt is the: occupa.tlon number. Full

‘ .Eig,: 3z

-Ime' exax:t. solutxon, dashed line: . collisional: approxlmatxon, dotted line:

_mea.n—ﬁeid appro:umatmn

Time- evolution ‘of' the— dyna.m.ica! eﬁ'ecti#e mass: (Flgs 3A and 3B}, -

E :', mean—occupat:ou number u;, (F:gs. 3. a.nd 3D) a.nd root—mean—squam ﬁeld'

. (Fig. 3E) in.broken symumetry’ potentlal with m = 0.05"and: g = 0.155.

: Couventlons are the same as in'Fig: 1.

- Fig. &

.Corx;equnding results to Fig. 1 for the case of 0-+1 dimensions. Parameter '

values: - m:=0.05. and:'g = 0,004. Notations and conventions are as in-

Fig.2. .
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