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Abstract-. .

__We;_ana.lysg;; tﬁe;_b&bble -formation. process.that takes place as a.result: of phase

coexistence: in the: early Universe:’ Wes bave-been. concerned: with' the. determination -of

quaptitia:,releyé.nt_..to:.,cos:nolégga-such; as: the .number- density- of bubbles; the:contrast
density, a.nd the. mﬂst proba.ble sizes:of: bubbles: (critical radius). We:show that all these
qua.nmtm can. be: expw-;sed 254 functmn of the:surface: tension. The surface tension is

showz to acquire:. - very simple dependence in the high-temperature lHmit and easily

predicted up to the one—loop:approximation. In this limit it is possible to get simple-

expressions: t0.-all: cosmologically relevant guantities. In the caée of the SU(3) GUT model
we get, the Zel'dovich spectrum with. the _pi:oper order . of magnitude as well as other

interesting consequences to cosmology. .

* Work partially supported by EAPESP

1. INTRODUCTION

As one probes the large scale structure of the Universe some puzzling features, in
the distribution of galaxies on large scales, emerges. In particular, there are strong
evidences that the distribution of galaxies is made up of thin sheets {or surfaces) in which
the galaxies lie. These sheets surround surround vast voids (regions in space containing
few bright galaxies). Furthermore the sheets seems to be surfaces of several adjacent
" pubbles”.[1]

The nowadays accepted picture for the development of structures in the Universe is
based upon the growing, due to gravitational instability after the recombination era, of
small disturbances of the density. Furthermore, there is an widespread belief that these
initial perturbations should result.from processes operating in the very early Universe, that
is, processes that took place very close {0 the singularity. In this context, cosmoiogical
phase transition might play an important role, since the appearance of inhomogeneities
(defects) in the system is a common feature of theories, whose symmetries are

spontaneousty broken. In fact, there are suggestions that topological defects such as strings

~and domain walls generates the required contrast demsity for giving rise to the observed

structures in the Universe.

The formation of bubbles {or droplets) is a feature of systems that exhibits phagse
coexistence along the phase transitifm. The' approach that we have used (the droplet
picture of phase transitiongz’al] has been developed for dealing with bubble formation i
phase transitions that are very familiar to physicists. One of our motivations for dealing
with this problem, and its role in cosmology, is the sirriila,rity of the observed geometrical
structures and the cones formed along some phase transitions. The idea is then to see
whether this familiar physical phenomena might give rise to the geometrical structure
observed, yielding, as the Universe envolves, a pattérn very muck like the one defined by

the galaxies.




In' this paper we will explore the possibility shat the obsérved large scale structure

of the Universe emerged from the existence of interfaces separating regions of different

phases in the Universe. We imagine that at some stage of the Universe there was a phase

coexistence: There was an era in the Universe in which two bulk thermodynamic phases-

cée:dsted'_in_ such a way that regions of the space {bubbles} were separated by a relatively
na.rrow. region, the ‘interfacial region, over which the properties of the system must change
" from: these of one phase to those of the second phase. In the case of a magnetic material
the interfacial region is planar and is refered as the block wall. In the case of theories with
spontaneous: symumetry. breakdown the.planar interfacial region will be refered as domain
walls.

We shall infér some relevant parameters for cosmology and- achieve a description of

phase- transitions from the the: knowledge of the interfacial free energy per umit area: (that.

will ba: refered from now on as.surface tension). The idea is that one can define first the
thermodynarmics of a.gingle interface and afterwards to extend it to a description of the
system as:a, whole. ' _

In field theory there are two. circumstances under - which the  Universe might
developed bubbles-or: domains. We will distinguish-thase two situations and will refer to
them as degenerate and nondegenerate case.

The nondegenerate case occurs when the order parameter has more. than one
component.and the effective Hamiltonian is different for each value of the order parameter.
In cosmology we would say that the two phases would have different cosmological

constants. Under these circumstances below a certain temperature the phase with the

order parameter g, =0 becomes metastable. The change from a metastable to & stable -

phase occurs as the result of fluctuations in a homogeneous medium. Within the
homogeneous medium there is formation of small quantities—droplets—of the new phase.

The degenerate case occurs- when the order parameter has, say, n components 5i

but the effective Hamiltonian depends on only in the sum of the square of these
components. - The ecffective Hamiltonian is- independent .of - the direction of the
n—dimensional vecter p. In field theory wé woulc say that the vacuum of the theory is
degenerate. A typical and familiar example of & degenerate system is a purely exchange
ferromagnet, whose energy is independent of the direction of the magnetization vector.

" The plan of the paper is the following: In section II we review the general aspects of
surfaces and their thermodyramics and the. .bubble formatien. In section III we establish
the general framework and give formal expressions, in field.theory at finite temperature, for
the free energy per unit area (surface tension) of a domain wall: As an example we found
the surface tension and the critical temperature for the minimal SU(5) model. The
expréssions obtained are fairly simple in the high temperature limit. In section IV we

consider the case of bubbles. We analysed-the case for a nondegenerate theory and for a

degenerate one we determined relevant results for cosmological applications such as the_

number density of bubbles and' the contrast. density: in:the dilitte gas approximation. TIn

section V we gave the results of the last séction: for- the-minimal ~SU(5) model ‘and" we’

analyse-the possibility that bubbles have a bearing-on-the: formation of stmictures in the

Universe. Conclusions are presented in section VL

o




1L SUR;EACE_S —CLASSICAL RES_ULTS
2;1._ Surfa.cs_: Tensmn .

The thermodyna.rmcal propemes of an mterface can be entirely characterized by the

surface: tension: 7. This thermodynamical va,nable is. defined. in terms of the work (dW)
needed to: vary the surface by an _amom_lt dA by:

dW = odA @21)
The surface tension depends on. the: tempera.tu.re a.s well as other variables, t.hat we
c‘au "ezternal variables" such ag. maguetxc ﬁelds

a(T Xgy eomy Xg) (2.2)

where x, is the ith extermal variable: one can say that x; accounts for the bulk
enviromment action:over the surface.

In order to take into account surface effects, by taking the volume fixed, one writes

dF = dE—TdS = 4dN+ 7 dA (2.3)

where the differential stands for these elements in the two phase system. For T and u
constant one gets from the equation for the thermodyn.muc potenma.l dQ =—§dT —
—Ndg+ odA, that

Q2 = odA (2.4)

whereas within the canonical ensemble (taking N fixed in (2.3)) one gets

dF = gdA (2.5)

From (2.5) it follows that f (the free energy per unit area) is equal to ¢ From
(2.4) it follows then that the entropy (per unit area) is given by

g = _de (2.6)
4T

and the surface energy is

@7

If one represents by E°, 5° and F° the internal energy, eutropy and free energy of
the two phase systern without the surfaces (that is, excluding the interfacial region) then

the same quantities when & single surface of area dA is present in the system are given by

5% +5(Tx) dA

(2.8a}
= E°+ g(Tx) dA (2.8b)
= F°+4 o(T,x) dA (2.8¢)

with 5(T.x} and £(T.x) defined by (2.6) and (2.7) respectively.

The main conclusion is that; as pointed out easlier, the surface tension. defined in

(2.1), is the essential thermodynamic variable of the interface. From it one gets the free
energy, entropy and energy of an interface of area A | as




Fg= oA (2.9a)
s, = —A % - (2.9b)
E = [J—T [%ﬂ] AL T (2.90)

Furthermore, from the defimition (2.1) it follows that o 'represents the cost in
energy, per unit ared, for introducing an interface in the system. This cost in energy can be

expressed as.a.'diffefeﬁce in the free energy of the two phase system.

2.2. Phase Transition

The bubbles on which we will be concerned in this paper are associated o phase
coexistence in some stage of the Universe. We imagine tw.o bulk thermodynamic phase
separated by relatively narrow region, the interfacial region, over which the properties of
the-sfstem changes from one phase to the other. Phase coexistence occurs in simplé fluids,
binary fluids and in anisotropic magnets. The latest case is a prototype of models in-which
there is spontaneous symmetry breakdown a.ﬁd the interfaces are refered as domain walls.

There is, then, a strong correlation between the existence of interfaces and the
ocecurence of phase transitions. .

At the critical temperature the surface tension vanishes
¢ Ty Xy wenrXy) = 0 . (210}
The condition (2.11) implies, for theories in which the vacuum i's'degenerate, that

the cost for introducing a surface of arbitrary size in the system is zero and consequently

the system is "insensible" to boundary conditions.

In this paper w.e will show that in field theory at finite temperature it is possible to
account for the vanishing of the surface tension since éner'ca.n 'piovide a definite éc'ﬁéﬁe' for
computing this relevant parameter. That allows us 10 determine many relévaﬁt ;')é.r.ameters
in cosmology. The _&pproach, in order to achieve this, is then from the thermodynamical
variable o(T) , which is associated to a single bubble, to extend it to the description of the
system as a whole. o : o . o o

The dependence of the surface teﬁéion in the t:e,zﬁpe'r.ét.ure ‘in somé Lases i.s .é;.
universal function of T/T.. From the law of corresponding states it follows that the

surface tension can be written as

ﬁ%zf{%] . (2.1.1)

A dependence of the form (2.11) we shall call a corresponding state dependence. The
surface tension in the high temperature limit and up to the one—loop approximation, for
any renormalizable theory, can be written in the form (2.11), with f{T/T.} = 1-T%/T%, so

that the corresponding state dependence is valid in field theory.

2.3. Bubble Formaiion and Critical Sizes

According io the _thermodynamic. theory of fluctuations the  probability for

producing a bubble of radius R is given by

E WWTLF.{.R’ ] (2.12)

W~ exp | -

4




where: AF(R) is the cost in energy for introducing such an object into the systemm.
Usually, and as: weil be-doue in this paper, t_he cost in energy can be éxpressed as a
difference of thermodynamical potentials. '

In order to determine the most probéble bubbles we just look for the value of R

that m.ummzes AF(R) ,

GAR(R, T,

=0 . O (213)

C

R:

The sizes of bubbles as well as..their-densities,i_s one of our concerns in this paper.

As a simple example we consider the formation of bubbles in. the case of
liquid~vapour phase transition. The bubbles will be considered as spheric ones of radiug
R." Under these circumstance all’ one has, to. do is to consider. the variation in the
thermodynamic potential § . ) ) .

Before the appearence of the bubble the potential is given by (V =V, + 4?'—’r.R3)

‘ 47 3y
20 = — Py (Vo + 37 R?) (2.14)
after the appearence of the bubble in the system of which the pressure is P
= . 47 ns 2 .
@ =-P, Vp—PxR:+o47R? . (2.15)

.From (2.14) and (2.15) it follows that

AF(R) = Q—Q° = —(P—P 2R3 4 garR? . 2.16
o3 BT T

10

The probability for producing a bubble of radius R is then; from (2.12),
W exp [?RS(PMPO) —4r R? 0] . (2.17)

A dependence of the form (2.17} is known as the capillarity approximationis]. We
shall see that for nondegenerate va.éua it.is possible to-get a dependence of the form (2.17}
within the one—loop approximation in the higsh T limit. The critical size is then

(from (2.13))

Ree = pop- - (2.18)
and the probability for the most favorable bubble will be given, following (2.12), by

0~ exp { —16r® | (2.19)

3(P-Py)? T

As can be seen from {2.18) and (2.19) that one can get relevant informations on the
size of most probable bubbles (critical bubbles) and their distribution from the knowledge
of the surface tension. '

Formally, the critical sizes of bubbles tends to zero at the critical temperature,

fim R, (T) =0 . (2.20}
T4 T

c

This is a consequence of the capillarity approximation which, in field theory, follows from

the fact that the two phases exhibits different cosmological constanis.
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III. SURFACES IN FIELD THEQORY
3.1. Surface Tension — Definitions

We have shown in the last section that the relevant quantity, whenever there is
phase coexistence, is the surface tension. We will show in the following that in field theory

at finite temperature one has a well defined approack for computing this therrodynamical

variable. -

Let ¢D(x) represents & field configuration describing a defect (for example a,
bubble} in the system. We shall be interested in the thermodynamical properties of the
system in the presence of such a background field. This, in the other hand, should be

infered from. the partition function Z(qiD) defined as
7(9y,) = f [Dg] S+l (3.1)
The free energy of the system in the presence of the background fieid opix) is

Flg,) = —Asmz(s,) - (3.2)
One might be interested also in analysing the free energy éssociated to a uniform

background field tha: we represent by ¢, . The free energy of the system in the presence

of this uniform background field ¢, is

Fgo) = ~ 510 7%(9,) (3.3)

where Z%4,) is obtained from (3.1} by subssituting o in(3.1) by 9.

~ The vacuuin of the theory is associated to :he field configuration that minimizes o
F(y) -
5 FO(4p) L
EEe— =10 . ' [3:4)
§
¢0 ¢0 = »ov

F(¢,) defined in (3.2} can be though as a thermodynamical poteniial as:uciated to
a spatially innhomogeneous syster. The correponding equilibrium condition i founl by

solving the following variational problem:

6 F(é

One is then led to & variational problem which, more generaily, can be stated as follows: let

¢; be a solution of the following variational problem:

} _ =0 3.6)
8 |4y

where I' is a Group—invariant functional.
It is possible to show, by using the background field method. that under condition
{3.6) one can write the cost in energy for introducing an interface in the system as

AF = P(6,)~F(g,) = (g~ (6, |

where [' i3 the effective action defined by
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r= 2 = f f dxy .o dxy T™(x, ooy x,) 60x)) - 6(x)

(3.8)

where ['®) i3 the oﬁ&pﬁticlé'in-e&uéible ‘Gireen's functions of the theory. Then, one can
see that the free energy of the system in the presence of the ba.ckground be sat:sfylng the

classical’ equat.ion

i1

‘ m ¢ %. : o 39)

is given by I'(¢.) = F(¢,) , the effective action computed at this configuration.

If one uses the Fourier transform of ™ | given by

(=) - pu o)
r (Tlil’ sy u.) ﬁ- H (2:'[)3 (w ki? b n n) d
(3.10)
S 1 IR .
% exp | —i Z (wp e kyr2y)
£=1
where we"= 274/ 8 , and réemembering that translational symmetry aliows us to ses

M ) = e T ) P R) FO((uky) (3.1

then, for static field configurations (those with which we will be concerned in th.is paper),

the general structure of T(g.) is

14

. €0 n -
T(g,) = ﬁz %T H fd3 k; &(—E) n)({k w = 0}) 53( )

(3.12)

The graphs that contribute to ™) will envolve sums over the discrete w; which,
once performed, yield a term independent of temperature plus one which has the full T
dependence. This separation can always be implemented[5]. (Oxne can then split I ineo

two parts.
FO (k= 0) = FE(RY) + F((Es0; = 0)) (3.13)

where the second term contains all the T—dependence. The general structure of this
dependence can be inferred by making a change in all interpal momenta integration

variables. This change is just a replacement B-p' =D F. After this scaling in the

- internal momenta one can predict, from pure dimensional analysis, that f‘é‘n)({ﬁi,ui = 0})

have following structurest® .

-+

Ko

pall (3.14)

(e = op) = Y, 70w G,
T

where d(+,) is the superficial degree of divergence of a graph 7, contributing 1o I' and

G, is dimensionless. Pucting (3.11}, (3.13) and (3.14) together, we have

Ty

- ." ~ he ITCi Ty
Tlo,) = Tyle.) + 2 %, fd3 K; ¢,(—k;) z 7d(7,) G, {T_%} 53(51_3 j)

=1 =1 o

(3.15)




where. To(¢,) is the effective action computed at the backgi'oulid feld ¢, at zero
temperature. ' | '

Using (3.7) and remembering that the susface tension o can be defined as' AF/L?,
then we can write the following general expression for the surface tension invelving a

background.field ;.

. : Lo w n
1 1 L 1 et 5 p
o) = Lisd -l « 5| Y b T] [ @ ok
: | =1 1=1 o _
(3.16)
x 53(812) 2 Td{'Yn) G S-E E- —13 i l o Z Td(?’n) G [0 DJ
i Wlr T EAE %l T
Tn ) n=1 "n
' From (3.16) it follows that the general structure of o(T) is
AT) = o(0) = T2 ¢H(Tm) + T g™ (T,m) + ...
where o{0) = é [Fd(abé)' - I‘G(qiwv)] and where we have separated the contribution whose

graphs have sﬁperﬁcia.l degree of divergence 2 and 1 leading, from {3.16), to the powers T>
and- T . |

From expression (3.16) one can see that, in the high temperature limit, the leading
contributions comes from graphs that have higher superficiai degree of divergence. As we
will show in the next section, these graphs up to a given order in the semiclassical

expansion, are easy to isolase.

16

3.2. Domain Wall Free Energy

Field theories whose gauge symmetry is spontaneously broken might exhibit
topologically stable defects. The prediction of the type of defect relies upon topological
arguments. Under certain circumsia_nceé one can predict thé existence of domain walls.
These defects corresponds to infinite interfaces separating vacua configurations {plé.nér
interfaces). At the classical level these objects are associated to solutions of (3.5) when cne
takes T' computed at zero loop level. ' '

In this section we will review the approach for getting the surface tension in Field
theorym. In this case we will be concerned with the coﬁputatiog of free energies
associated to domain walls. Let o, represet the free emergy associated to a domain wall.

In the field theory ¢, is given as

4 [Z
ow-='—ﬁimlzﬁ] : (3.17)

~where Z stands for the partition function of the system evaluated when one imposes

‘boundary conditions that force the existeace of a domain wall defect in the system, while

Z, ' is the partition function obtained usiﬁg wpological trivial boundary conditions
{vacuum sector). L is the size of the system.

The varipus thermodynamical functipns_ can be written, in the_ one ioop.
approximation, as shown in the last section, as differences of tke effective acticn of the
theory evaluated at certain field configurations. Lei T(4) be the effective action of the
theory and ¢, be the constant field configuration associated to the vacuum of the theory.
Then. in terms of the-effective action one write ¢, by (3.7), with @, changed by o, , the

Do

field confliguration associated ro the wall,




L7

Do = aﬂgsf‘l&_& T{w,.9] (3.21d)

Ty = i; [F(‘Pw) - Fubv)] ’ . . . (3'18) &

e oo and A=l ..., 24) - ate the generators of SU(3) in the fundamental representation
The special field theoretical configurations o, (4, for the wall), within the # U ) 8 o (a‘.J P

: : ormalized so that T [A! A] = 264) . We also impose that b > 0 and a > —T/15b.
semiclassical scheme, are the defects associated to the classical solutions of the (normalized so o ! = . P gl

. This model exhibits two different iopological defects: domain walls and magnetic
Euyler-Lagrange equations of the model. .

. monopoles. The background fiels describing 2 domain wall ig-the type of .solution which
The dependence of ¢, on T is given in (3.16). The critical temperature T, is P & : 8 o ype o

one is interested and is given by.
given from the condition {2.10), i.e., ¢,(T.)=0. The interpretation in this case is that & v

above T, there is symmetry restauration as a result of condensation of domain wa,lls[ﬂ.

. - Agq
As an example let us consider the minimal 5U(3) GUT at finite temperature. Its by = ‘j—x tanh {%x] E (3.22a)
Euclidean Lagrangean density is
sa
L=10 (3.22b)

£ = ~1i6,, ¢ +5T.0D, 6% + Vi) (3.19)

with A =a-7/15b. Note that this solution depends only on one spatial coordinate,

where ¢ is the Higgs multiplet belonging to the adjoint representation and which we choose to be the x one.

Let us exhibit the structure of the {ree energy of the system under this background

2 N o .
() = - %;TT( ¢2) +% [Tr( 92)12 + %Tr[ 4 | | (3.20) field in the one—ioop approximation. In the zero—loop approximation one has, from (3.16),
) _ 1 - ] )y T r P
d ou(0) = Ach = Z[ry(6,) —To(0,)] = == [Sa(d,) —Saiey] (3.23)
Gr;:ZGli;_"““” el © (3.21a) . L . LE
oA re L .
where ¢, is the vacuwm value of the classical potential Vig,) . equation (3.20), given hy
24 . : F s s s R
W# _ Z W; Al : (3.21b) 0= /X, with A =a+7/15b. This from {3.23}, in the zero—loop approximation, the
ia VZ free encrgy of the topological defect is just the difference hetween the classical action
associated to the wall and the energy of the vacuum. Ae® is the mass per unit area of the
4o
o=y o A ,, _ (3.21¢) wallat T=0. _
=) v2 Withir_] the one—loop approximation I'(4,W,) will have the structure predicted




from {3.8) which, for the example that we are considering, has the structure”

'I‘(t_f?,_\ﬁ’.ﬂ)._-? c1(¢r“’ é Q _bc ceee + {f? +
. %?} +_-....'+ e }-’W+""‘4 1~" * 4 o e .
+ %W\I + % % PRI -
b 8 | 7
=Sc[(&’wﬂ)_%rga (T)f drfdai@a-&b = %‘HZZ(T)f er.d%z \_E‘v—g-%-
0

where: S 'is't'he'c[aSSicai' action associated to the background field, Zab(T) can be

represented graphyca.lly as.

A ﬁih— (3.5

‘whereas IT*8(T) can he represented as

i
: v
ah o b ¥ s
ey = w o o~V N“NQ-’MM + ! +
1 ol Jaandean +
‘! Mgw ~ b a b a b
+ o A

The waw}:&r,' solid and dotted lines été.nd, :respéctively, for the géﬁge bos&ﬁé’, H)ggs ar'ld"gh(-):ét' :

fields (for the fluctuations we é,re"w:ofking in Landau gauge). TEP(T) “can be identified as
the polarlzauon tensor for zero external momenta®l Following our earlier pfeScﬁption
(3.13), we also split (3.25) and (3.26) into the zero temperature and temperature dependent -
parts:
2y = e (e =0)) (3.27)
o T
and

SO (3.27h)

ab ab . -

H.W(T) = H;Wo +1I

First of all one nates. looking at (3.24), the appearence 6f Ultraviotet divergences. These,
however. can be treated, as usual, by adding appropriate renormalization counterterms.
Which are just the usual ones at zero temperature. This meaiis that the zero temperature
renprmalization scheme suffices for getting finite e.;;pressions- .fo free energies of topological
defects. Substituting (3.27) into (3.24), one can obtain the topological defect free energy of

the SU{3) model. which for a wall with & and W u given by (3.22}, one has




where Ae stands for the classical energy density of the wall, ¢%,(x) is given by {3.22),
- : 24 24
¢'v = ﬂ/m )‘24 ? E '

contributions not ircluded explicity in (3.28).. One could go further and write down similar

T is given by (3.27a) and the dots represeats one loop
g ¥ : . ?

expression for alt the one—loop graphs for the topological wall structure of the SU{5) model.
However, instead of doing this explicitly, we will just analyse the high temperature Hmit of
the free energy. In this limit, the form (3.16) is particularly useful, since the leading power
in T of series (3.13) is easily obtained. :ffépgy'ty (3.'1-4) permits us to identify these
con_tributiohs, which are the ones with higher sﬁperﬂcial degree of divergence. These
contributions are precisely the ones we have written explicitly.

In the high temperature limit, the graphs appearing in (3.25) are the ones we need

and yield
O - [26 a+ 2-?%!3] Ly (3.203)
m on -
and

From (3.29) we have the asymptotic expression for E"T)

—5/4 g2 T2 o | e {3.29b)

i _
S0(T) = - [5g2 +3 [26 a+ %bﬂ g (3.30)

and from {3.28) one obtains the hféh temperature behavior for o (T)

{3.31}

The substitution of {3.22} into (3.31} and from (3.23) leads to

2,2)32 1245 282
oy (1) = @1 [26 a+ B2y 5g2] (3.32)

T b.

+15 |
From the expression for o, (T) and from thé condition (2.10} we obtain the critical

with A = a

temperature T :

2
(TP = S0 : (3.33)
225/2 g% + 13{15a + 7h) + 50b :

From (3.33) and (3.32) one can also write a,(T) as

(T} = o(0) [ 1 —If,%] (3.34)

213/2 :
where  o(0) =%§:—l - This is the result predicted in (2.11), where o{0) and T,

depends on the parameters (masses and coupling constants) of the SU(5) model.

3.3. Semiclassical Approach

Within the zero loop level or classical level one has

Lol9) = f&*i 501(9:8,9) - (339)

where Scl'({a.@ﬂ@] Is the classical actions.




The condition (3.9)

CETo(8)

" o ' (3.36)
leads to the:-classical Euler—Lagrange equation
ng,—V'g) =0 . (3.32;)
At the zero loop level the cost in energy is given by
F=-#kZ . (3.38)

Supposing that the system under study is described by a scalar field 4 one can

write & path integral representaiion for Z

7 = [ md extsco) (3.39)

where: S is the effective action of the field ¢ .

3(¢) = fdx {1/2 (8ﬂ¢)2+\/(¢)] | (3.40)

that is, S(¢@) is replaced by the first term of its low momentum expansionlg].
The approximation (3.40) is very good in the high temperatures limt since the

leading terms (in T) of § are exactly the ones that come from the zero momentum terms
of S(¢) 1L

In the semiclassical limit, the leading contributions to  Z. given by ({3.39) and
{3.40). come from the field configurations which minimize the effective actich and therefore
obey the Euler—Lagrange equation (3.37). :

Now one makes a finctional Taylor expansion of ‘S{4) “ardund o, and Keeps only

the quadratic terms in” 7 = o — ¢,

0 .8

—8(6.) CapB e g
3 ¢ i 3 LT i
7 = ¢ f[D_?ﬂ exp: —_J_‘ _dffd‘?% | %(%mz + IALCIEN i;
i} L ‘j
SN T {341)
The gaussian integral in {3.41) is-easy to performr and one gets formally -
—5(4,)
1 o L —1/2 ;
YA N det™/ [_“sud + v"(¢c)] : (3.42)
This expression gives the contribution of just one bounce solution.
Using the dilute gas approximation one obtains
= 20 g 1 2D e T
Z = 7"V exp {Zm) {3.43)
where -
sS40 e s .
70 = ¢ 7Y get™l/2 [—uE cl+V"(<ak,)] (3.44)
. uw .

and ¢, is the vacuum of the theory.

By (3.37) one obtains, by treating separately the zero eigenva.lues[ulz
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5(0,) ]7/2 [det'(— O, V()

2 _g(p,
[ed

[(
F=-T|—

det (= o+ V'(9,)

where the prime.indicates that the: zero eigenvalues of ~o  t V'"{(@.) must be omitted

Eyg!
from: the determinant and + s the number of these eigenvalues; which in- tridimensional
theories:is three. -

Label A the ratio of determinants which appears in (3.45). We shall develop a
formal expansion for:A that will be useful-in order-to extract it dependence 6n T at high

temperatures. A -can be witten as
A = exp [ -1 [T'r' n(~og |+ V*(6)) = Trin(~oy _ +V(5,) ” | (3.46)
that can be put in the form | |
A = exp { -3 [Tr ln[l + Gg(V'(9o) —v"(¢v))]] ] (3.47)

where G 8= 1/ [— Og,q T V"(r}iv)] is just the free propagator at finite temperature, with

mass ¥ V"{(g.).

Tf we expand the In above in powers of G 3[\/"( b,) — V"(q)v}] . we get formally

tr ln {1 + G g[v*(0,) - \{"(¢v)]} =

| Eff-'o + *_"'O“.’ -F.—-CIK o (3-;3)

where the dashed lines correspond w0 the "backgrouwsd feld" (V"(g;c) - V“(qﬁv}) , and the
internal lines denote propagators G IE

As in the section (3.2}, one can isolate (in the high T limit, 4 - 0) the terms which
have higher superficial degree of divergence and then the contribution with leading pdwer

in T. These contribution is just the first term of the series (3.48). Then, we have

A = ex _lT 1 . V"(¢c — Y J}
e p[ g It L——%—Dﬁucﬁ Vil ( ) (6))

(3.49)

for -0(T-w).
We can develop more the exponent in (3.49) so that, in (3+1) dimensional space one

can write

A = exp 11 s f d3K 1 J‘ﬂd'rfdsi [V"({P V(4 )}
2B S an)? r o8RRI, )y ° v

=—m

(3.50)

where we have used the usual representation for the trace and the Feynmana rules at finite
temperature to the first graph in {3.48). Performing the n summation and taking into
account a static classical field @, one obtains, for a renormalizable theory (and making
the argument of the exponent in (3.50) free of divergences), that A can be written as

A= EXP{ ~35 f & V(60 - V(4,)] f %3_ }

x ! . (3.51)

ko) (MR )
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In the high temperature fimit, A behaves as

A~ exp (-AT) ' | - _ (3.52)

where

P %J'dsi [v"(¢;)—\f"($v)] f (;1:,1){3?(;%("_]3 @)

Therefore (3.45) in the high temperature limit becomes

F o~ wT[%iﬁ—clJm [%}75}@ [S(4,T)] (3.54)

where S(¢,T) = S(¢,) + AT , with AT being the result (3.52) for A, which is the
quantum oorréction to S(4,), given to it & temperature dependence term. The factor
(1/8)7 comes from a careful manipulation of (3.46) when on excludes the zero eigenvalues
of the determinant. _

In the nexts sections we will use this expression to obtain the total free energy for a

specific field configuration ¢, , describing a spherical bubbie.

IV. FIELD THEORETICAL DESCRIPTION OF CONDRENSATION

In this section we will show how the e.valaiation of”r.he partition funcl;ion for a
collection of noninteracting droplets may lead to the thermodynamic properties of a
condensing system.and the derivation of macroscopic-features of a two phase systeri. “This
is the so called condensation problem.

For a nondegenerate system one can treated the condensation problem by using the
droplet picture of phase transitions. - The basic.idea of the droplet picture, suggested as
early as 193949 5 that a transition from a phase ‘A to-a phase. B might be.preceeded by’
the formation of small nuclei of the phase B within A . The droplet model in field theory
at zero temperature has beer developed earlier. by J.S. Langer[zl a3 a statistical theory of
the condensation phenomenon.

Under the hypothesis of noninteracting bubbies, the thermodynamics of the sy'stem
can be derived from the knowledge of the partition function. For a system of n particles,
one can write the partition function, ZZ(T) , associated to an isolated cluster of ¢
particles moving in the volume V. '

Within the dro'plet picture, and this is the basic assumption of the model, Zg(T) is

written phenomenologically as_[l.s]_ e
Zy(T) |
T exo ag £ (Weut)/T] exp ¢ Klf] S {4.1)
1% -"B '

where g, & T isa geometric term, whereas the other Lermé represents the surface and bulk
contribution to the free energjr. The surface term has a contribution associated to the
surface energy W and a surface entropy w associated to the wiggles of the surface. a &
is the effective surface.. qG,,._.r and ¥ are pheuomenoléQ;ic’a.l parameters. F, /K T is the

bulk contribution to the free energy.

@




Expression aﬂalogous to (4.1) has been already obtained, within the context of field
theory, for phase transition in which the systeni goes to a metestable bha.se (the vacuum is
metastable) That is, phase transmons for which there i is a difference in energy deuswy af

the vacua of the theory (the true one and the faIse, the one m which the system is

tra.pped) In this context it is poss1bIe, i sezmciasswa.l appro:umatlons to, identily a.ll the _

elements present in (4.1). In fact, the cla.smca.l a,cnon Scl(R} a.ssoma,ted to a bounce

solutlon descnbmg a bubble of radius R can be cast. (m three d;meus;on) under the form
Sa(R) = '-%Er@ AP +4rR2 g @)

where AT is just the difference in energyidensity between. the vaccurn states and ¢ is the
surface tension. The first term thus represents the buLk coutnbutmn (volume energy) and
the second. one represents the surfsce energy ' '

Ap analogous term to the geometric one can be obta.med only. w1thm ‘the one-wloop
appro:uma.tmn[ 1 Ta.kmg mto account- Just the ze::o modes we have a pre—exponentla.l
term that goes like. 57/ , where. v.isthe uumber of zero modest! i '

" The droplet model plctur% the system s a "dilute gas“ of small droplets of radius
R.' The number of bubblee of size R mlght be a.pprox;mated by a s:mple Boltzman
factor, that, is R

N(R) ~ exp{—8AF(R)} o ) (4.3)

where AF(R) is the'eﬁergy cost for intraducing a bubble in the system.
' As shown in previous sections, the cost in energy for introducing an interface in the

system can be defined by (3.7) .

40

(4.4)

2o
AF = F(¢;) —F(4,) = ~ ' In {ﬂj

Z(¢,)

For spherical bubbles of radius R,AF  is a function for R, and one can write
AF = AF(R) .

Ouly bubbles whose size R is above a critical value R, are stable and they
survive in the system. Thig critical va._lue.:is gi.veu by the condition

g

'R_R (4.5)

Bubbles with radius smaller than R.. are unstable and disappear agam These
bubbles are assumed to be macroscopic obJects

The value R =R, determined by (4.5) corresponds to the limit beyond which
large quantities of ihe new phase begin to be formed. Bubbles beyond the critical range
{with R > R} will inevitably develop into a new phase.

For nondegenerate system one can picture the condensation process as a two stage
process.

In the first stage (metastable phase) the system is metastable. In this stage there is
formation of bubbles with radius below the critical one.

In the second stage {condensed phase) there is the growing of the eritical dropiets.
Bubbles of size larger than the critical one developed and become stable.

Within the one—toop approximation and for temperature below, bm; close to the

critical one, one can write
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where ¢,,. is the local minimum, of the potential V{¢), which dominates the region
outside the bubble and ., is the global minimum which dominates the inside. In this
case the solution which interpolates between these two minima is the kink-like solution

¢i{®)-and it describes the surface of the bubble. o{T) in (4.6) is the surface tension.

The result (4.6) above can be seen when one uses (3.54) for a nondegenerate systeri-

and replacing:- ¢, - by. b s repres_eﬁt.ing a sphericdl bubbie of radius R. g consistes of:
b1, for R<Ry—AR; ¢, for Re(Ry—AR, Ry +AR) and By, for

[11] in three

B> R, + AR, Then one can. divide the integral of the classical action
reg'iona:.the inside of the bubble; the skin of the bubble; and the outside of the bubble. In
*the thin wall approximation, that is, AR ;g Rc,- and using the resuit (3. 52) (in the case of
a nondegenera.te system) as.the temperature corrections to the classical aetlon (4.6) gives a
gut appro:clmaf.e descnptron o the bubble aemon[ ] From (4.6} one obtain that R is

given by

R, (1) = 29(1) | W)
TUOANT) - :

As an exampie {of a nondegenerate system) one can consider the Hamiltonian

density for a scalar field theory given by

¥ = 5200 + L Moo + Sm? 200 + () 648 + Jot) + §mi/
' (4.8)

where | is an external current assumed {0 be-time and position independent.
Following the ideas of Langer[z]._ metastability arises if we consider what happens as

we vary the value of the external current j, for s:uiteble how temperatures. .

A gimple a.nalysrs of the classu:el potentra,i shows that ag the vicinity of j=0, one
can ha.ve two rninima, one local a.nd the other global The semrclassxc&l correction around
each minimum bnngs the temperature into the problem a.nd lea.ds to a two—phase plctu.re
of the system large reglons domma.ted by the global minimum couﬁgura,tlon where, due to
therrmal ﬂuctl_lat.mns there occur bubbles ({or droplets) dominated by . the
loca.llmjnirﬁum[m]. _ - 7 o | h

) From (4.7)' one' can make contact with the phase transition (second—order one)_ that
takes place a.s j=0 a.ncl T-T, by rema.rking that, at the transition temperature, the
critical radius R.(T.) should vanish. (by (4.7) one can see that at T=T,, with

R,

ol

T,) =0, imply that o(T_} = 0 s1gmng the phase tramrtlon)

44. The Total Free Energy of Bubbles— Dilute Gas Approximation .

In tlcus sect:on we: Wlll be concerned mth s1tua.trons m whjch the dlﬁ’erence between.,

the energy of the degenerate vacua iz zero. Tha.t is there is no. externa.l-source te: dnve one:
of them, preferred energetrea,lly, with regard to t.he other Under this cmcumstancee AT

in (4.2) 2 is zero. Im this way, the deforma.tlon of the ra.dlus of critical bubble, for instance,

cannot be done only by using (4.2). So that one has to adopt the droplet picture in field .

theory. This is precisely what we intend. to do here. ‘
Within the droplet model pieture ..syn'lmetry restoration occurs as a result of
formation of droplets along the volume in wluch msrde the droplet there is a region in
whxch there lives a vacuum of the other phase Close to the cntmal teruperature Lthese
bubbles are more Rumerous a.nd la.rger In fact, at the Cl‘lt]C&l tempereture bubbles wrth
infinite radius are favored to appear in the system. That is why we will be coneerned in

this paper with infinite domain wall ("magic carpets” in Fisher words)[l"ﬂ.
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Besides. impieinenting, under these circumstances, the droplet piclure of phase
transition in field theory, ﬁre will derive e:xpressions for.' physical quantities which are
relevant. for phenomenological applications in Cosmelogy. In. this context we have
coﬁcentfé.ted our a,ttention on the questicn of contrage density and the size of bubbles.

We wﬂl assume that the distribution of bubbles is a dilute one. Under. these

cnrcnmstances one can write, for the partition function Z , equation (3.43}, as

Z A ] (4.9)

amd 20 1 the bubble field conﬁguratmn ¢B
From the results of section {3.3), one can write the: free. energy. of the bubble,
F=—31InZ, by equation {3.54) with . ¢#: replaced by $g - In the high temperature

limit and.considering spherical bubbles one can find a general form to F given by

_ —4«/3 R3 AI‘ + 47 R 0*(0)'[3/2 1 4x/3 R® AI‘(T) — 47 R%(T)
F= 1[4 —t | {a]exp{” T

(4.10)

where we have used (4.2) 1o _Sd(qﬁB)_ and. (4.6) to S(gz&B,T} » the classical action associated
" to the bubble and ¢(T) is the surface tension.

In (4.10) we have considered the factor +y appearing in (3.50) as being three (for
bubblés in three spatial dimensions there are thrée translational zero modes and therefore
three zero eigenvalues). ' '

Let one takes the vacua as a degenerate one, i.e., Al' in .(4.10) is equal zero. In

these situation (4.10) becomes
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The critical radius of the bubble can be obtained by minimizing the free energy

(4.11) and one obtains

' 3T - .
RZ(T) = g7 o[T) - (4.12)
From this expression for R.(T) , one can see that for T = T, the bubble radius
becomes infinite. This is the principal difference between our point of view from the usual
one considering nondegenerate vacua where the critical radius is given by (4.7).
If one expands the expression (4.11) for R ~ R, and writing o(T) in terms of Rer

using (4.12), one obtains that, free energy F can be written as

5/2 [ 2c(0) )3/2 (R —Ry,)?

F ~ —T [ & ] Rlep |3 —" (4.13)

2
B~Bep . Rep
for R =R, given by {4.12), one obtains the contribution to the free energy as
3/2
F = —T¢ é_ﬂo—)] . (4.14)
d7e o(T) |
Within the dilute gas approximat.ion the average number of bubbles is
Z(l','




.' .and then from (4.13) we have that for R~ R,

N(T,R) =
R~R,

2To(0) 1372 ' (R —R)"]
V{—%—)—]/ R exp | ~3— O | (4.16)
RZ,

cr

The energy density associated to the bubbles whose average number is N(T,R) and

with radios between R and R + dR is

S (R —R.)2] . .
Poipte = [3113@]3/2 Rg,exp[——?:—u—;wci— 4rRAR o(0) . (417)
. cr . . .

If one excludes those bubbles with radius ess than R, . which are energetically

unfavourables, one can integrate the expression above from R, fo infinity and one obtains

| C L m 5/2
Pbubble = L—43/3—?11 x {1%@?}3/2 [% T* (4.18)

where one uses the expression (4.12) for R, in (4.18).

The contrast density associated to bubbles is defined as

P
_62 - bubbles (4-19}
£ pelem.part .+ pbubbles
where Pelem part. 13 the energy density a.s_somated to the elementary particles and it can be

wrltten in terms of the number of degrees of freedom fermionic (NF) and bosoniec {NB) as
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g =ﬁ(N -FE\")T* C e - (4.20)
elem.part. 30 BTEYFR : o o J
" Then from the expressions’ bove one can see that all one need to know is nhe form
of o(T), the surface tension; to determiing ali the quantltles of mterest
From the results of the last sections, one cal write’ a(T) )i the one loop order and

in the high temperature approximation, in the general form given by (3.34)
(T) ‘"—:'. (0)[1—I2] 4.21
oyl )..=. (gl | .
. TZ ) { )

where #(0) and T, depends on the’ parameters (masses ‘and coupimg consta.nts} of the
model that we want to consider. o ' R

Then by (4.18) and (4 20) one can write the eontrast densaty (4 21), by takmg O‘(T}
given by (4.21); as

1

. 4. . .4dme _3/2 P
L+ 230 (N, +7/8N)(1+m [wg__] '[1_T’5’”

Rl
|

(4.22)

- Furthermore, taking T'< T, , but not much more less than - T, ; one obtaiis ‘the

simple result

o RN DI e T (4.23)

1+ 25/2 (N — 7/8 NF_)_ _

PR

which is completely general.

st




37

V. APPLICATIONS TO COSMOTLOGY
5.1. Formation of Structures in the Early Universe

In this section we w:ll analyse the possﬂnhty that the defects that we' have studied
throughout this paper (doma.m walls and’ bubbles) have a bearing .oe the question of
formation of structures in the Universe, Tha.t is, we propose that these defects work as
structure: seeds.” The' folIomng cond.ltlons must be fullfiled through in order that this
proposmons be consistent:

1. ' The structures tha.t act ag.seeds: shou.ld not dissipate until recombination.
2. The magnitude of the prunordml densn:y ﬂuctuat;mns shou.!d satisfy Zel'dovich's

CODdlthn[ls} that iz

%;

510_4- S B : 65
3.7 The length of ﬂucf:ua.tlons must be ia.rger tha.n Jea.ns leugth 80 as to enable it to
o tngger the gravma.mon maodes: when recombmatlon aceur.,

As far as walls are concerned they do not obey cond.ltlon {1) since they are not
supposed to exist for temperatures below the: temperat.ure for which o(T_))=0. The
thermodynamca.l argument, for prevent;mg the appearance of such topological structures is
that they will requ:re, for low temperatures, an mﬁmte amount of energy.

Since domain walls exists however for temperatures above the critical one and, in
fact, their presence is intimately connected with the picture sketched in this paper one
obviously need to check if their presence in the system -would lead to unnacceptable, from
thé cosmoiogical point of view, contrast densities. We will check below that this is not so
within the context of SU(5) model.

" I’ the roinimum SU(5) model, with Laura.nuean densn:y descnbed by (3.19), with

{3.20), the vacuum field' configuration’ ®, and the bubble field canﬁgurar.mn lﬁ can be

written as
1 0
' &
-1 24
o, = & { 2 = 22 (5.2)
v 7 15 32 7 24
-3/2
and
1 0
()1 '
& - J"c t)] — R i
2 o =% —3/2
—3/2

with A =a + 7/15b. <}?B describe a spherical bubbles with ré,dius R, and <DB can be
think as a generalization of the domain wall field configuration given by (3.22).

From the results of section (4.4), one can find the free energy of the bubble equation
{4.14), by considering the limit of large R (or in other words, when T ~ T,) and then one.
can approximate the bubble configuration by a domain wall configuraiion, and using the .
results of section (3.2) for the domain wall free energy for the minimum SU(5) model, one
can write the expression for F in the high temperature limit {and for spherical bubbles at

Test} as

TE

c

= —T“(—?ré]‘a/z{l—T—z}_Sﬁ ) (5.4)

where we have used the expression (4.21) for o(T)
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E—2 1 (55)

o(T) = ‘%& 5 Efg [26a+282b + 15g2] = %%x/is

‘ , Lo
By (4.21) one can see here that o(Q) = 2 . T2 is.given by (3.33
C

2
T2 = 60u ) (5.6)

2 42 1+ 13152 +Tb) + 50b

By (4.12), one can write the critical radius R, as

RE(T) = —AL [I—T—2 ) (5.7)

167 7 i T2

From (5. 7) one can see that for T =T, the critical radius becomes infinite, which
means. that at this temperature the bubbles wall in fact becemes a plane domain wall.
Within this context it seems appropnate to identify T ~in (5.7) as the critical
temperature of the theory. However, although this consistency holds in our scheme, it can
be easily.a.rgued tba,t & dilute gas approximation wiil no longer be valid for temperatures
close to T,. One expects then, that the critical tempereture in indeed lower than T,
given by (5.6). ' ' o _

Let us turn now to the computetion of tbe contrast density ta bubbles, defined by.
{4.22). '

S _ 1 .
s = [y [N T2 %% 4 17e)°/? 56)
”?@[‘BW%H‘T%J &3

RS

40,

For T below T, and for NB+7/8 Np» 1 the contrast, density is small and can be,

approximated by

& .. .
P [N + Iy ][1 © T2 ]5/2 g [471'9]3/2 - (59)
W,B 8,.F Tzl_!_m:s
In the minimal SU(5) model, Np+7/8 N = 160,75 . 5o that for T ~T./3 one gets ...
et L (50)

LN

”;I.‘his-result is compatible with the bounds imposed by the anisotropy of the

background radiation (4p/p satisfy Zel'dovich's condition).

* Let us analyze if condition (3) can be Iuet in this picture The lenght of ﬂuctua.tions
that we propose here i is essentially the dlstance between two bubbles quortunately we are
not able to compute this distance, by usmg thermodyua.mzca.l arguments, for the ra.nge of
temperatires covering the critical temperture ( 1()15 GeV) uatill recombzna.tton (1 eV) We
can do this however for’ temperature close to the crltlca.l one. For t]us rauge of
temperatures, one has that if the a.verage number of bubb[es is given by (4 16) w;th_.r

R= RCr and using {5 5} its den51ty wilk be gwen by

1 JRCENY
S LT T2 SN
[-%=]"
If one assume further that the bubbles are umforrnly distributed over the space the I

{average) dxstance bem een two bubbles (thelrs centers} will be given by,
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d =t Lo (B2)
3. i
F_fom (5.11) .;md-(5_.}.2) one gets '
g a 12
: l-_T2 B .
A1) = 5 °s - o (5.13)
For- T &Tf3/ (T, ~ 105 G&VY one thamhag =~
BT .82 %107 GeV? = 10%em . (5.14)

In order"t_;'_o: esti_x_ﬁate thé/lenght of fluctuation in the recombination era, one just makes the
‘ypothesis: that the distances befween’bubbles (,\B)-i-'gxpa.nds. conformally, that is, the ratio
‘bétwesis this distahce and the orizon distance is cbiistant: “Consequently at'any time one

. -}\B(.;r)g:»_-' _.;_:-d_G_I,JI'I‘_;,. d(m) it

So that during recombination (t = tR)' one has, by using (5.14)

GUT

H B s Bl | B4 - : i
ABTEleV) = — i (0)

U Aok 10 ) TR

(5.16)

AB L 12x10%em

Since the Jeans length at recombination is
Ajity) > 29 < 10%cm . (.17

it follows from (5.16) that AB s Ao

The mass associated o the distance is
bubb. 4T B.3 e e
MY = 2 (A7) ~ 1010 My (5.18)

which fits very well in the galactical mass spectrum and is probably consistent with all of
them if the dynamics of the bubbles below T, is cousidered.

A legitimate conclusioa wouid be that the number of aglutination centers is roughly
the number 6f great structures observed in the Universe today. In faci, one can estimate

the number of aglutination centers. This number is roughly given by

40,19 7

= ~ &
,nagl.ceut. - dGUT >~ 1,9 x 10
’ 0

—
[S1]
=
©

The greatest known structures are the superclusters of galaxies that consiss of
groups with an average of 10° galaxies, that have densities close to critical g, ~ 10°%g cm™3
and spread over dimensions from 50 to 100 Mpes {from 1.5 to 3.0 x 10% c¢m). The number

of these structures (sub—clusters) may be estimated by the ratio
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3 _ :
' da’(o’tp) ' B rinG T
ge g = 7.10° —6-10 (5.20)

because t, ~ 10" years and dg(0,) = 3t, © 2.7 x 10%em .

We see that the results from (5.19) and (5.20} are quite close to each other.

4

-VI. CONCLUSIONS

Bubbles might appesar in ‘cosmological phase transitions for theories with
nondegenerate or degenerate vacua. In both cases one can predict phase coexistence in the
Universe and the appearence of bubbles as a result of thermal fluctuations. The basic

ingredient for making relevant predictions to cosmology 19 the cost in energy to introduce

such an object in the system.

Within the droplet picture of phase fransitions, and admitting a dilute gas of

droplets, the free energy of a coilection: of, bubbles: with radius R. can be ygritt_en-as?’:-‘)'}
F o~ f dr FU(R)

where F(l)(R)_ is the free energy: associated to a single bubble of radius B and this free
energy: is the cost.in energy for-introducing a:single bubble;in the system.. ... . .. .- _
In this:_papér: we. have: proposed; an:. extension..of :the. droplet. picture; of phase
transitions .in ﬁei_d.-_theor)c that. allows: us t0. get: estimates: of :the . eritical radius,. their
dépendence with temperature and the conirast density due to bubbles. The droplet picture
has been applied, in field theory, to t.he descrlptlon of phase transition in which the system
goes through a metastable phase{21 Theee s:tuatlons are charactenzed by the existence, at
least for a certain range of temperatures, of nondegenera.te vacua,E I. In the case of theories
with noﬁdegenerace vacua expression-{4.10) permit us to rhake bétter éstimates of critical
radius than the usual “classical theory“[al since this expression takes into account the
translational modes as well asjshe temperature éependence of the surface tension.
When the theory exhibi:ts.de'g‘enera.té vacua as ‘a result of @ discfete symumetry, and
a5 has been suggested in the fiteraturel 1818 the pha.se‘ transition is supposed to be
Ising—like. In this paper we have shown how the droplet piétnre ‘can ‘be applied in these

circumstances.
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For temperatures no too different from the critical one we have been able to
compute the radius and‘ the average number of bubbles within the dilute gas
approximation. The expressions obtained depends on the knowledge of o(T), the surface
tension. The surface temsion is for us, therefore, the fundamental quantity to be
determined in field theory at finite tempéra.ture.

Whereas in- the nondegenerate case the radiug of critical bubbles tends, formally, to
zero. at the critical temperature, in the degenerate case the critical bubbles tends to
infinite. This, on the other hand, implies that only for temperatures above the critical one
condensation of domain walls takes place and consequently above this temperature there
will be formation of domain walis[m], below this temperature domain walls are not
favourable.

As.an application to cosmology. we have analysed the GUT phase transition in the
minimal SU(5) model. In this application we have assumed that these bubbles survive
until the recombination era. This is a dynamical problem that one has to solve in order to
be sure that these objects actz as. seeds for structure formation. Qur simple estimates
based only upon the interbubble distance indicates that one might get a surprisingly good

picture for the formation of structures in the Universe.
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