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Al_}stra'«:t'l ) :

_The effective nonrelativistic pol:"ent,_i_al I{r—zldesc.r'ibh'lg;thg_{_'err_n.ion-
fermion 4ime1_-actio:'1.-i_1,1~(:_l,ie-_Maxw_eﬂ;Chetq_-Simqns' theory is derived. -
to the lowest order in perturbation theory.” As expected, Vi is.mot
i;iva.ria.:il;__ux_x_cier parity and time- reversal transformations. The quan-

. tum _dy_ﬁamjcs'generate_d by Vr becomes exactly solvable at the limits
wheré either the Maxwell or- the Chern-Simons. terms: disappear; in
neither case electron-electron. bound- states show up.. However, nu-
merical calculations indicate that fermion-fermion bound states do
exist in the general case. S - ' ’

.. Supported in part by Conselho Nacional de Desenvolvimento Cientifico ¢ Tecnoldgico
(CNPQ), Beasit . . SR

Motivated by recent discussions ' about the consistency of the non-
relativistic limit of certain relativistically invariant quantum field theories,
we consider in this note the problem of determining the effective electron-
electron low energy potential arising from the Maxwell-Chern-Simons (MCS})
theory. We shall also investigate. whether this potential defines a physically
sensible and nontrivial quantum dynamics. In particular, the existence of
electron-electron bound states is one of our main concerns in this work.

As known ?, the MCS theory is a (24 1) - dimensional model deseribing
the coupling of charged fermions (,%} of mass m and electric charge e to
the gauge field potential 4, via tjm Lagrangian density

& 1
£ = —E‘F,,,,F"" + Ze.?”“_FH,Aa - 53(8.4°)(8,4%)
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where F,, = 8,A, — 8,4,, 8 > 0 is the topological mass, A is a gauge
parameter and a is a dimensionless real parametes (0 < a < 1) enabling us
to modulate the intensity of the Maxwell term. ‘Throughout. this paper we .
use natural units. (¢ = % =1}. Our metric is goo.= —gi1. = —gyp = 1, while
for the 4 < matrices we adopt. the representation 7% = a3, ! = o’ 4% = ia?y
o',1.=1,2,3 ate the Pauli spin. matrices, Neither parity nor time-reversal
are, separately, symmetries of the model. .

The contribution of order e to the elastic scattering amplitude e~ +
€” — e” +e” (Méller scattering ) is given by -

Myi = MFrt — petanse, ' (2)
where - . B
direct € oy '
M = =8+~ 1) _

_ O NG Dulk) BT v @) . (3)
Here, 51,5, (#1,7,) are the on-shell two-momenta of the initial (final) elec-
troms, k = p} — py = p; — p is the transferred momentum and D, (k)
designates the free photon propagator. One can easily check that
8 kY kK,
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..Our norma.hza.tmn is v( "(fu)v( )(;'a} ‘= 1, which i i turns. unpl.xes that’
"(ﬂv‘ )(ﬁ'} = v(“”{ﬁ)‘r v‘ ’(13) =+

Ex5)|, 8

ma (a,k2+"’)+ ma) kz( kz_,_é?’)

: w'lie'l:ef only’: zeto’ a.nd ﬁzst-onder terms in IJ have been retained. Further-
" more; we designated by 7= 1(Fv'= B2), ther relative linear momentum of the
incoming: eléctrons in: the center of mass; frame.of reference
The first'term in the: b]:a.ckett of (B) 1s. the expected: repulsive two-dimen-
“siomal: Yukiwe: potentxa.l shghtly modified by the presence of f:he parameter
@ Its: Fourier trans{orm is found to-read’’
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where K i5-the modified Bessel Function, 7 is the relative"'dist.a.x‘lce between
electrons. and.r: =| 7 | . Of course;; Wy diverges logarithmically as- the tope:
logical mass approaches zero:(the Coulomb:limit).. The second term im-the
brackett of (8} describies an attractive. Yukawa potential:whick:disappears in
the limit of vanishing- topological mass. For- 6> ma(#-< ma) the combined
action: of these two:potentials:is-seen-to: be attractive {repulsive), whereas for-
8 = ma their action. mutually cancels’ After computmg the Fourier t.ransform
of the third te}:m i3 the bracket of (8) ohe. artives te

o

. iti-the right hand
thaf: VL is. add un-

der pa.nty and: hme-reversal tra.ns‘ ormations:
inversion. de. _1_mt leave the total: potential

(i

mva.na.nt

We address: next: to the problem oi qua.ntxzmg _the two-dlmensmna.i non-,
relatw:stlc motlon of two dlstmgmshaible part:cles, 'Eequa_.l mass. 1 (reduced-

L bemga respectwely, .\/%_e‘f- it *;. The Hamnltoman de-
scribing-the relative quantum: dyna.xmcs oi ‘the two- body systen:, then, reads
H = Hy +-eVr(e, 1'-'), where Hy. = —m (ar + f_g_) - #W is. the free

Hamiltoniar.” The bound states’ ‘of 'H; referred: to-as W(r, $), will be com-

. _ mon"eigenstates of M and’ L; i.e," Wie(r; ) = Rog(r)e'®. Here, Rnl(r) is the

‘nth- norma.hzable exgenfunctmn of’ the; radial Ha.mxltoma.n ‘H; and we shall
call E,y the con'espondmg elgenva.lue Hence,

b s b 18Ry
dr2 r. &r

() i
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where UV,

- 2 P g or
et = L {1} =g =y 2 -
a U’ (e,7) . mr? _+eVT (a.,r). mr? + 2ra (1 m.a.) KD_(a)
o e -1 br AYE
- —— il - = — 13
- x@mr? [1 r.'.Kl (a)] ! (13)

d'e'l‘x-qteé,the:lth- partial wave effective potential. Of course, V.}”(a,r) has been
read off directly from: (10} and:(11) after the replacement L — I. As for the
scittering states, we start by recalling that a plane wave of momentum F,
pointing along the direction ¢ = (1, can be decomposed into circular waves as
follows : ezp(i- k) = L o i Ii(kr)ezp(ilg). Here, k =| k | and J; denotes
the Bessel function of integer order. Similatly, the outgoing scattering state
defined by HYP(7) = E¥(7), with B = £, admits the partial wave
decomposition - . . L S
S . 1 =
PO X

where Qi{k;r} veﬁﬁw. tl_:le:.Lippmann-Sch\;riﬁger ra.dm.l iniegiki équ_a.tion :
Qulk;r) = Jilkr) + 2x jﬂ " arr Cr, #) Ve, Y U(ks) (15)

a.n__d:Gf_).(r, 1) designates the {th: component of the resolvent'< 7 | (E + ie -
Moy 'ir>. A simple calenlation shows that. Gg_.)(r, )= }
—‘%‘.I;{krdﬂ,‘”(kg), where r.(r,) is the smaller (the larger} of + and
a.nd-_H,m is the Hankel function of integer order. _ : .
Before embarking into the problem of solving {12) and/or (15) for the
general case, represented hy the potential (11), we analyze some limiting
situations which are tractable by analytic means. As seen from (1), for a =
1,8 = 0 the MCS theory reduces to QED; and, correspondingly, the potential
Vr collapses into the repulsive Coulomb potential, Vo = — £ =, where ro
is an infrared regulator. The logarithmic potential in two space dimensions
has been widely studied in the-past %45 Ip the repulsive case the energy
spectrum is: continuous, while bound -states only show up in the attractive
case. The interesting thing in connection with the Coulomb potential in two
dimensions is that the s-wave Hamiltonian H,_, only becomes essentially self-
adjoint, on its natural domain of functions, after an appropriate extension 3,
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We are chiefly.interested in the Emit 2 = 0,4 # 0, where the Maxwell
term disappears and the MCS theory degenerates-into the Chern-Simons
(CS) theory. Formal developmentis indicate that, in this case, composite-

" fields obeying fractional statistics. can: be. constructed 578, One can readily

check that the potential. Vl'(")' now reduces to

: e
Via=10,7) = g

1 1
| (5609 + 3. (16)
For arriving. at this last-equation. we have considered as equivalents the dis-
tributions §*(7) and ;- 8(r), which is strictly. true if one is restricted fo work
with single-valued functions. The delta potential in {16) only acts on- the-
s~ wave. Indeed, by replacing (16) into (15) one finds, for the s— wave, the
algebraic relation” R ' E :
Rofkir) = Jalir) + o HE e) 2o (k50), an
w.herea.s the I ?é.{},pa.riia.l-.ﬁ;sfeg a_i:e-tequiredﬁ..to verify the-inf:egra.l_ equation
. PR . . i€ ' '_'dr'.- ,-":,
Ulksr) = k) + otH{ ) [Tl i’y
: ie? Crar v fodet (), ) . .
+ 5 ithr) [ =af () ). a8,

As usual, the expression giving the scattering amplitude f(lé_,'qi) im.ie_'rms-_of
the-phase-shifts: (§(k)); - =~ - o Lo T

f(&, q;,).; __‘/;r_klf [?zi&,(#)._ 1]_e"‘¢, o ) (19)

is derived by studying the asymptot;ic behavior (# — oo} of ‘«I’,%H(i') Presently;

may _ 4 0 oy T spy

and o2 P R
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lfl #.0.. From (18} one obtains Q;(k 0) =0 for all 75 0, as requlred by the
single- valuedness of ‘I’(H(F} (see.eq.(14)). On the other hand, for ¢? & finite
and: nonvanishing p031t1ve constant; eq.(17} turns out to be inconsistent .

I fact; after controlling the logarithmic singularity in H((, ) b_v means of the
nltra.vxolef. cut- off Alone finds ! :

Zeom (]

_ Obvmusiy, Qo(k; 0) — 0 as A — 'oo. When this result is fed back into (17)

one obfains, in view of J{0) = 1, Zy(k;0).= 1 # 0, which is contiadictory.
As pointed out in Ref:1, the-lack of self’adjointness of My is at the root
of this: difficulty.. 'The self-adjoint extension of Hj.g, required to render the

Qo{k;0) =

theory consistent, has been shown ' to be equivalent to the introduction of .

the renormalized coupling constant. g2,

1 = 1 I In (.A ) 23
2(1’!1) e*(A) ol A\M) : ( )
whereM is: a.subtra.ctmn poit-and: the: bare- coupling constant e? is taken
to be cut-off dependént.: Instead: of: (2_2)_.011&_ can, then, write
' L

" Qa(#;0) = - —.
g’(lM} 23:&‘"( ),—_'ﬁ-

In words, as A - o2, ez(A) — 0 and (k; 0;A) - oo in such a way that'the

product e®((%;0) remains finite; The immediate consequence is that only
8~ wave scattering takes place, as seen from {17) and (18). From (17) and
(24) also follows that $3(k;r) has a pole located on the positive imaginary
axis of the k— complex plane. Therefore, this pole 51gna.hzes for a bound
state: whose energy can be corroborated to be Eg = ——e:z:p( 4"3) The
) cortespondmg bound state eigenfunction is found by computing the residue
of {lo(kir) at the pole and reads ¥p = +/—2mEgKo(v/~mEyr). Hence,
Hi—o has been extended so as to remain self-adjoint with respect to’ square.
integrable functions that are not finite at the origin. We emphasize that the
attractive character of the delta potentlal in (16) bears no relation whatsoever
with: the 51gn of the coupling. constant &® :

(2é)-

(24)

We now recall that the particles we are dealing with are fermions. The
scattering amplitude for indistinguishable particles verifying Fermi-Dirac sta-
tistics (f(k,@)) is constructed from f(k,¢) as follows: f(k, &) = f(k,¢) —
flk,é+ ) . After taking into account eq.(19) one, then, arrives to

ez’_""(_")—'_l] eew_. . . (25).

f(kxé) = -

We, therefore, conclude that, within, the present formula.hon of the qua.ntum
dynamics, the electrons remain free.

We shall next investigate whether an alternative formu.latmn of the prob-
lem might lead to solutions implying in an eflective electron-electron interac-
tion: As before, we start by regulating the troublesome s— wave in order for
f(ky@) — f{k, 4+ 7} to be & mathematically sound operafion. After arriving
at (25) the regulafor is-removed, but-this time the coupling constant is not. .
renormalized. Then, all ‘waves contnbutmg to (f(k;$)). do.interact:: From:
eqs.(13) and (16}, and since only the s— wave is affected by the the delta.
interaction, follows that the lth-partial-wave effective potential is:now given
by . : ‘ _ :

where (Y= l2 ~al a.nd a= g We, theu, focus on: solvmg the radlal'
Schrdedinger equa.tmn

e [usy=0 )
rdr[ dr k TR « _,r) SRR ( )
As we already mentmned for I# 6 smgle-valuedness requires. ﬂ;(k (]) =0
On the othér hand, bound sta.tes ate to be described by normalizable: wave
functions, namely, i div | ﬂ((k )P < oo, wlule sca.ttenng sta.tex must:
verily the asymptotlc condltlon

'_LEED ﬂ,(k_;r).'ﬁi; wi e"s'(k}coa (kr - 1 - + 5;(’:)) . {28). )

as seer from eq (18) For nega.tlve values of i vz(l) >0 both terms con-
tributing to U7 are repulsive and, therefore, only scattering states will be

U (e = 0,7) = iu’(:), P=1,43,., (26}




: obse:';_ed..,The-._sc'rlutibnvtd-_ equation. (27)_;=‘,_v¢rfxfying;1:ht_: boundary conditions,
W : N A -

(30)

ekl [>> oy i(k) =
kese partial: waves

w(‘& Uw,;r} contnbutmg to Ue s now attractive (see egs.(13) and (16)).
" Hence, the: solution to equatmn (27) is aga.m given by.(29), but for the phase.
: shxft.s one obtains )

(31}

the function does:.not, vanishes but ra.ther oscillates wnt.h ever increasing fre-
quency as r .—-0. . The behavior of! H“ {ikr} at the ongm shows that, as
_ it happens in..three space. dimensions 9 the attractive- , potential does
not.define = condistent guantum mecha.mcal problem. This inconsistency
is:also:present. i the scattering solutions whxr.‘.h are foundto read hi{k;r) =
L *""[Hm(k )+H(2)(kr)] with .

51 = [zp(l) + lI (33)

2‘}

Qulkir) = explif(R) Lakr)r (29)°
By: comparing, equations. (28) and: (29) ‘one easily: finds:that

or. poéatwe values. of I, and such that.
is still: repulsive, although that part of

vwla.tmg the reality of the. ‘phase shifts. The consistency.of the, whole ap-
proach demands, then, the elimination of;this sector; whicl. can: be; done by
restricting o to be less:than 1 or, what amounts to the same thing, &> =. To.
summarize: there exists an-alternative formulation. of the quantnm: dyna.m-

_ics generated by the CS potential according, to. whick. tlie electrons interact,

However; ne bound. state. of the: two electron system exists..
We return now to the geneml problem defiued by: (12} ancl £13). In terms

of = and of the dimensionless quantities 3 = a;-, a ﬂ =% a.nd €nt = -’”g“‘,

.equa.tmn (12) can. be- ca.sted a.sfollows

62Rr.1 1 BRnx 75 ¢ -
(52 et ) B Rt e = 0, (34)
fff‘-”(q,y:} == ‘g_ -7 (1 - ﬂ)Ko(y) mry [1 !J'Kl(.‘l)] (35)

, A mugh ana.lysns based o the u.nce.rtmnty pnm::ple Iea.ds I:o the condxtxon

¥ Ay)zlueﬂ]>1 _, o ) __ " (36).

" for the enstem:e of bound states.. A numerical, study of the potentml U“r f

shows: that. this condition is. venﬁed for several values.of & and A.: Ii-par-
tscula.r, it can be:seen to hold: for: some values of o a.nd A within. the region

<1, ‘where. the. field .theoretical: perturbative. approximation is. justified.
We are gratefully. indebted - to: Prof.. J. Lyra:for helping us in pumerically
solving equation. (34) for [ = 1; ¢ =1, & = 500 and B'= 10% The ground
state eigenvalue was.found to be e = —1.10 #1073, A thmughout study
of: the cigenvalue structure, as well: as: of the mo&lﬁca.hans of the effective
potential induced by radiative. corrections, will be presented: elsewhere

We then. conciude that the Chern-Simons term. alone-is. urable: to- form
“Cooper pairs”. The presence:of the Maxwell.term provxdes an sta.blhzmg' _
mecha.msm a.llowmg for the. exzsl:ence of: ”C‘ooper pmrs .
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