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I.- INTRODUCTION:

" With: the: progress - of” fabricat-ion”-and-' char-ac.ter'izat"ion' technics,

there. has . been a renewed interest. in ct')mplex systems, which often lack

per'iodic1t.y Real space methods  such as’ "the- r'ecursion method” do not

'r'ecp.ure pemodlcity and:- theu- ‘cost when solving Al elgenvalue pr'oblem_

growg 11near1y with: the nu.mber of ‘non: equivalent atoms bcmg consldered .

'Therefor'e they should be .’ very useful to descrihe the electronic

propertws of complex systems for which the usual k—spacc methods are

1napplicab1e or-- extremely ccstly Real-space methods are not very'

practical. in general, but they can .be extremely ef‘f‘lclent when ‘the

system-.ih corlsideraltion can be’ uel-l descmbe- by a- tlght—binding,(TB)

Hamilton:.an Because- localized d.-bancis ‘play  a: central role in.-the'
_electromc str-ucture of transition metal alloys, for‘ a . long.. tme.._
parametrxzecf TB. Hamiltonians a.nd r-eal space methods ha.ve been used to"_ :
understa.nd. the behavior: of these systems Usually the par‘ameter-s are:
obt.a1neci from a. LCAO fit: to more: exact k—space calculations or’ adJusted.__
to fit expemmental results. It is assumed that these parameters can be:j
transfcr‘r‘ed to describe the ‘more- complex systems that one want;s to'.:

.study The LCAG parametmza.tion has ‘often been extcnded w1th_'_

encouragmg results, to treat & and B electrons but t.he lack of a sound

t-heoretxcal . backgr‘ound.— to- ,_justa.fy:_ _t.he: procedu_r'e leaves some fundamental

questions unanswered:. Which. are the approximations. being used when ane

fot{c_eé the - Hamiltonian . to - be tightly bound: through: a. fit? Should the -

usually extended a-p.-electrons: be.treated within the TB scheme?-How do

we treat the wave: function and- quantities:which depend on it? .

A’ major - progress towards obtaining: a: t.ight-jbindirlg__- .Hami_l._tcnian--'- _

of basis functions

based on a solid thecretical understanding of the- problem;. came_.in~ 1984:

with the advent of the LMIO-ASA-TB formalism-. Thé.LMTO—ASA_ is a. linear

method- that treats os-p and d electrons "in’ the same manner. In- this

formalism, the Hamiltonian can be expressed in tcrms-_.cf" different - sets

% It can be shown that there is always an

appropriate choice of basis set, which generates: a tiglxt’—binding‘ (1B}

' Ha.miltonlan for &~p and 4 electrons.. The! sound theoretical fra.mework of"
the LMIO-ASA formalism allcms us: to evaluate wave functlons, and to k.now'
exactly which approximations ar'e bemg made. _Hithin the- LMTO-ASA' theory,___ .
" gimple parametrized TB.'Hami--ltonians_caﬁ'b_e built” without the need.of
fits. to more exact caleulations or'-'elxpe'rimeht There are- no ad,justable, :

parameters in this approach. “The para.met.r‘ized LMI‘O—ASA-TB scheme:'.‘ is.

reliable for- densely packed systems with small charge tmnsfer- betweenr :
the sites and Ia.r-ge valies for the: local den51ty of states at the Fermi-__
“level. It has been used with success to obtam the electromc structure_
.cf' several ordered ‘and disordered tr‘a.nsi_tlon: metal alloyg.. 7 In ther
case of semiconductors, 'magne'tic syste'm;.s-,-..vacanci'eé'in.:‘rﬁét';'als., -'sul-"'fa.ces_:

ete.., the paramétrized LMID-ASA- TB approach may f'au‘.’_ To. obtain.

reliable results for these systems a more rigorous fir‘st—pr'in'cipléé,

self-consistent density-functional” scheme, similar to those implemented:

in reciprocal Space, may be: 'ne'edecl'.. ';l‘he'pcssibility' of ‘using the

LMIO-ASA formallsm in conjunctien with the recursion method in order to

perfora déﬁsi‘ty—fupcticnal:. calculations in’ real s:pace..was 'f‘irst-poirltcd -
" out. by, Fujiwaraai 'A:mor'e.elabci‘a'.te.- version of the oi"igihal éppfcach hes
been recently publlshed?; "In- both:-papers. the-authors é.ré.-ipterééte'd" i1;1 )
the: general - properties: ; of - amorphous Fe.-B ' alloys.. C I _'t.heée-

. calculations they have used for all Fe and B sites the same:average Fe. .
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or. B potentiai paramameters, ignoring: for:the. sake ‘of:. simplicity, loeal”

variations of the potential Hithin this constraint the potential

r'_ecirproc'al space, MWas; never attempted

In this paper we- develop a. first-principles, sel _}consisten't -I Li‘!'_fO-—
ASA density functmnai scheme . which. is implemented in real space The
procedure, 15_'_vel"y_‘_51m1_18-!'.‘. to the reg_ular .k—.space IMIQO-ASA formalism, but
tlie.solution of the elgenvalue: -problen-': is.done. in real space (RS). with

_the help of‘ the recurszon method This RS—I..MIQ—ASA approach, in the

szn polarized form, was. recently used @ to obtain the electronic_

structure of ferromagnetic FeNi and a.nti ferromagnetic FeMn In- the: .

rec1procal :
real--space approa.ch developed here e e.lso study the electronic

structure-of. a large randomly packed cluster of a.morphous Zr simulat.ed

cell' of 40 non equivalen sites The distribution of

t ansfer betueen sites at self‘-—consistency, which cannot  be

. obta.ined v1a. the usual parametr;lzed schemes Jis evalua.ted

1 the follom.ng Hay In-Sec -'II we give a

1ts several representations In

._r' 'l-spece self consistent approach and

present some_results _or ZrFe In. Sec IV we. disouss the results. for
the a.morphnus cluster of Zr a.nd the behavmr of the dlstribution of
cha.rge among the Zr sites. Finally, in Sec. V, _ We. present our

conclusmns. : _'

I1. THE LMTO-ASA-TB FORMALISM

The LM'FO—ASA formalism is a well known flrst-pr'inclples method and

n. several paperss *1“2. A review of the method

_has been describe_ _'

a.nd ltS SeVer‘a.l representations. from--_a:;-simp-le--_.lj'

pace fixed bas is:

Point ; oi_‘_- view. has - =also. .been publiel‘:ed#. A ; bri_e£:'descr.'iption;.:of ;;tll_e;
metnod'nill be_given3hene,-to point out.which approximations. used in.the
papeé";ng ‘establish the notation. We work. in _the: atonie _.sphere
approximation {ASA), where the .s_pa.ce-is di_videcl -into. _Wign_er—Seitz {us)
cells, .whicn. ar_e then approximated by WS spheres. of same volume. The
LMTO i_s.. o..l'inear ‘method a.nd the. - sol_utions. are most accurate near a
freely c_hose_n_energy.- Ev.’ Here, as. i_n,__niost ._of_‘. -.the.— lit_ere.t_ure,,i,_-El') is

chosen at the. _.center of grawvity of the ocoupie_d'._;iart_ of the-.given: (a,

g or d} band..

The LMIO-ASA basis functions are chosen. in_:'. _'

consider the solutions for an isolated muffin-Ein .'sp_-he,re of radi

with a given spherical potential for r < s a.nd a flat potential_.:.oil_t__s_l'de.:
It is assumed that the kinetic -energy for an electren. outside’ the
muffin-tin sphere is apnroximately zero and the solution, of: the

Sc'hrtidinger equation, In this region, reduces to the solution of

‘Laplace’s ..equation.' Therefore the non-_divergent solution outside the

sphere: _goes R T £0,1,2° for - &, p and d'_orbita'ls,

respectively.’ The selution inside. the. sphere should match. the one
outside at the sphere boundary. This set of functions will be used.as an
envelope in order to force the LMIO-ASA basis set. to be continuous and

differentiable in all space. The functions _cpu(r)', def:'lne_c'lr_'é.s_tbef:_radia'.l




part of the solutlon of the Schrodinger equatlon for- a sphemcal

potential insxde each WS: sphere at energy E and. its energy cierivatlve.

{D fr) c!eflned at energy E ¥ are very fundamental quantlties in the

LMTO-ASA formallsm They will be used to obtaln the LHIU—ASA basis

startmg from “the envelope funct.mns. ‘as; descrlbed bellow,

:outside the central sphere It is

a.ny other s1te R by the expansion

Lyl TR r by (?‘ ) REE
Y (r ) SR CRMELOLY RTT g0 - _ (1)
R T T F-TAES O R*L', RL )
where L E,m) 1s e. collective angular momentum 1ndex and S ) _a.re

R'L', RL
the: well known coeffm].ents of the expansmn L The matr1X'S known

.as ‘the’ structure constant matrlx depends on- the p051t10n of the sites
on the glven structure, but not on the type of atoms being cons1dered
Now that the envelope function iz wrztten in =& convement forn, to
.bulld the correspondmg I_,MTD ASA: orbltal e substitute the solutions
’ of‘ the envelope msuie every.r WS sphere by @ linear. combination of ?, {r)
and qo (r), chosen in orcier to preserve the. value of“the function and its
derivative at the sphere boundary When: bu11t in this way the LMTO—ASA

'bas1s: 1s-::orthogonal _to* .thez: cox:er le_v_els and provides 2 nuch: better basis

for the actual solutions than the or1g1na1 envelope fl.mctwns Using the

LMTO—ASA basxs set: { } we can bu1ld the Ham11ton1an H and the’ overlap

scale & and? ‘define’ rR = |r = R'[ 2

metriz ¢ in the ‘usual ‘way.. These q\iantit'ies can. be..expressed -in terms .

of SO and of potential parameters which depend on the values- of the
functions ¢, (r) and &Jv(r) at the WS spheré boundary.
Unt1l' now we- have. described the standard LMIOZASA ' formalism'Z)

which does: not give rise.to a TB- Hamiltoman The- structure matmx s°

-af-1

.enterlng Ehe Hamiltoman decays as r mth distance. and’ is very long.

ranged for a{t=0)"and" p(831) orbitals. Andersen_‘ a.nci-'j_.leps_ena' have: shown
that one of the characteristics of the LMIO-ASA formalism is that .th'a.-t"
the - choice‘ of * basis set '.can‘ be changed’ to -'suit ‘ones purpos'e.- A
controlled m1x1ng of the or1g1na1 bas1s set. can yield a. new. basis butlt

Lo have a partmularly desirable: property For a general basis {xﬁt}

the amou.nt ‘of mixmg is. determmed b,v a. set of‘ parameters w]uch depend.

:of the sta.nda.rd

on 8 These:- parameters def:.ne which llnea.r combinat :

ba515. produce the basis set with the deslred property Because the sets

_a.re related through m1xing. they can be. .obtained from each other There

are- three very 1mporta.nt LM‘[‘O—ASA representations The f‘1rst is the

'sta.nda.rd representation wlth ne- mixzng whlch we have descr:.bed The

second is the-. nea.rly orthogonal representation where : the mlxing
para.meters Q are’ chosen to make the overlap matrxx close to umty

Flnally we. have the TB or- most 1oca1ized representatlon, w1th a m1x1ng

'chosen to make the 1nteractions between nelghbor1ng 51tes ag short

ranged as poss1ble-. In the present paper ‘we use a- flrst order TB'
Ha.m-i-ltonian where-terms of order of {E‘-—E! ] and hl'gher—a.re neglected'- We'
note- that to this order the nea.r‘ly orthogonal and TB representatmns

coinclde and. we ca.n take advantage of- both f‘eatures. Here,' _i‘ollow1ng .

. the_li‘teratureg',_ we--use -quant1t1es. without bars.- to de.no__te the- potential



'paremeters: Q 'Ce, Az in the' nearly orthogonal' representation. The
m1x1ng Q and:the- nther ‘potent ial parameters: CP. and: Ae in. the. crthogonal |
) representa.tlon are glven in . terms:-of the solutions: at the boundary of
ea.ch HS sphere belng- different for-e.very-- non-equivalent atom in the

3 systemtiwe w111 ‘use- quantities:. with a: bar: ( Qé’ C a.nd A ) to designate

qua.ntities in- the the- most: loca.lized [TB) representatlon ~The. structure

'consta.nt matrix S I‘or the: 'I'B representa.tion, defmed by a- mixing, Q

wr:.tten in terms of the originalk ca.nom.cal structure matr).x s of eq.l

&

(2)

The Q that give the TB repx‘esenta.tlon were f‘oumi emplrically , by

'-ad\}"tlng thelr values in express;l.on (2}',:' 1:1 order  to -obtain a

.localized structure consta.nt uLa.trlx S The values of mixing - were found
to be approximately 1ndepend.ent of the structure and are given for .a,

'p and. d. electrons by Q = o 3485 f_l-— ¥ 05303 and. Q = 0.010714 .

In the self—consxstent realvspace approach descrlbed in- this paper,

Vwe w111 work ;on the- orthogona.l representa.tmn 1,.: but - will express the -

:orthogonal Hamiltoma.n 1n terms _of- _local:tzed parameters of the TB

representa.tlon The basa.s fu.nct:.ons of‘ the severa.l representa.twns are

not 1ndependent the orthogonal pa.ra.meters Ct’, AE' Q are related to .
the potent 1a}. parameter-s CE and: Aﬂ of‘ the TB representation. For a given

| ENergy: E we have

=z s CyE

C E
£ A - [43]
— = =1 - (Q,-Q) -— (3}
.Cg E&v_. :A_,z_/z i (2R , A& .
g9

. 8, to. bu11d the Hamlltoman we should find- the potentlal parameters C

Finally; to first order in E.—E"‘ We can express the Hamiltonian H of

the: orthogonal: representatian,  in: ter:ns of TB: 1:!&?{‘Euuete1"s:i *oas:

<tz e

H=E'+A S a (a).

In: the orthogonal representation: the overlap. matrix is close.-.:t.o-

unity and: we.have to.solve a simple eigenvalue problem of - the form:.

' (B Ew= 0 : -
Z {so (n) + E-E) & R}}__YL_(-#;) wE L ®

It is. interesting. to _.noteq _that' the.- LMI'O.-ASA; basis functions,. when
written. in. this form,‘ can. be seen as a I'aylor series. expansion of an

energy: dependent pa.rt1a1 Have:
ITE. SELF-CONSISTENT. _REAL-_SPAGE}:.SC'HEME_:_.;: o

Here We- present the+ RS—LMTO-ASA scheme -Which allows. us: to- perform-
first- princ1ples dens1ty functiona.l electromc struc:ture calcula.tmns g
in real space. As in k—space the: problem in RS* can also be: d1v1ded into

two: 1ndependent parts Flrst we. find the structure consta.nt. matrlx 5 for’

the given system The. TB- structure constant S decreases. exponent1ally.. :

with dlstanee a.nd to f‘1nd the Bxg matrlces connectlng each non

equ1va1ent site to 1ts nelghbour's. it is sufficient to invert a- cluster-

~of about. 20 atoms ,around; the SLte. Because the: val.ues.of, QZ a.re given-- by

constants, § does not change during the self-conslstency process:. leen-

4

~and AE' They can. be: obtained: from the orthogonal potential. pa.ra.meters

CE’ 4, and Q uslng Eq. (3).. But. te obtain CE 4, and Qg_lrwe__ have
to solve. the Schr.'ciedinger.. eeuatlon-.inside_ each non-equivalent. 'HS"_spn.e_re.‘-

This part of- the: problem is- often called: "the . atomic part" and: is

10




treated in the same manner as in the k-space programs. Actually ve use

regular- LMIO-ASA codes when solving for the "atomic part® in the

real—spa.oe- approach. This= part gives all'the non trivial lnfc»rmation'

about the: potential' Therefore - the approxlmations for the  exchange. a.nd
oor-rela.tmn terms which we- use in real—space are ‘exactly the- same as the

"ones-.used m the regular- k—space LMI‘O—ASA for‘ma.llsm The- pot'ential

1n51de g We: spher'e a.nd the corr‘esponding potentlal parameters. are
un1que1y determlned 1£‘ we glve the occupation for each local (a. p and

k: band at--the slte, the fu-st a.nd second moment.s of the local density

of ‘states: rela.twe to E a.nd the logarithmm der1vat1ve of @, (r') at the

spher'e".boundary - H"ere (see Table 1) we- w1ll use:-; these quant:_tles to

compa.re our results w:.th those obtalned ln k-space A brlef‘ descmpt lon
of haw the potentia.l and: potent1al par'ameters are obta1ned from the
moments. a.ncl' logarrtlumc- derivat].ves.=_at. t_he‘. sphere boundary is -given
below.. The' spher'ical. ..av'et"'age--.of'-: the: c'hat'ge: dens-ity insitie a HS'. sphere
can: be expressed in terms of the rad1al pa.r-t of the solutmns cf the
Schroedmger‘ equatlon 1n51de the sphere a.nd the moments oi‘ the local
density:. of states-. (LDUS‘}:-‘ To obta.m the self-cons;stent charge cienslty

from gzven moments and lcgarxthm.c demvatlves 1n practlce we. star.-t

from & guessed charge densﬂ.y The tocal. den51ty potentla]_ 15 made and_

?, (r) and" go (P] are calculated to the g1ven logarlthmlc derlvatlve, A

new. cha.r.‘ge- density: 1s_made- by_ occupy.lng ‘the-wave funeticns accordmg; to

the moments. ' This, procedire. is. i.teretea-_' until the:atomic' sphere. is

self-consistent. We. should _note. 'tha.’_c.: _whén._we-_ solve f‘or,:'_t_he Matomic
part"; -we choose. the.potential. to be' zero at . the ‘sphere. boundary.. When

building the Hamiltonian we should-correct: the.relative energy- scale of

each WS sphere by the electrostatic .potential : (VES). . This c_orr'e.ct-ion'

11

includes the Madelung potent_.ial-'_dué tc.'cha.l_"ged WS 'spher'es of -ether sites

at the given sphere and also’ take. into. account the electrostatic

contribution of the sphére: 1tself Her-e ag ln most of the llter'ature,..

the value of E is chosen m-order‘- to. keep: the\ first moment- of‘_- the

density of states for the occupled par-t of the : hand always zero..‘l'o

start the self conmstent process we nge reasonable guesses for"the.

occupation, second moment ‘and: loga.rithmlc derwatlves for. each nen

equivalent WS- sphere. With: th_15_; initl_a.l-- condltlons,'_ we. find the nearly

orthogonal potem‘.ial pa.r-ameters' use’ Eg. - (3)° to ‘obtain E's' and’ E, and

2
build the real space B Ham1ltoman of Eq (6). To solve the elgenvalue

problem and obtam the LDOS for  a=p- and d- electrons at each non;,_

equxvalent s}.te we use the. recursion methcd on & large cluster' (of

about 1060 atoms) repr-esentlng the system 1n question We then use the

LDOS to ind the new ener‘gy E and the new moments f‘or each ba.nd a.t'
each non equ1valent s1te As in k—space, the : new logarlthmic:._.
‘derivatives ar'e glven in tenms ef’ the new values cf.' El ’ and the old .
values of the potentlal parameters We use the new va.lues of the moments- _. .
and Iogamthmic der-zvatives to obtam new values i‘or the orthogonal\_

para.meters and new TB parameters C a.nd A We bulld a° new r‘eal space

HaIrultcm.an u51ng expressmn (5) and the matr‘lx S We flnally use the-

recursion method to obta.ln the loca.l density of sta.tes wh1ch w111 be

used for the-next 1ter‘at1on The r‘esults w111 be conver'ged when the
moments . and logar'1thmic demvatlves obta.med b,y solvmg the elgenvalue .

problem. differ by less than-a pr'evlously establ-l_shed a.mount' from the_

ones which. have-generated the-Haqnl_ltohiaJl‘.-'

To . illustraté the procedure. we. have’ obtained  the electronic-

structure of Zr'z[;ﬁ‘e. This. material- forms: in a tetragonal. structure With-

12
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-y

' 'deri-vat— ivesi:

_expre551on

aw 6.385 A and c= 5.598 A It has ‘12 atoms in the conventional

tetragonal .cell,. but..only: six. atoms: in. the primitive cell. The LDOS is

the..,same::i_?ori.‘f all .--a?;azns 'and;-for-?:a.ll-Fe_atoms-._ We: have performed self-

ln real-space. (with the scheme

In--ou_rn_calc_ulapx_ons, the. radius of. the WS

a.nd I-‘e atoms

Beer a.nd PettJ.for 5 terminat‘or-- has been used to

The logari_thmc derivatlve Dg can, diverge and to avoid

_numerxcal problems we use a. related qua.utlty PE defined by the

-'._Pe 05'-Ar'tan(D )/n, : (8

The quantlty Pz 1s aluays fmlte and varies between zere and’one.

In' this: paper' we present A neur self—cons:.stent appr-oach to

13

4 1".]: were ehosen'--in order: £o. respect

electronic structure calculations, which is implemented in ree.l' space.
To emphasize the first principles. nature of the. method, we should
demonstratie- that, given. some fundamental: 'i_nfe;‘ina'tion r!egar;_di}:_g the
syste;n- in . consideration, -the  calculations imglemented-' in realespace

converge to the expected results. Therefore,’ when calculating the

el’ec_trbnic_ structure of Zr‘zl-‘__e,_ we - took on pur'pose;"a .ver‘y crude. initial

guess. ) (.see- Table 1) for .. the. moments' a.nd logarlthmic der-lvatlves
associateci with. the Zr and. Fe sites The f‘act th&t the final. results are

very close to. those obtained using the sta.ndard. k—spa.ce techm_cs shows

the rellabllity of the self—consist,ent. pr‘ocedur' 41mplemented n:

realeepace'.

Given the initial. guess, e peoceeded ta’-. use--the self-consist.ent
real- spa_ce scheme ‘as . descrlbed above A mixmg of 0 9 of Lhe old values
and 0. 1 of the new va.lues uas used to obtain the potentlal at ea.ch site.
Because the siep 1nv01v1ng the r'ecursmn is- the. most expens:.ve part of.
the proeeciure a rigid band self consr.stency wWas.. lmplemented ‘between. the
1ter‘at1ons, to minimize charge fluctuations due. to- the 1ax~ge LDOS of: the.
Fe. band at the Fermi level ) and. get: better; ‘parameters.. for tr__xe‘_ next .
iteration. We note that, when: appl_yi-ng,_our criteria far convefgence, ._ we
compare -Lhe moments eﬁterring the .reeur'sion s_t.ep.-wj.?:..h_ the ones. com_i_ng out .
from it. - .

In talele I, we show the converged real,—space: values (RSj obltained
after ten recursion iterations for the Zr and the Fe sites in Zr Fe.. For:
compa_ris_o_n, we- also show converged k—space results cbtalned m.t:h the.
same first order _Ha.mﬂtonian w]ucl_: _We. use zn _r.-e_a.l.—spa.ee_ {FO)-" and with
sta.nciard L_.M'I‘O_—-ASA ca.lculat_io_ns (SC).. Th‘?' agree:_n__ent between :neial_%_s_p_ac,e .

and: k-space: results for the same- first crder Hamiltonian is excellent,.
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with occupatlons differlng by ‘less, tha.n 2/ We. should str‘ess that “the

real—space results and l(—spa.ce results uer'e obtained i‘r‘om two completely

. Independent: fn'st—pr-mciples density f‘unctional caiculations In ‘this

cont_e_xtz we, -_should' note_ that- the recursion metho.d'gi.ves' the: 'g“e.her"ai_-

f‘eatures of - the:. density: of: states hut the detalls . Can. depend on the.

'termmator- ~used 'However‘, ‘the- method descrlbes very well integr.-ated-'
quantities and propertzes whmh depend on them Iherefore the’ real space .
.scheme gives only a: quahtative descr‘iption of” the density of. states at
E the-A Ferml-- Ievel' - but’” is. very r'eliable to obtain magnetlc moments_
'electric fleld gr-adlents at the nuclei ‘and: sever-al other' pr‘Opertles._
The: occupations and moments used.in the: LMTO ASA self-consxstent scheme-._

are also: 1ntegra.ted quantlties, a.nd are ver'y well: described m_thin the -

r‘ecursmn method. Now we: should comment on the influence of" second order;

ef‘fects The largest discrepancies between f‘1rst order results a.nd those '

 obtained: us-i-'ng-: the'::-'f_ul.ll-‘ Hami-l'tonian {SC),. are: found‘:-in- the. occupat'-ions. .

of_, tlie--. o band: of'-"F;e. The fact. that largest erTors. are. ‘Tound:: 1n the

s~band 1s due Eo the ver'y m.de r'a.nge of ener'gies spa.rmed by the: occupled .

‘agf"ee-'--uit"hiri-:i?-' Therefore CiF one is 1nterested Ln

propertles which do not r'equire a detailed descriptlon of the o,-ba.nd a
: fir‘st—order' ]-Ia.m1lton1an should represent- the system well If‘ a better-
.descriptlon of " w1de bands is: needed Ctwo energy mndotﬁ (mor'e than - one.

Ev' for- the‘-same‘_band)._ could-be. us_ed-._ Th_is‘ probab_ly,,_ 's_hould- be-; donein: the:

case of semi-conducters, where:.one of the energigs Ev'- should. be-chosen

close to the gap.

15

band_.. For A and.-‘_cl;_bands the--_occ_upatioz_:s af RS- (or" E’O‘)ir and:

IV. DISTRIBUTION OF CHARGE.TRANSFER IN a-Zr. .

To 111ustr-ate the application of r'eal space to complex mater-ials
Wer have used the- flrst-pr'lnciples RS—LMTO-ASA scheme developed here “to:

obtain the d1stribution of". chat‘ge tr‘ansfer- among the sltes in an:

amorphous zr (a—Zr-) system 'I‘he parametrize

which works very well in the ca‘se- of-.'-.tr-a.nsition' metai'.' 'alz.loys' imposes-..

approximated- charge neutrallty a.round each site and ca.zmot be used to
obtaln charge tr'ansfers In our: calculations, t.he a—Zr‘ is simulated by a

large cluster of about 700 atoms made of cubic units ( a = 9 76 A }: of

40 atoms constr-ucted by ra.ndom packmg of hax:d spheres (see .Table- I},

r'e].axed t.hrough & Len.nard-Jones potent1al'_ 'l‘he Madelung term al. each

site wWas calculated for a. per-iodic arr'angement, f these large cells In.

"we have used in-the

20 fon the recur‘smn

cha.in and: the Eeer‘ a.nd Pettifor;:. er'minator. In T nitial Steps of the

process a cutof‘f‘ pam.meter LL'-IZ was used

We: have. used the exact value for the st .ucture constant matrix §,

obtained from Eq 2 by direct matrlx inverszon of clusters of about. 20

atoms, around each non. equlval_ent.z site 'Ehese q'ua.nt1t1es are fixed

during the self-consistent: p'roces

the potential parameters Ct and' &, | wer constructed the Hamiltonian and .

RS

used the r'ecurswn methed: to obtaln the local denszty of states at each.-

site in the central cube. F_rom the c_alculate_d LDDS; we have obitained the
charge: transfer, the Madelung:. telfm-.and' the momentsiof the.LDOS relative

te the energy Ev taken al. the 'center of?'gr‘a’_vity"-of the-o¢cupied bands.’

From this information, taking. an appr"opr'iate-'."m_ixing-- of  new and old

iB6

USlng Eq 6 and &, lnltlal -guess - for -

i



s

Ny system is: treated self—conslstentl

moments oi‘ the LDOS ‘H& ca.n. cahtaln new potent.lal parameters at each non

fhictua.ﬁi'cns- -bétweén

-approach Wi ,proc ,° the next recursion step l'n all. the pProcess. We.

ha.ve used. xmg Jof: 0 02 of the new potential into the potential for

the: prevmus iteratron Fina.l sel

occupatlons and?. moments used to ; obta1n the para.meters entering the

Hamltoman in a recur:smn step'_ dlffEI‘ ;f‘rom those calculated from the

I‘esulting L.DOS in: tl’urd dec:1ma;l place In the case: of" accupations for
example, we have to]_erated dlfferences of‘ a few milli-electrons.

As=,a. mltlal guess 1n our‘ calculations we. have: used, for all the 40

of, the fll“St guess CDll’lCldES w1th that of‘ pure ' Zr.: When'. the amorphous

e find that the. Zr band i5 shifted

‘Lo hlghep ener-gies. Her'& we compare r'esults: obtalned w1th parameter‘s of

pure 2 a.nd ZEro:: electrostatic potential a.t all sifes (1n1tial guess)'
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_ca.lcula.tl.on_would not be requir:ed.

hnsmtency was- achieved when the

with the final self-consistent results for the amorphous cluster. To
make the comparisons more mea.n_iﬁgf._ul,' the. energy scales in Fig. 1,
Fig. 3a and Fig. 4 are taken relative to the Fermi: level.. We. note that
the resu‘lts ‘.cbtaine;d "with our: -init.:-ial are not .the same tﬁat we would
have. obtamed using the para.metrlzed LMI'O-ASA—TB scheme: of Ferrelra et
al. beca.use here the approxtmat.e cha.rge neutr'a.lity around each site.
has not:_impcscd-.-_. .

'In-- Figl we - show the total dens:.ty of sta.tes for the cluster‘ v

obtamed from the fzrst. guess (dotted line} and: from the self—con51stent__..
results Because the total D(JS is ‘an, a.verage a.mong 40 sites,. the shape
of the band 1s maintamed If we:are. not interested m local pr-opertles,

but only in the general shape of" the totai DOs,. our sunple mitiai -BUess.. .

- Seems. . to describe ‘the- system welI_ LIn this case & self-consistent-

' In Fig.2a, we show:the distmhution oft charge tra.nsfe ™ a.mox

sﬁ,es. resulting from. our. fll"St guess (empty blocks} and from the.'

_converged calculation (dashed blocks) The 1nit1a1 guess.. gives r-ather

large cha.r-ge transfers - for the system, but m t.he flnal results the
charge transfer decreases. by almost an  order . of magnitude He alsn_
show ( F1g 2b ) the calculated VES at each non—equlvalent sit.e - Ihis

term is due to the red1str1but10n of char-ge a.mong the: ‘i-JS spher‘es and is”

zero. when all spheres are. neutr-a]_.

In Flg..a,. we: show, in _dash_e_ds,.li_._n:e,. tl_-;e_ 1n‘1_.t,ia.1' gucss. used._. for _the
parameters E‘ (Fig. 3a) and K (F:ig.. 35). For comparlson we shcw in.the
same f1gures, the f1nal converged distribution. of - potentxal parameters-_.
C and. A for- the 49 non-equlvalent sites. We note that in. Flg 3a: the

positlons of the band centers C are taken relative: to. the carresponding,

18’




Ferml level It is clear that the: values of A‘l in all sites -a:-e. very'

slmzla.r a.nd close to of- hcp Zr' The: parameters [ 2 relative to the Fermi-

level cha.nge SLgnlficantly from site to site ar‘ou.nd the value obtalned
for pur'e hcp Zr: We: also note: that the effect of the variations. of C at
'ea.ch site, . is. to screen the- excess charge by shlftmg the center- of the
“bend- Tn: to a.ppropriate hlgher or lower- energy reglons This variation 15
mamly due to cha.nges o the electrostatm potentlal due - to. charge-
) tr-a.nsfer' (see ‘Fig:: 2b: ). This term is: the same. for-all (o. p and d)

'orbita-l- -

both o and- e Comparlng Figs 2ai and 38 (or 2b),. we see. that atoms

'whlch ha.d imtla.lly too. many electrons (51te 14, for' example} Have then‘

ba.nds shlfted to h1gher- energles while atoms mssmg electrons (see: mte
V'number 6) have their ba.nds ‘shifted: to lower energies relative to the

"aver-age sxte ThlS ean be seen . in. F1g /4 vwhere the initial (dashed

11nes} a.nd converged (full hne) L.DOS f‘or- sites 6 [F1g 5a) and site 14

’ a.ve:u shown .He):‘e again the' energy sca.le was taken with relation to- the
’ F'erml leVEl We see clearly tha.t electrons wer'e expelled from atom 14

"a.nd allowed mto atom 6 during the self‘—cons:stent pr-ocess in order to

r'ed_uce-,- _i:he excess charge- 1nitia11y present around these sites. The-

’ resul—t'sr-'o’f:‘ I-'ig. 4 ‘shows® that.‘- the, LDOS' a.r'zd theref‘orte local properties,
are .hot well descr‘ibed by the Hamltonlan obtained. from the potent1a1

para.meter‘s of‘ pure- Zr::

The r‘esults show clea.r‘ly that the main effect of the self-.

cehelstent-pr'e'cess-_k_ls_ to.rearra.nge; the .potential around each site, in

order: to. screen 1arge- charge. variations. The potentlal P&Pameter 4, is

is

very close to that of the pure metal and the potentlal parameter Cz

rear-ra.nged_ in order to screesn. large charge transfers. This is very

19

. . " 'VI.. CONCLUSIONS: L
",the glven site‘_ Therefor'e-,- we f‘.ind. a: 51m1la.r‘_ behavior for ’ ’ o

) tr‘1v1al rpr'obl'em'..

smula.r' to wha.t happens when parametrized LMTO-—ASA—’IB c::a.lct.lla.tmns;S -7

are performed in tr'a.n51t ion- metal alloys_ In the pa.ra.metr‘lzed scheme the

potentlal par'ameter‘s a.re obtained fr‘cm pure meta.ls and the relative

position: of . the- bands . are. deter‘m];ned- us:ng . cha.r'ge
neutralify. In the light of - our r‘esults at 1s easy to understa.nd ‘the
success of the parametmzed appr'oach _when' appll_ed_' to’; close pa.ck_ed

tr-ansition metal alloys‘_

We hawve: developed a first pr'x.nc.lples self—conSLStent real-space

method that can: be used to study the: electron1c s ructure of complex

systems. The method ‘was tested with Success in crystalline Zr Fe. far

‘which. k-space results can be obta1ned. : It was then applled to a non

the- investigatmn of‘ the distr‘ibuticn of. - charge

tre.nsfer- among. . 40 sites r;)f a. r'andom packed structure ' simula.tirig

.a.mor'phous Zr. Ve flnd that if: the potent1al par-azneters of the pure metal

is used” for:-all Zr' sites in a—Zr as 1t was.. done in our initia.l ‘guess
the charge transfers a.mong the 51tes are rather la.rge We: show that- the
effect of - Self—consmtency 15 malnly to rearrange the potentlal in or‘der
to screen - large: charge. var1a.t—_1’o:ns_. These-- .r-esults sugport the idea of

dsing. approkimate--chﬁ.r"ge,.heutx;e,-llty:? to Fix the -r‘ela;ti_ve position: 6f the

on: meta.l a.lloysS 7

bands, . used-in parametrized.calculations;in’. transi
It ‘also explains why the simple parameirized LMTOeASA scheme-, has: been
used. with success-,: to: evaluate: subtle qua.n.ti'ti'es.sileh-_'as the behavior‘ of

the. electric field gr‘ad1ent at the nucleus for' these alloys

In conclusion, wWe’ ha.ve presented A new approach to the st.udy of the

electronic structure. in complex:__eysten_]s-: It_ doe_s.:r_lo_t, -,r_‘equ1r'e, per‘_i_odiclty-
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. repres tation, . where 't:'hef second'r

' 106 (1991)

and .its. cost. grows linearly with the number of atoms which have

dlf‘fer'ent E.DOS Fhe:. method is competltlve and. its potential should be

further 1nvest lgated

';his .grou "-',for' very profitable

'code,- 1n the tight binding,

order terms could “be  easily
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Flgur'el ‘l‘otal dens:.t,sr of state

results which: were obtame_

© .The: Ji'mr-i'zontal' daéhed' :

FIGURE.CAPTIONS

7 dashed 11ne we show

‘_mg pctentlal pa.rameter‘s of pure: hcp Zr

for ali s1tes‘ In f'ull lines ue show the converged r‘esults. The ener'gy

scale 1s relative to the Ferm 1eve1.. s

'..(Fig 3a] and A ( Fig

Zr a.f‘ter convergence is’ achieved.
line: cor‘responds to the values in pure hecp Zr. In .

fxg 3a.. the energy scale for' C -was: taken. relative to the Fermi level.

o F1gu.r-e 4 Results for- the LDOS- at a.tom number 6 (Fig. 45) and atom
'nmnber 14- (Fig 4b):.obtalined wlth par-a.meters of hcp Zr {dashed lines).
.In full llnes__wa. sh_ow.the final converg_ed-r-esults for the same atoms. In

‘both .,ca.ses.-tk_ie energy is. taken relative-to the Fermi level. .
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