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Abstract

We present an action for a spinning particle which is invariant by~
worldline reparametrization and worldline supersymmetry although
it does not depend on the einbein. Upon quantization the theory
describes topological field theories of the BF and Chern-Simons Lypes.
Tke classical theory can be coupled to a background gravitational field
and therefore it is not a topolegical theory. A superspace formulation
of the spinning topological particle is also given.

r

" Partially supported by CNPyq - I - '

e,

e,

e,



One of the main problems in string theory is to find its
second quantized version, that is, a field theory for strings and
its fundamental symmetries, This showed in fact that even
in the point particle case the transition from a first quantized
- theory to a second quantized one in not well understood. In
the point particle case an action for a spinning particle with
N extended snpersymmetries was shown to give rise to a field

theory with spin & upon quantization [I]. The quantization-
by the Dirac method (1] or- by path integral methods {2, 3] .

* does not reveal the gauge structure for N > 2 since only field
- strengths show up in the quantized theory. i

Even so it is very interesting by itself to find out gauge the-
ories as a result of the quantization of spinning particles. This
gave rise to a variant of the N = 2 model, by adding a Chern-
-Simons like term, and the quantization vielded the theory of

_ antisymmettic tensors [4]. The path integral quantlzation of -

_the theory was also performed (2, 5.
We now propose an action for a topological 3pinm'ng particle
which when quantized describes topological field theories {6].
The spinning particle is topological in the sense that its action
"does not depend on the einbein although it is reparametrization
invariant in the same way that a topological field theory does
not depend on the space-time metric tensor and the action is

~ invariant under general coordinate transformations. Another .

relevant characteristic of this particlé is that its La.gra.ngxan is
“a pure BRST transformation.
The action is given by

S= [ ar(Bxe—imgreipgs)y - )

. where X* is the particle coordinate, t)* the Grassmannian co- -

2

ordinate, P, and II, are the momenta canonically conjugated
to X* and y* respectively and A is the worldline gravitino field.
The action (1} is in first order form and it is not quadratic i in P,

~ so that the worldline einbein is absent. Even so it is invariant
by worldline repara.metnzatmns

6X* = eX* | byp* = ey*
513,;6?,, s Sl =, . -
= (eA)' I (2)

if the pa:ameter € satisfies the boundary conditions en) =
é(r2) = 0. It is also mvanant by worldhne supersymmetry
transformations

5XE = iy :
Sy* = -ig(X“+i,\¢“)
6P, = —mg(n +AP“)
fe = —5). | |
. | @)

where e is the einbein. The supersymmetry parameter. must
also satisfy the boundary conditions £(n1) = &(m2) = 0. The

- supersymmetry transformations (3) close the algebra

(61,62 = & +6. @
' v.here 63 1s 2 qupersymmetry transformatlon with parameter
53 = ‘\ K1l and 8¢ is a reparametrization with parameter € =

2. "




Although being invariant by two local transformations the '

~action (1) has only one (fermionic) constraint Q = il
which generates an abelian algebra. The local transformatmns
- generated by @ are

6XP = —ioyt

S* = 6P, =0

8Il, = —ab, :
8\ = & )

- and"the action (1) is invariant under the transformations (5)
without any boundary conditions on the Grassmannian pa-
rameter «.” Since we have only one constraint the transforma-
tions (2) and (3) can not be independent and must be pro- -

portmnal do (5) up to field equations. In fact we find for the

reparametnzatlons {2) that

be= bt ef., s} e

where 6, is a transformation (5) with parameter & = ¢X and
- {-,5} is the functional Poisson bracket with the action 5. It
~ is remarkable that even without the usual constraint P? = 0

.we have reparametrization invariance and most remarkable it’_, :
is being generated by a fermionic constraint. For the super-

. symmetry transformations (3) we have

BeX* = 6X* .

§1, = &1, :
88

B w992

5E'¢ cﬁ& '+'6PA- .
55

6EPF» = 6P‘“+6‘§[J A

4

Beh = 6, - (D)

where @ = £ and A = —é. We have a situation similar to
that of a topological field theory where the general coordinate
transformation turns out to bea combmatmn of a gauge trans-
formation and field equations,

The constraint Q = iP,%* c¢an also be thought of as a BRST

- charge since it is fermionic and nilpotent. If we drop the pa-

rameter o in (5) we can reinterpret them as BRST transfor-
mations and the action (1) can be rewritten as a pure BRST
transformatmn

S:f“d«ns(—n' Xt +idLys) - (8) -

which is also characteristic of topological field theones

- The Dirac quantization can be performed be reahzmg P,
and II, as differential operators P, = -8, and H GW‘ , and
by imposing the constraint Q = 0 on the physmal states. The
wave function ¥ will depend on the coordinates X# = z# and

k= ¥* and can be expanded in powers of 3#

‘Il(xa:'!b) =4+ T!‘/}#A# + + E{T’bm mDAM B (9)

where D is the space-time dimension and the coefficients Apypiy

are antisymmetric tensors of rank p. The constraint Q‘IJ =0
gne us the following equations for the coefficients 4

Flefip
8,4, #=0,p=0,,D-1 - (10)

Due tothe mlpotency of the constra.xnt Q the condmon Q\I' 0

remains invariant if ¥ — ¥ + QA which implies the usual

- gauge transforma.t:on for antisymmetric tensors. If we take
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" the space-time to be of the form R x ¥ where X is a compact
orientable D—1 dimensional manifold then the quantum states
are square integrable functions on H?(Z), the p'* cohomology

class of ¥ [7]. Due to the Poincaré duality H?(E) is isomorphic |

to H2-172(%) so that the coefficients of (9) are naturally split
up into pairs of antisymmetric tensors of rank pand D-1-p.

These are precisely the fields which are needed to build up the

(abelian) topological field theories of the BF type and when D
“is odd and p = —Qg—l is'also odd, of the Chern-Simons type [7].
. We can also use the operator Q to write an action

S=[dedywQuw. = (11)

from which we tan recover the physical state condition; When .
integrated out in the fermionic coordinates we get a sum of all

_ the actions of topological field theories in I dimensions.
It should be remarked that the last campoznent of the wave

. function A4, ,, does not satisfy any equation and does not

appear in the action (11). Thezefore it is not a' physical field
. and we can nse the gauge transformation on ¥ to gauge away

this component.

~ We will now show that it is possible to consider the action

(1) in a gravitational background. We introduce the metric v
through the vierbein e, so that g, = _ef‘eﬁnd,, where a, b, ... are
~ tangent space indices. We also write the ferinionic variables
L as Yt = g I, = ef11,, elel ='6;. Then the action (I)ina
gravitational background turns out to be

S = [ arBX* ~ il + NP+ illglut)iter] (12)

where w,,® is the usual spin connection and P, was redefined as
P, + iHagbbw,d_,“ so that the kinetic terms have the usual form.

-1t can be checked that the action (12) is invariant under the
following worldline supersymmetry transformations

5XF = —ifytet |
Bt = =6+ M) + T
kg avi 71, ay
© 8P, = —(eatha AP, - L Xvef %) +

YR PBuel ~ Y, (e w,)
.t-SHa = -:erﬁpﬂ-kignb'gbcwy[abeﬁ ’
.
b =58 - o
SA = £ 13

No term proportional to the curvature tensor is needed in the
~action. g .
So the classical theory is not topological since it couples to a
gravitational background but when quantized it turns out to be
- a tapological field theory. How this happens is not clear to us.
If we had started with the action (12) we would get a constraint
involving the gravitational field. However (first) quantization
in curved spaces is still an open question since different authors
arrive at different answers even for simple systems like a non-
relativistic point particle moving on the surface of a sphere
[8]. To treat a much more complex theory invelving fermionic
variables and constraints, such as given by (12), would require
a better understanding of quantization on curved spaces. For
lower dimersionality, however, the problem may be tractable

. but we leave this question to be discussed in a larger paper,

Finally we will give a superspace (superworldline) deserip-

- tion of the topological spinning particle. The supercoordi-
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" nates of the superspace are Z¥ = (7,0), M = (B, F) being

a curved superspace index with bosonic and fermionic compo-

nents B and F respectively. We introduce the supervierbein
B3, where the tangent superspace index 4 = (b, ) has bosonic
and fermionic components b and f respectively., We also intro-
duce a bosonic superfield X#(,6) and a (worldhne) fermlomc
superﬁeld 11,(7,8) whose expansions in 6 are -

XP(r,0) = Xr4ifgs.

I,(r,8) = II, +6P, | (14)
The action in superspace is then given by '
s=-1[ &z EUN DX ()
. where E= detEY and ,D;,' EMay. It is mvana.nt by gen-

eral coordinate transforma.tlons in superspace as well as local .
- tangent superspace rotations. To show the equivalence of the

actions (15) and (1) we choose; in analogy with the spinning
* particle [9], the following torsion constraints :

Ty =2 | | (15)

with all the other components vanishing. This is the torsion of '

the flat superspace. This set of torsion constraints is invariant
: under super Weyl transformations o : §

B — WTE) +iWH{(DW)EY
B} —» WiE¥ ‘ | (17)

thh superpa.rameter W. We can now choose a gauge in whzch

the superwerbem differs from the flat superspace supernerbem -

8

by a super Weyl transformation [9] with parameter

W(r,68) =&+ i} | (18)
In this gauge the supervierbein has the following @ expansion

B} = & 2an

BF = '_%~—2(5\+9é) |
B} = i5ig
B = é“éﬂéé"gﬁi )

Thzs gauge choice is preserved undera general coordinate trans- -

formation in superspace, with parameter £4, provxded that
¢ = "‘_fo (20)

where Dy is the flat superspace covariant denvatwe 'Df = 38

~ The 4. e}’pa,nsmn of &4 is

& = g+i6p

¢ = £+ 07 (21)
and the cond;txon (20) imply ia the following conditions p=2¢
and 7 = -—56 A general coordmate transformation in this

gauge reduces to
6% = EXn~ L(D,f)(D, %0
s, = &, —"(foi_b ){'D,«IIF)
__éw = (W§)+ (DfW)(fob) e

s




(13)
Xt=Xr , P, = '-‘-%e—'%ﬁ,‘
II# = "p , .'a,b" — _.é.e-%zp#
e=& , A=eil (23)
and the components in (21) By ; -
.e=€,£==e%'£-q ' _“ (24)

we get precisely the repa.ra.metnzatxons (2) and supersymmetry
 transformations (3). :

10

and by the following redeﬁmtmn of the components in (14) and
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