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Abstract
We determine the dynamic polarization potential associated to the two-neutron removal
process from ''Li. This potential is then employed to calculate the nuclear break-up cross
section of 'Li when it collides with different targets, as a function of its bombarding energy.
An analytic expression‘ for this cross section is obtained and shown to be in good agreement
with the calculation based on the exact gxpression. We also discuss the relevance of this

potential in the study of the fusion of 1Li with a heavy target

1. Introduction.

In the study of the structure of neutron-rich nuclei such as 1L it is of paramount
importance to have at hand a precise mean to determine the Coulomb dissociation cross
section. Through this quantity it is possible to extract rather unambiguous information
concerning the B(E1) (and B(E2)) distribution. Recently, several models for the low energy
response of 1'1i have been developed'), However, when confronted with data, none of these
models seems to work well at low bombarding energy.?? We should clatify that by data we
mean the eztracted values of the Coulomb dissociation cross section 0, while what is actually
available from experiment is the one associated to the total interaction. Therefore, in order
to obtain o, one must subtract the calculated contribution from the nuclear field, making the
usual assumption that the Coulomb-nuclear interference cross section is small. This naturally
raises the question of how precise are the estimates of the muclear contribution to the break-up
process,

The purpose of the present paper is to develop a general theory of the *Li nuclear two-
neutron removal cross section when it collides with different targets. To attain this aim, first
we derive the polarization potential for 2n-removal in section 2. In a recent paper ¥ this
potential was evaluated using the Glauber method, valid at high energies. Here we extend
the theory by incorporating Coulomb eﬁ'ecis, which become incréasingly important at lower
collision energies. This potential is then used in section 3 in the derivation of an approximate
closed expression for the nuclear 2n-removal cross section. In section 4 we apply the theory
to 1'Li + 12C collisions for different collision energies. For this system o, is negligible, due
to the small charges involved, so a comparison of our results with the available data is made
eagier. The extension of these calculations to the case of heavier targets is also discussed

there. Finally, we present our main conclusions in section 5.

2. The 2n~removal polarization potential theory.
To calculate the 2n-removal polarization potential, we define the projection operators

P=|¢g >< ¢yl ; Q=1-P, . ®




where ¢o{x) = do(z) represents the bound state of the 2n+°Li system while ¢ is the projectbr

onto states of the 2n pair in the continuum. The polarization potential can then be written?®)
V(r,r') =<1 olv @ GS1Q v|dosr' >, (2)
by

" where v ia the coupling interaction and G§fJ is the optical Green’s function in the Q-subspace.

In order to evaluate eq. (2), we write the projector () inits spectral form

‘ Q=f|¢q >< dqldg , : 3)

with ¢ standing for the set of quantum numbers that characterize the continuum states.
Ifl we now introduce representations in r-space and assume that the interaction v is local,

we get
V(r,r') = f < dolv(r) [¢g >< x| GHHE —&,) ' >< | v(v')ldo > dg, (4)

where £, is the energy associated to |¢q >. Owing to the weak binding of state |$y >, the

matrix elements

< dolo(r) 160 >= [ 450x) v(r, ) o(x) 5)

are negligible except in the case of states with low values * of the energy ¢,, and thus we can
safely approximate G E —g,) ~ G E) and consequently factor the Green's function out
of the integrand in eq. (4).

Assuming < ¢ofv |¢o >= 0 we can make use of the closure relations and write

V(r,r') = G"(r, 1) /qbﬁ(x)v(r, x} o(r', x)dz . (6)

* On the basis of ref. 5) and using the fact that the radius of the neutron halo in ''Li is
approximately 8 fm, one finds that only states with ¢, less than a couple of MeV make an

appreciable contribution.

In order to evaluate V(r, r') we make use of the separable ap.proximation for v(r, x) introduced

in ref. §), namely

oie,x) = U(r) u(z) . (N

In this equation U(r) is the real part of the ''Li-target optical potential and u(z) is an

internal excitation form factor. In this way we obtain
V(o) = Fr) GHr,v') F('), ' (8)
where we have defined the form factor
1
Flr) = U(r) [ ] () () da:] . )

We now perform partial waves expansion for the Green’s function,

G ) = 2 3 Vo) Yonl#) [ 2 ulhre) 19 Cors)|

, (10}
1 o vrE fm
= = 3 Yenl) Vi) G0 )
and for the potential,
1 e ok g

Ver)y= — 3 Yenlf) Yeul#) Vi) - (11)

The /~components of the polarization potential are, therefore,
Vileyr) = 505) [ -2 ke 1905)] F00), (12)

where fe(kr<) and hiP(krs) are respectively the regular and the outgoing solutions of the

optical equation in the Q-space.




We follow Baltz et. ol.® using the on-shell approximation for the Green’s function
' (hg“ —+ ify) and define the trivially equivalent local potential V¥,

VPl(r)y = —~i fj‘—k J-"('r)\ fn ~ F(r') fi (k') dr' . (13)

We now approximate fy(kr) ~ 4/ |S§”| Fy{kr), where Sfl) is the optical elastic S-matrix
element in the Q-space and Fy(kr) is the regular Coulomb function. The polarization potential
" then becormes

vy = —i -!_% Fry 188 ]ﬂ * F(r') Fi(kr') dr' . (14)

In the r-region of interest for the break-up, only the tail of I/(r) maiters and accordingly

the form factor can be written

F(ry= Foe ", (15)

where Fy can be expressed as
Fo = Cefole, (18)

in which C is & constant related to the strength of the optical potential I/(r) which can be
trivia]].;/ obtained from eq. (9), By = Ruyi + Riarger, 8nd @ is the diffusivity associated to
the optical potential U(r). Replacing eq. {16) into eq. (13), the polarization potential takes
the form |

V() = —i Woll, By e, (17)

The strength Wo(£, E) is given by

|Fa[?

Walt, B) = 5 151 1en.9) (18)

in terms of the radial integral

ino)= [ e Fo) . (19)
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Using the asymptotic WKB approximation.for Fe(p),

_1/4 a N
rip (1- 2N ey LB €D )
) po .

where 5 is the Sommerfeld parameter, p = kr and pg is the value of p calculated at the

turning point of the Rutherford trajectory, we obtain the approximate expression
e "
Ie(n,8) = Y frs Ko(X) + X Ky(X)] . (21)
Above, K, and K, are modified Bessel functions and s and X are the variables

s = 1. X=ns4/1+ E(Etl) . (22)

ko' 7

The variable X measures the distance of closest approach in & Rutherfo;a trajectory in units
of &« We note that at very high energies and for p;a.rtial waves cdrreeﬁonding t.o distant
collisions (£ > kRy), n — 0 and S?) ~ I, and we obtain exactly the eikonal form of the
polarization potential derived in ref. 3). .

It is interesting to notice that the polarization potentiﬁl can be put in a2 much simpler

form if we use for Iy(n,s) the approximation
Te(n,8) = Coe™7% . . (23)

The constants Cy and v are determined by fitting eq. {23) to the asymptotic forms of the
Bessel functions Ko and K7 at some value X larger than 1. Taking X = 2 we obtain

015

v 0.83; Cy 5

{(29)

{

The accuracy of this approximation is illustrated in section 4, for the M Li +'2 C system at

several collision energies.




3. The nuclear two-neutron removal cross section.

We first remind the reader of the formal definition of the nuclear two-neutron removal

" cross section

o,bu -

< \I,i:)l —\Im{VPOI}E\I’LH >, (25)

lGHEY

where {¥{"” > is the exact elastic scattering wave function and V#*' is the 2n-removal po-
'larization potential, which accounts for the effect of the break-up process on the elastic
scattering. If the total optical potential that generates |U{" > is denoted by U®' then the
- bare interaction that takes into account other channel-coupling effects is yort = el — ypal,

Performing partial waves expansion, we may write eq. (25) as

o .
ot = -];".'é. 3T (2e+1) 1, (26)
£=0 .

where
i = 2 f dr |fE kN (—Im{VP™}) . (27

In the above equation f§'(kr) is the optical radial wave function which is the solution of the
‘elastic-channel Schrodinger equation with I7¢, '

We now employ the same kind of approximation as that used in the derivation of eq. (14),
namely f§(kr) = |SSV|} fy(kr), where S is the nuclear elastic S-matrix calculated with U/°?*
. and fi(kr) represents the scattering wave function generated by the potential VEo! 4 v#ol,

Approximating fg(kr)lby the properly normalized analytic extension of eq. (20), we obtain

| of =1/4
- Flp =N (1 - ?;'7 - f(f; Y. Im{v;’E} (p/k)) §

(28)
' P pol
L ‘/1_2;’?_5%1) L e
4 5 P o E
* where the normalization factor N is given by
oo . ' oo pol .
N = [Carlfunt = o |- [T EIE <5 )
[} Po 1 -~ 2—;“- — ﬂﬂéﬂl

p

I we now expand | fo(p)[? to lowest order in Im{V?*'}/E, substitute it in eq. (27) and perform

the integration, we obtain

. pol
Tp* =2|8;7| |54 - sinh (f Im{V }/il )
\ Ty

p
oo pot
= 1—exp _2f dpfm_{Vc.lL‘?_
o0 l_z_P,l_u:l

= [1-180] - 15271

158 3

Using the explicit form of ¥V#¢ (eqs.(17-21)) it is easy to show that 13| can be written as

25 g P(n,s)) (31)

(3e = enp (-5

At high energies it is safe to set = 0, and for the distant collisions under consideration

we may set |S§")| ~ ESEI)| o 1. Under these conditions the latier approximation is valid
because the nuclear break-up process almost completely dominates the reaction cross section.
In this way the nuclear break-up cross section agrees with that found using the eikonal

approximation (ref. 3)). L

4. Applications.

In this section we apply our theory to the 3Li +12C case at several bombarding energies,
and briefly discuss its extension to other systems, The reason for this choice is twofold: firstly
this system has been extensively studied and there is reasonably reliable data available.
Secondly the Coulomb 2n-removal cross section can be neglected owing fo the small charges
involved. Due to this latter fact it should be easier to relate our results to the measured total

interaction cross section.




4.1, Study of the Li + 12C system.

In order to calculate SP), appearing in eq. (14), we used a typical strong a.bsozpfion
potential extended to the system under consideration. The strength of the form factor F(r)
was determined by fitting the experimental total reaction cross section” determined at Ey,, =

80 A MeV, o5"F = 1.6 b, to the theoretical expression
or o™+ B2, (1-W/E) . (32)

Above, Ry, = 5.37 fm is the radius of the imaginary part of the strong absorption potential
and o is taken from expressions (26-30). This procedure resulted in the value Fy = 2.7
MeV, which is somewhat lower from the one obtained in ref. 3) at 800 A.MeV, namely
Fo = 5.6 MeV. This fact is hardly surprising considering the rather different energies in the
two cases.

The polarization potential of eqs.(17-21) has been calculated for the case of a collision
with a '2C target. Its strength, Wy (£, E), is shown in fig. 1, for several bombarding energies.
- The dotted line indicates the values of the grézing collision angular momenta for each case.
For values below this line the absorption is expected to be dominated by the fusion process.
In fig. 2 we plot the radial integral I,(n,s) vs. the variable X defined in eq. (22), as well as
its exponential approximation {eq. {23)), for the same energies as in fig. 1. We note that the
two calculations are in very good agreement for all energies and angular momentum vales
considered. It is important to remark that a similar conclusion’ holds for the scattering of
1Li from heavier targets. We should also emphasize that the use of the variable X has
important advantages. Firstly, it makes possible the use of the simple parametrization of
eq. (23). Purthermore, the region of values of this parameter where the polarization potential
is importa.n.t does not depend on the bombarding energy. It starts at X s Rgp,/a & 0.7 and
extends up to X =5 3. '

. We are nm;* in a position to calculate the break-up cross section for this system. To test
the accuracy of the approximate formula for Ty, in fig. 3 we compare the results obtained from

eq. (30) (dashed iihe) with those of e(;l. (27) (solid line). In the latter we used the exact radial

9

ﬁavé function f§' obtained by solving the Schrédinger equation with the full.optical potential
U, For all the energies considered the approximation of eq. (30) is quite reasonable, so we
use it to calculate the break-up cross section, which is shown in fig. 4 as a function of the 1113
incident energy. We note that as the incident energy decreases, the break-up cross section
reaches very large values. Since we know that the effect of Coulomb forces is to decrease the
total reaction cross section in the barrier region, we expect that when heavier targets are
cons:dered the break-up cross section should peak at energies that increase with the target

size. These effects are discussed in the next subsection.

4,2, Dependence on the target size.

In order to study the 'Li break-up in collisions with different targets, we must scale the
form factor parameter Fy according to eq. (16). Namely,

Fo( A7) = Fo(2C)exp (RT;—RC) , (33)

where Rr and B¢ stand for the radii of the nuclei of mass A7 and the 12C respectively.

In fig. 5 we show the target mass dependence of the nuclear 2n-removal cross section
at laboratory energies 20, 50 and 100 A-MeV. A slight increase of this cross section with A
has already been discussed at the higher energy of 800 4.MeV by several authors®, and our

results show that this trend is enhanced at lower energies.

5. Conclusions.

In this paper the nuclear M Li 2n-removal cross section has been caleulated for collisions
with several targets at intermediate energies. For this purpose we derived the polarization
potential associated fo this process and used it to calculate the break-up cross section. A
closed approximate expression for the transmission coefficients was found. Through a com-
parison with values obtained through numerical integration with the exact solutions of the

radial Schrédinger equation, this approximation was shown to be quite accurate. It was then
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used to study the target mass dependence of the nuclear 2n-removal cross section. The re-
‘sults indicate that the slightly increasing trend with target mass found at 800 A- MeV is
more pronounced at lower energies, -

Qur estimate of the nuclear contribution to the break-up cross section should be useful
to extract from the data the Coulomb contribution to this process, which ca.ﬁ"ies important
information on the nuclear response function of M'Li. Extensions of our theory to other
neutron-rich nuclei is simple, and will be reported in a futﬁre publication. Furthermore, we
think that the closed expression for the transmission coefficients should be of practical use
in asses;sin'g the importance of the break-up process in '!Li-induced fusion reactions. These,

.and other radioactive projectile-induced fusion reactions have been recently discussed in the
lterature.?1% In these references, however, the low-lying soft giant dipole mode is taken to
be infinitely lived. The coupling to the break-up channel, ignored in these fusion studies,

should be quite relevant and is currently being investigated.!?)
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1.60 - | !
Figure Captions.

Fig. 1: Strength of the irﬁaginary part of the polarization potential as a function of £ for different,
. collision energies. . ] ' -
e L 120 \ e 100.A MeV ~ —

Fig. 2: The radial integral (eq. (19)) (solid lines) and its approximate form {eq. (23)) (dashed
lines), as a function of the variable X for different collision energies. . : e —— 50‘ A MeV

Fig. 3: The transmission coefficient as a function of £ for three different energies. The solid lines - — - _ cen et ane 20. A Mev -
represent the results of the calculation using eq. (27) and the dashed lines those using
the approximation of eq. (30).

0.80

Fig. 4: Cross section for the break-up of !Li incident on a 2C target, as a function of its

W, (¢, E)

collision energy.
Fig. 5: Target mass dependence of the 1111 nuclear 2n-removal cross section shown at three -

different collision energies. For simplicity a sharp cutoff model for |“5'§OJ | (eq. (30)) is

used. See text for details. '
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