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 ABSTRACT

To understand the propertm; of superﬂmd Hehum 4 we propose a microscepic-

theory for the descnptmn of th:s-zmpezfect boson. gasat, Vey low temperatu.re Our

microscopic th.eory coutams o_ y_two pa.rameters _' ,t are mferred from’ the He-He

mteractmn poteutza.i ‘ By usmg thzs mxcroscoplc theory we get a very good
descnpnon of superﬂmd Helmm. 4- Our approac.h is: ba.sed on Bose-Einstein con- -

densation and for its descrlpt.xon we use field theory at finite temperatures.  We

have obtamed in a s1mple way, many phys;ca.lly relevant qua.nhtles The most
relevant achievement was the determmatlon of the roton spectrum with Landau’s

parameters In good agresment with expenmem: © We get also good resuits for

the critical temperature and a falrly accurate plcture of the nature of the two-fluid -

components

1. INTRODUCTION

In this paper we shall study a system of hoson: pa.rt:cles which interact among
themselves through binary forces such that the interparticle potential has Saite range
and exhibits no two particle bound state. A dilute system of particles. whose two-
body potentzal satisfy the above -properties is. defined as an imperfect gas..

The central feature of an 1mperfect gas is that the description of such a system at.
very low temperatures is roughly insensitive to. the details of the interatomic forces.
The system, under these circumstances i is sensitive only. to some general features of
the potential and consequently, the complete descnptmn of an 1mperfect gas could
be achieved. by employing just three para.meters(l 2), Tworof them are: dynamical
parameters, and the other one s a. kmematlca.l pararoeter, .

- The: Jmperfect gas. problem- can_ be. formulated: as the problent of a.cinevmg a
descnptmn of the system at extremely Iow temperature in terms of these: (three} pa-
ra.meters This would ultimately reqmre a constructxon of an effective. Haxmltoma.n.
that contains- the essential features of . the, .exach, Hamiltonian and. that allows for a
systematic method for the calculat:on of the pa.rtitwn function of the system: The
effective theory shouId not contain. free paraméters since if one is able to-infer from,
the interaction patential its relevant features one: should alse be able to. infer from it .
the relevant physical constants.

What are the details of the interatomic potential which aze relevant in_order to
understand an imperfect boson Eas at low temperature? That is, to what features of
the pc;t-ential would the system be sensitive in this imit? "We argue that the system
is sensitive to a global aspect of the potential (the scattenng length) and to a local
aspect of the potential {the depth of the potential). .

The first dynamical parameter is the scattering length — g — defined by
= m =Y o :
= 47r/V(:—)dr {1.1)

where V- is the two-hody interaction potential of the atoms.
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From expression (1.1} one can see that the sc'et.tering length is just the scattering
amplitude in Born’s a.ppfoximation in the zero-momenturmn limit. In this limit the
scattering mﬁplitude is-not' ‘sensiti,ve-to the loeal aspects of the potential but rather

‘toa. global a.spect of it The: total cross sectxon at low energies assumes the form of
a geometncal Cross sectmn o= 41r(a)2 In. th:s way a is, roughly speaking, the
eﬁ'ectwe d1a.meter of the poteutxal:f The scattermg looks like-that from a hard sphere

of dlameter @

The choxce of the depth of th& potentzal asi another releva.nt: parameter for the

descmptlon of:. the system ab very: Iow tempera.tures can be understood within the

single part:cle‘context-- ‘For.a pa.rtxcle under--.the actxon of an external force, then, at
low temperatures, the partxcle tendsito sea.{'. at-the most stable configuration. That
is, the mm:mum of the potentlal. WIthm this classzca.l reasoning the only relevant
region of the potentlal\a.t low: tempex:atures-_would be the minimum of the potential.
Fu:thermo're,-ﬁzith.in-the Semiel'a'ssicai appfeﬁmation the energy will be given, in the
zero—tempera.ture limit, by: the depth o£ the potentla.lﬁ

The kmematlcal pa.rameter :s the atom mass m.

In the: case of He“ the scat.tenng Iength —a a.nd the depth of the potential
- — AE — can be. read from the mtera.tomlc patentlal 'The approximate values for

these- pa.rameters for a Lenna.l:d Jones: potentml axe(3)

& 35.10° eV
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CAE = 102-107% eV (1.2)

wl.

It

1-0:?': eV. .

where-in. (l 2}, as well as throughout: our paper, we are using the natural system of
umts(k—l e=1A=1).

Although these parameters: diﬂ'e're -:from each other by at Ieast 6 orders of mag-
nitude they. give; as we will show in:this. paper, a fairly good account of all relevant

physical quanﬁities in Helium superfiuid phase. The approach used by us makes use

of Bose-Einstein condensa.tion('i"s). iﬁ'--order to- derive all relevant features of the

- superfluidity phenomena.

Our approach allows for the determination of the partition function, and ulti-

‘mately the whole thermodyna.h:jcs of superfluid Helium-4 in terms of these parame-

ters. In.our approach there are, then, no free parameters.  We have been pa.rt:cularly

successful in getting the following set of physical quantities

Py — Helium density

-v,. . — sound speed

e . - Helium binding energy’

Po — momentum of the roton spectrum
A — enérgy gap

I — “roton mass”

P(0). — pressure at zero temperature

This paper is organized as follows:

In Chapter II we present some relevant features that a microscopic theory should
account for in order to describe eﬁperﬂujd' Helium. ~ The features presented here
might not be complete but certainly it covers a fairly large ammount of relevant
experimental- data or phenomenological aspects of the probiem

In Chapter 1II we construct the releva.nt effective Haamltoman a.ud review the
basic framework for dealing Wlth Bose-Emstem condensatlon

The methiod employed by us makes use of a ﬁeld theoretical approac‘u fully
developed in ref. (5). The relevant expr&esmns for our wor:k developed in ref. (5),
are also presented in this Chapter _ .

In Chapter IV we compuie explicitly,'up to the one Iooﬁ epproximation in field
theary, the relevant thermodynantical potential for our effective Hamiltonian.

The description of the superfluid at very low temperatures is presented in
Chapter V. In this Chapter we give an account of some of the features presented in

Chapter IL.
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The two fluid description is presented in Chapter V. We have been concerned
with. the identification of the normal component and in piesenting an alternative
method- for- making caleulations of thermodynamical variables for the normal and
superfluid.components. -

Tn: Cﬁapter— VII we have been. mainly. concerned. with simple estimates of the

critical; &empexa.ture We have:made siinple. calculations and by making the gap

- equal to zero;. we: have got a.good: rﬁuit dor Ty

We end: f:hxs pape: with: Chapter .VHI which:js: devof.ed to. Conclusions..

II. LIQUID HELIUM AT LOW TEMPERATURES(7T—9)

II.1. Excitation Spectrum

Liquid Helium-4 exhibits two distinct phases. In the phase I Helium-4 .beimves
as a normal liquid whereas in phase II it behaves as a superfluid, Helium-4 un-
dergoes a phase transition from phase I to phase I at a temperature T, = 2.18°K
{X-point). In phase IF one can distinguish two. reg;lmes For temperatures in the
range 1.0°K < T < 2.18°K the liquid behaves as. a. mixture of a “normal COmpo-
nent” and a “superfluid component” (anomalous region). Below 1°K the normal
component is negligible,

It has been stressed by Landau that the properties of the two regions below the
A-point, can be understood if one looks at the ais;persion- relation satisfied. by the
excitations in He IT. The excitation that is relevant at- very low. temperatu.res is the

phonon, satisfying the dispersion relatlon
wﬁh(l’_) = U P . S (2.1)

where v, is the sound speed and p-is the phonon momentum. The supeiﬂuidjty

property can be understood from the dispersion relation {2-1). Superfluidity is then

- closely related to the existence of phononé.

The other type of quantum excitation, relevant in understanding the behavior. of
He' in the two fAluid region, was named by La.ndaulo’ll, its discoverer, a roton.

The roton dispersion relation was postulated by Landau to be of the form

wrom(py = (£ Po) 5 :’“)2 +a (2.2)

where A (the energy gap), u (the effective mass) and po are phenomenological
constants that could be obtained, in. principle, from a microscopic theory.

The spectrum of excitations should be inferred from the solutions of the quantum

mechanical many body problem. For an agpregate of roughly 10 particles this is
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an almost impossible task. In spxte of this Feynman showed(12) that one can throw

conmderable light on the problem by using phys:cal intuition to obtain a quahtatwe

plcture, of the wave functions. In.Feyuman s approach.the dispersion rela.tion of the

excxta.tmns can be inferred from the form factor for scattering of neutrons from the

hquld and-thus can be obfained experlmentally ' . -
The- denvatlon of the roton spectrum from first prmmples is thus a long standmg

problem in theoretxcal physu:s

'II 2. OtherFeatures of He 1'[

Although the. spectrum of excitations is by far the most relevant problem to be

settled for suplerfluid Heliyrm- -4, there are. yet other features.that. a.ny-mmroscoplc

theory: shiould: account for.. These features: are the=-follc‘:wiﬁg:.

]_I.2'.é. Ground state: energy. _ T
‘The ground: state: of liquid Helium is a N-body bound state that. has a self-
determined equilibrium densxty in: the absence: of external pressure . One’ shou.ld

be:able to: wr:te for. the: energr of the ground state .

E ':;'E(p);:i-:, B X
and find the-equilibrim deusity. from.the condition
dE
9P lp=p,

For liquid He, E{p,) is the bmdmg energy of the particles and is equ:valent to
the latent heat of vaporization at T = 0°K.

I1.2.b. Binding energy(s) _
Since Helium-4 is & N-body bound state, liquid Helium has a binding energy per

atom at absolute zero. This binding energy should be determined from the condition

7

=0. ey

E(p,)

& = N

(2.5)
with p givenl by (2.4). -

The binding energy. is an. example of Helium phenomena for which the two-fluid
modgl alone is simply incapable of providing a suitable description In his book(g),
London discussed various approaches to this problem.

The values for the Helium _bihd.i‘ﬁg': energy, is(s)- Lo

cal 1071 eV

£ = —13m = —-3.5 Atom

(2.6)

IL.2.c. Helium density
In. some approa.ches(l’ %Y to the imperfect Bose gas system. at very low tempera-
tures the Helium. denéity, given by

P = 1610° (V) Xy

or the interatomic dista.mce'. d’ S .
e (e (2:8)
is taken to be a fundamental parameter.

As explained below, in oraer to undérstand, from. a microscopic theory, why
Helium is liquid at very low temperatures it is also essential to get from this theory
the Helium density. In principle this density should alse be inferred from {2.4), that
is

pHe = pﬂ * (2-9)

I1.2.d. Quantum liquid
Why is He* still liquid at T'=10 at zero external pressure?
Tisza's a,pproach(la) to this problem imposes two postulates one of which is

analogous to (2.4).

]




-Since:the He—He interaction potential is shallow and has short range then, as a
result of the small Helium mass, zero-point fluctuations prevents Helium-4 of being

2 solid (the lattice “melts”). If on the other hand we get from a microscopic theory

the Helium density given by (2.9), then from {2.8) we should conclude that it cannot, .

-be agas (the interparticle distance is typical of a solid}."
' In'this way, by looking af the featires of the poteritial and from (2 9) we should

- understand why Helium is hqu.td at zero temperature

O.2e. _Critica} v_eiocity_ _

.Sup_erﬂow:-in H'elium-liquid_'is. subject- to a fesfricfion which: limits the velocity
of the.superfluid to:values smaller than-z. “eritical velocity™ = An upper bound:to
this critical velocity can be obtained: from: the, knowledge of the excitation: spectrum
This.upper. bound IS(IO) '

where (w(7)/p)mn stands for tli&céndi_tion s

(211)

The: determmatmn of: the spectrum i thus lmgozta.nt in order to get expressmns-

. for: the superfluid flow velocxty himit..

H.2.f. Two-ﬂuid description

As pointed out earlier, beIow the A-point Hellum 4 beha.ves asa nuxture of two .’

ﬁulds Below L.1°K _the so—ca.lled normal co::opol_lor_lt rs neghglble _ _
Thereare many. phenomenolog:cally succeSSful apphcatmns of the twcyﬂmd model

However the understanding of the two—ﬂmd nature as well as a well defined scheme for

computing the thermodynamical propertles of normal andfor superfluid components

has not been achieved vet.

v“. .(W(p))m? | _ .7 7. (210) |

In this context it is important to recall that the proposers of the two-fluid model
were not in agreement with regard to the nature of the two-fluid{14). Whereas in
Landau’s view the normal component i3 associated to the excitations in Tisza’s view

the normol_component was composed of Helium atoms.

II.2.g.‘ Dete.rmination‘of the: X-point.
Any attempt to- describe Helium-4 should predict a transition at T\ = 2.18°K.

The determmatmn of the critical temperatu.re is a longstanding problem in superfhuid

g Helium-4:

" In the ploneenng work. of London in whn:h he suggested. that the A-transition
can. be a.ttnbuted to the macroscopic occupation of the: =0 state (Bose-Einstein

condensation), he made. the first successful prediction for T\. London’s resuit was

TL = 313K . 1)

II.2.h. Abnormal transport coeflicients

it s known that the heat conductnnty of superﬂmd Helium- just below the A~
point is § orders. of magnitude Ia.rger than. the normai liquid (He! I Thls large
heat conductw:ty prevents. the establishment of temperature dlﬁ'erences in super-

fuid Helivm and this is the bas:s for understanding some surpnsmg propertles of

' Helium-4(9),

The viscosity coefficient of the, superfluid component is. negligible. The viscosity
caefficient of the fluid as a: whole suffers a-drop of a.bout 1/ 3 of the normal liquid just -
below the A-point.

IL.2.i. Thermomechanical and mechanocaloric effects

Thermomechanical and mechanocaloric effects are among the most remarkable
properties of superfluid Helium. The fact that a temperature difference (AT) gives
rise to a pressure difference (AP} is the basic feature of the thermomechanical effect.

The relation between AP and AT has been deduced by London in 1939 on the

10




basis of essentially reversible thermodynamics,

5

His result is.

dP = 2 4T .

v

11

(2.13)

III. EFFECTIVE HAMILTONIAN AND THE APPROACH TO.BOSE-
EINSTEIN CONDENSATION

III 1. Eﬂ'ectlve Hamlltnman

In or&er to get the thermodynmmcs of a.u 1mperfect: -gas we shall replace the
Hamiltonian of the system- by an: eﬂ"ectwe Ham:ltoman Wlthm the ﬁeld theorehcal

method this amounts.to ma.kmg the replacement
H;;-,;[w,b}a—x'f:;ﬂ[rp]: .6y

where. 1 is.the compléx boson field.and - Hiu[v]- ¢an: be written; for particles that

interacts 'through;bin'a.ry forces.whose pdtential-is-;:VGi'f—'f ¥ as(18):. -

Hult) = 3 [ @5 [ @219 @n0@nVE-2) @) ET)
=% fﬁ' fd"fp(fr)V(f—f')p(gq-) ey
pEwEOwED (39

The _]ust1ﬁcatxon for the: repla.oement (3 1)is: that the scattering of pa.rtacles at
low momenta. is.insensitive to the shape of the- potenhal(l 2).. . Within the shape
independent approximation we can-replace the potential by any other having the
same scattering length. e SN

" In order to find the effective Hamlltoman stuted to He! at very'ldwi:eﬁif)eré.tur%
we show in fig: (1) the two pa.rt'iclé.- interaction potenhal between two Helium atoms.
The essential featire of the two-body pbteﬁtial 1sthat as far as the f‘épx;lsiiré part of
the potentla.l is concerned the potentxal is typlcal of a hard sphere whose d1ameter
is of the order(%:15) 21, We take then s o

a o~ 2A= (10° eV)™! o : (3.4)
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One is then tempted to make the replacement {3.1) with H.g given by
N N
Hald) = 5 [ P30 @ 0 0@ 1) . (3.5)

~The parameter X is then fixed by condition (1.1) yielding

x = 8_::i . _ (3.6)

The hard-sphere boson gas described by (3.5) have been extensively investigated
in a:series of papers by Lee, Yang and Huang(l 16) If the scattering length is

fixed by (3.6) then apparently there is no more room. for adding terms to te effec-

tive Hamiltonian.. However the. scattering length ﬁxed eriterion: together' w1th the

requirement: of particle:number. conservat.lon a.llaws for yet anothier term: The most,

general effective: Hamiltonian pr&eervmg U(I} symmetry and the scattermg length
as piven by (3 6} is

H£~~AE¢¢+ wwﬁ (387

where- AE in (3:10) is'a term w1th energy dJ.mensmn In append]x A we-present a

naive a.rgument that aliows. us. to 1dent1fy AE w:th the depth of the potential
AE - M (V(r)) 10 2 10_ - (3.8)

Model (3.7} is an attempt to: take into account: the attractive nature of the po-
tential whick: has been always overlooked. The attractive nature of the potential
has been replaced by an optl_cal, approximation”®. Within this optical approxima-
tion one has a description of. hard spheres such that, between collisions, the “free”
particles (A =0 in {(3.7)) moving .through__ the system sees an uniform potential of
an appropriate depth. The ides is that, between collisions, the effect of the rest of
the system can be replaced by a mediu.m_ having an index of refraction defined by the

minimum of the potential.

13

Model (3.7) is a prototype of fheories that exhibits spontaneous breakdown of
symmetry. The symmetry that is spontanecusly broken in model (3.7) is the U(1)
symmetry that, as is wel} kno“m(IT), is.the symmetry that is broken in the superfluid
phase of He-4. One can then predict two phases for He®. The one for wilich the

U(1) symmetry is broken corresponds to superfluid He? at very low temperatures.

TIL2. Field Theoretical Approach(5:18,19)

Within the field theoretical approach one writes the partition function as a sum

over field theoretical configurations satisfying periodic boundary conditionst19)

P{Z, 1—) = ¢(fa7+ﬂ) (3'9)

y Dy Dyt o= R dr [ EELIb O8] (3.10)

where B in (3.9) and (3 10} is the inverse of the tempera,ture 8=1/T.
The Lagrangian den51ty L can be. wntten as.a kmetlc term: (K). plus. an interac-

tion term V' as

L= K-V . ' (3.11)
For a nonrelativistic theory one writes
8 v ' ' _
K = g—z—n; .(3.12)
whereas in the relativistic case one writes
&° =0
= —_— =V .
K= -5 {3.13)

The interaction term will be taken to be the one defined in (3.7) for the relativistic
or the non-relativistic case. . The- relativistic example will be introdueed only as
an example of symmetry restoration. The spectrum, in the relativistic case, on
both phases is known and will be a guide to the symmetry restored phase for the

Hamiltonian {3.7) in the Helium-4 case.
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From (3.10) one gets the free energy which is given by

FOV) = -8z . O (314)

‘.The' whole thermodynamics. can be obtained from the free .energy.

- TIE:3:.. B_ose?Einstein Condensation

The-relevance of Bose-Efnstein ébndensa.tion-fb_r undérstanding_thé pro.perties of

Tiquid He? ‘was pointed out first By Loudon(4)'who, besides proving Bose-Einstein

condensation for an ideal gas, suggested that the peculiar phase tra.nsﬂ::on that liquid

helmm u.ndergoes at 2.18° he regarded asa Bose-Einstein condensation phenomenon.

" The temperature for which a finite fractmn of all helium atoms will be assembled

in-the lowest- enegy state, in the-ideal gas approximation, is very close the critical
temperature of the-A-point. The hypothes:s that- He# , in the superfluid phase, has

to. do. with Bose—Emstem condensatmn received a boost after the seminal work of

_Bogohubov-(a) whio showed that the'-“phonon- part of s_pectrum of excitations of He*

follow.directly from-Bose-Einstein condensation of an imperfect gas.
Within the-field theoretma} context Bose-Einstein condensation is mtuna.tely re-
lated to the spontaneons breakdown U(l) symmetry since in the broken symmetry

phase the expectation of value. of the scalar ﬁeld ¥ is different of zero

W = Vi - (@.19)

Under condition {3.15} we say, on the othef hand, that the fluid is superfluid.
Actually Anderson’s deﬁnition(zo) bf a superfluid:is that it is a Auid for which con-
dition (3' 15) is met. Other approaches to superﬁuidity aré based essentially on
properhes of Green’s functions ana.logous to (3. 15)(21 22) " The description of Bose-

Finstein condensanon is then crucial for the understandmg of the superfluid phase-

of I‘_Iehum-4.

In.order to study Bose-Einstein condensation we separate out the uniform (in

15

space) field theoretical coﬁﬁgufdf;ion_ Iri this wé,y one writes, in analogy with Bo-
goliubov's appwach(f’} 6) ,
= %o + P (3.16)

By substituting (3.16) into (3.10) one can write the free energy as a function of

- the Bogoliubov condensate(5) . ; that is.

= F(I\V,do) = F(V\Typ)) . (3.17)
Since the number of particles with zero-momentum is given by
No=Vp, = Vg, . (3.18)

the dependence of F on g is equivalent to the dependence of F on "N,. - As
suggested by Glassgold, Kaufman and Watson(23) the:important contribution comes
from the term that minimizes F that is
or|.
3o,

=0 . ' (3.19)
Pe ' :

Equation {3:19).is the basic equation for the determination of the occupation of
the 5=0 state. _ N
The system described by (3.7) exhibits two pha.seé. In the non-condensed phase

pe = 0 (3.20}
whereas in the édndensed pilasé
N :
Pe = p¢ [? 3 T] = Pc[pﬂ.e7 T] T S (321)

The critica} temperature is the one that dis'tiﬁgtﬁéhes the two phases.  p. plays

the role of the order parameter, One défines the critical temperature as the one for

which,

= =0. . : 3.22
bR (3:22)

16




- Within the field theory. one can get all relevant informations on Bose-Einstein |

condensation phenomena from the field theoretical Green’s functions in momentum

space computed at_zero—momenta.(ls). By following ref. (5). one. can: write, in field .

theory .

whel:e I‘(pu, T) is the: generating, functional of. the one—partwle 1rrecluc1ble Green s

functions at zero momenta That: is .

1
m!

i‘(pa,T) _ z Z il i r(u.m)(o ---O,T) p;ng = (3_24). .

m=0 n=
wheré Tt"m) stands for the Fourier transform of the- one-particle irreducible Green s
functions.at zero momenta

fea)g, . ,0,T) = Tomp, ...pm)lm:pz:_,,__p -0
. =

As far.as condensation phenomena is concerned T'(p,, T) is the relevant potential.
The whole thermodynam.lcs can be mferred from T{g,, T) _

o From F(Po’ T) one gets the occupatlon of the _'f G (pc) from the equahon
& (P{p,, T))
an 5 Py = Pe

‘ whereas the pressure (P), entropy (S}, internal energy (U} and specific heat (Cv)

are obtained from the equations -

- I‘[ (-] T} ) . (3-?—7)

P =
_ o ;T)]
S =V {—— ° (3.28)
aT _p_n_.=Pc :
U = [r[po,T] or (”o’T)] (3.29)
.00=pc
17

Foghd) = VIGyT) oy

(3.25).

Z 0 " (3.26) .

Cy = — . ' O (3.30)

Bquations (3.26) and (3.27)~(3.29) are the basic ‘equations of condensation .

pPhenomena.

IIT.4. Equation of State and London’s Relation

Although equations (3.27)-(3.29) depends on the thermodynamical potentiél r
which can be computed explicitly. only under certain approximations, as we shall see
ion.f.he n@éxt Chapter, oné can derive two relevant propertieé without the explicit
knowiedgé of T'. These propeﬂ:ies do not depend on the dynamics. They follow
only from the fact that there is Bose-Einstein condensation. _

The first property that one eﬁpects in Helium superfluid, if such a' phenomenais.
related to Bose-Einstein cendensa.tion, is that the sta,.te of superfluid: Heli;._m.l.shoulid
be characterized by zero Gibbs energy. In fact, it follows from (327)—(329) that .

U+PV = _TS(T) . , (3.31)-

From (3.31) it follows that
G =0 . _ : -(3.32)

As a result of the third law of thermodynamics one expects that
%iué TSTY = 0 . - (3.33)

By d1V1d1ng {3.31) by N and then taking the zero. tempera.ture limit, we can

predict the following equation of state
— = ¢ o (3.34)

where ¢ is the binding energy per atom defined in (2.5).
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The static fountain effect can be explained from London’s relation (eq. (2.13). W'e_ ’
can. éee:that‘.t_his relation follows as a consequence of our basic equations describing
the supéfﬁuid pha.sé_, In fact, if one derives the pressire as function of T', one gets

(indeﬁendentljﬁ:of.'the details of the dynamics}, from (3.25)

dP . 3T (p,T) dp. (a_rcpn,f))
Py = Pe

dr ~ 8p,  dT ar

* From equations (3.26) and (3.28) it follows that.

dP-__._V.dT - © (3.35).

That is,..ix\'fe-get_- London’s relation.” It follows ftém the equilibrium'tl.lerm& '

dynamics when: Bose-Einstein. condensation occurs. London's relation follows also

from (332) since "

dG = PdV — SdT" . o (3.36)
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TV. ONE LOOP APPROXIMATION: GENERAL RESULTS

IV.1. Loop Expansion

The loop expansion provides a systematic as well as a proper method for deaiing
with Bose-Einsteinm condensation. 'As p’oinéé:d oub in ref. (5) the method is richer
and more appropriate than the perturbative approach én the low density approxima-
tion.

Within the loop expansion one can ﬁﬁte the effective potential as a series

(o, T) = 3 IW.T) (4.1)

n =

where in T one considers only those irreducible Green’s fanction having n-loops.

At the classical level (zero-loop approximation) oné can write(5}, for model (3.7),
(_Po’ ) == Pgr"-'-—z—'Pga‘ - o (4.

One can compute. T esqﬂi"citlf upto t.):nt:a...lobi)- level. The answer,forour fnodéi,

can be inferred. from: Toyoda's: 'pap:ers(ztg: . _..I-Iow'e\-.}er;.:.i:la~'6rdér to understand the

roton spectrum, it is better to present-an alt_ématii.;re-derivation of Toyoda's result.
IV.2. One Loop Approximation -
Up to the one loop approximation one can write(18:17) -

"Fo+ Fi .
v [[‘(D) + [‘(1)]_ (4.3)

F

where F, is the zero loop approximation contribution from (4.2) given by
A, _
Fop,V.T) = V' |- {AE)p, + S| - {4.4)
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T, in (4.3), represents the first quantum corrections and after substituting {3.16)

inf:p {3.10) with the interaction given by-(3.7) and then expanding in ' taking into
. account.only quadratic terms, we end up with a quadratic functional integral in .

Thc rmult is

L=

v

I‘(l)(po‘ T). = /‘DWD!I:‘-"*- exp — % _[(yf’",lb-') e ( % )

det. G0 _ : (4.5)

VV'here G is a matrix element which in momentum space have matrix elements

ngen by

R(n,F,8)— AE+2APD A(g)?
G(ni-k‘;f T, ‘DO) = . . ’ (46)
. ) E(n, £, ﬂ) AE+2Ap

where K is the Fourier transform of the kmetlc term- K In the non-relativistic- -

case: K is glven by

K= 7 :+-2I'n- = W-.‘n._‘l- o 4.7)
. and in. the relativistic case, one has o
== ) s

One can diagonalize the matrix . G- by using a Bogoliubov'’s transformation and

writg_- :

XHHE, 0., 8) 0

GG = L ey

0 AOE 8

where the eigenvalues A* are given by

A% = Re K(n k,8) — AE + 2)\p0 + /\p2 — (Im K (k,n, B)7 . (4.10)

‘with. M%) given by (4.10) one can write, up to the one loop level,

Flp,V,T) _ Aa g PR
0 = —(AE)p, + 5P+ 2,6};,/(2#)3 ln AN AL (4.11)

This expression is_the basic one in order to study superfluid Helium at the one
loop level.

In the non-relativistic case

Ly 72 2 .
My = (2_;11) + [(-23”—1) - AE-§-2ApOJ - Xp? (4.12)

whereas in the relativistic case

. .
. ) 2
APAT = [15‘_2 ~ AE + 23, + (—;—”) ] — (4.13)

in hoth cases we can perform the sum over n by using the identity

21 ((3@)2+w?) = w+ﬂ In (I_eiﬁw) . (4.14)

The general structure of F' up to the one loop approximation is, by using (4.14),

A &k

Vo &k —Buwl(k _
+3 o ln (l—e (%, "o)) (4.15)
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where in (4515)' we have separated the zero temperature contribution (the témperatufé

- :ndependent pa.rt in (4 15)) from the temperature dependent contribution. w in
(4 15) car be mfen-ed from: (4.12). and (4 13).

The-zero temperai‘.u,re- contribiition is divergent and requires reﬁérmalizat.i‘on.

“Up. to:._'ﬁﬁefqne.{loop apprp:dﬁ;qtion one has to add the usual counterterms to the

Ha.nultoma.u(’?} One has also to remove a zero point energy contribution in (4.15).

The: eqhation: for the occupation of the =0 is

dia .
& H;w‘ :
(2ny eﬂw

- FE dw(.k 2y
2 (27:)3 dp,.

CAE = A '+ (4.16)

Pg=Pc

Thé 'e'quation (4.18) is also divergent but these d.iv*érgences can be eliminated by
the usual procedure of adding counterterms(5 20),
After renorma.hzmg (4 16} we could in prmc:pie dlscuss the depletion of the con-
densat_e as. a.result of quantum effectst25).
In-this papér_ we will' work within tﬁe semiclassiéal: approach for comﬁuting the
. thermodynamics: of Hé—4.-. Within: t..he semiclassical method all ‘one' has-to do is a

zero-point energy: subtraction (zero point energy of phonons).

IV.3. .R_élativistig:_ Case-
Inr the relativistic case one ¢an consider two cases. In the first case

—AE < 0 _ C (417

and the theory exhibits spontaneous breakdown of /(1) symmetry. The condition

dF

) (4.18
dpyl,, . )

‘determines the occupation of the =0 states as a function of the temperature. At

23

the cla.ssic:al lével one has

A === (4.19)
A
Since in the relativistic case
=~ . {2enY\?
.«\+(k,n,po) = ( 5 ) +RE - AE+ 3\p
' (4.20)

A (E,n,p,)

il

i
(g”) W —AE+ X,

The '_spéctrum of excitation involves twb types of particles of masses M; and

M3, whose masses are given by the square root of A*(n =0, F=0). One gets

M = X(m=0,k=0,p) = V2AE

(4.21)

I
@

MPS = A(n=0,k=0, p,) =

that is, one gétsr 2 massive particle and one massless Goldstone bos_on(%).. _ )
The thermodynamics of the system at very low temperatu:es.ﬁrill be entirely

controlled by- the. Goldstone boson mode: . :O_n.e gets.explicitly in this phase

nm

. . | o2 3 -
7 FlopT) = —ABp + =& zﬁzf(%)z[ ((T) +k2+2AE)+

R R

In the symmetry restored phase, characterized by

—AE >0 {(4.23)

.the spectrum is also well known. There are two particles with the same mass VAE

M, = M, = VAE . (4.24)
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These particles obey the dispersion relation

w(F) = VPP +AE | (4.25)

The spectrum for the symﬁetﬁc phase (AE > 0) can be: obtained directly from
the broken. symmetry phase 1£ one makes use. of an, sunple approa.ch to symmetry
ratoratlon, 'I'lns will be explamed n t.he next, sectlon

IVA. Sunple Approach to Symmetry Restoratmn

We shall start now: Erom the broken sym.met.ry pha.se - which the matrix @ is

d1agona.hzed a.nd wnte

(%£)2+E2+(¢2A—E)2 .0

G = . : 7 ’ . . (4.\26)

- : Ing\® ]
0. g + &

Let us. now: intraduce a coupling between the massive partlcles of mass 2AE an

the: Goldstone moede of the form. -

o -
(3%1) + B4 2AE AR
¢ 6= | . (4.27)
N ' (2"‘”)24@?5
B
The new eigenvalues are
. 2 - .
XH(n, ) = A(n,F) = (—2”7”) +BraE . (4.28)

This is result (4.25).

The. spectrum of the symmetric phase is thus obtained as a resu]t of the couplxng_ :

(4.27) between the two modes (4.21).

V. HELIUM SUPERFLUID AT VERY LOW TEMPERATURE

Let us show that ﬁodel (3.7) describes He' at very low temperatures. Since

the system is a nonrelativistic one can write, by using (4.12), the free energy (4.11)

as
' Apl Znr )’ .
Foy V1) = V|- 8Bp,+ SR Doy it [(—) + w"{k,pb]} -
‘ (5.1)
where 2
W' [kyp,] = e AE+2)p, I ~Xps . (5.2)
After sﬁbtracting the zero. point_energy_cont;ibutiqn.bne gets
' X —Buw(F o))
Flo, V,T) = V [ AEp, +50 ] 7 (f‘)’a n (1_ — ek, Po))-_ L (5.3)
The Occui)é.tion of the F=0' (pc) shoulcl be mferred fx:om the rmmm;za.tmn of the
_ free energy. (5. 3) One gets,. from, (5 3) a.nd (4 14)
dw
= AE— -— (5.4)
[ AR N . ,_

Equat:on (5.4} allows us to get the occupation of the P =0 state as a function of
the temperature within the one-loop approximation. w(k, £g} in (5.4) is a function
of the g a.nd given by (5.2).. Once. p, is obtained, from (5.4), one:can get, by
using (327) ~(3:29) other thermodynamical variables. The pressure as a function of

the condensate, up to.the one loop:level; is given by

P = +AEp, - A;‘ 3 (;13];3 In (1 —eﬂw(k’ p°)) . (5.5}

The entropy, on the other hand from (3.28) and (5.3), is -
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é_ FE ( _e—ﬂw(k,pc)) “3] (21()3. _w(k, p.) 58)

' (2x) ﬁW(k, Po) _1
' wlz.lérea's'_..thé!ipt‘ema;l energy wilk be
. )'Pc . W(Ev 2 | .
v=v [ Afpt ] [ s P ulfop) 5 &0

and o

&LF Wz(i"""f":)-
(@) Bulk; pe)o. 1

CCy= (5.8)

In order: to: get the tliermodyna.mjcsx.a,t‘_veﬁy_ low: temperatures let us solve equa-

 tion: (5.4) iﬁ-th_e— zero temperat'uté limnit: .

At zero temperatures the solution to (5.4) will.he' giveu by the, classical solution

 AE. mAE
Lo = T = - : (5.9)

8ma. .

I this. limit’ the condensate contains, in the-dilute gé;q'approidmation, all the

particles.. In this way one gets the Helii.t;:u. density: from (5.9). Thatis

- ST - (.5.10);

) Phte . Bwa

_ . One can .express the Heliun_i.density in térms of the three relevant paraméters
'obta.mmg a.result that, as shown.in Appendix A, is: 5. very clése to the experimental
. va_lue given in- (2 7).
- By using (5.9} as an-approximate solution to (5.4) one gets the following results,

valid in the low temberature limit, .

U CABmy 7 N .
v = [Tl * 5 Was) T - (G
5. 2 ¢ 3

s=y = = (/357 (5:12)

27

167ra 90 AE

: g%: 41.-2 (\/’-‘) (5.14)

K we subsfutuf:e the values of the constants m, AE zmd a given by (1 2) one gets

p_ mAE? + i ( i)s T‘I : | t5.13)

the. followmg predlctmns

o Sranenr (5.15)
S' o 2'fr 18 L
— = — SEEIN 1
= 81018 T : (5.16)
L P =T 100 (EeV)! + 55 8 108 T (5.17)
Cv = fi’fILg 10181"3."'- e (5.18)

Cy . and the'; e.ntrbp'y: ha.ve a téﬁiper’é.ti‘zfé aepéﬁdenm Itha't is well: .k'novin'

" theoretically- and. verified: expéﬁmmhiﬂy ‘Let. us-turn then to the mtemal energy

and pressure.. First of all one can: relate: these quantztlas as follows
: 1 ; 1
V(P(T) - PO) = z(UM+UO) = ITS@) . . (519)

where U(0) is the internal energy density at zero temperature that, from (5.7} and

(5.9), is given by

_ X (5.20)

V) = ~ T 2 Pre

And P(0) is the zero temperature pressure, which, from (5.5), (5.13) and (5.9)
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A 2
= =2z 5.2
P(D)‘ 167 3 PHe - (5.21)

For temperai‘.ures satisfying. T < 2°K then, from (5. 15) and (5 17) it follows that
-the interval energy a.nd pressu.re are a.ppromnately constant and glven by (5 20} and
(5. 21) R ' R
Erom (5.158)-(5. 17} one can cheek the vahdlty of’ equatxon (3 31) uin to. one loop
approxzmatlon ;

At low temperatures. one can predict the following equation of state
PV ="~U(0) = constant . T (522

This is, up to the one.loop approximation, equation (3.34).

One can predict, from (5.20); a binding énergy per atom defined as

U _
. .6 =S5 . . (5.23)
_ obtaini;-:lg_, from: (5:7) - o
€ =_—TE 5.1 10-4 eV . : - {3.2¢)

Our pred.ict_ion- (5..24) is very close to the experimenta.l value (2.6).

Furthermore, one gets » surprising reia.tlon awnong the physmally measurable
quantities - P(0), ¢ and Py This. relation is a consequence of the. equatlon of
‘the state (5.22) P

. £0) ._—

= —c. _ . (325)

pHe'

 Finally, if one differentiates (5. 19) w1th respect to T and usmg (5. 16) (5. 17) we

will get up to one foop: approximation, London’s relation

dp = s(T)dT . | ' (5.26)

At the one loop level one can see explicitly that
PV+U-8ST = ¢

as predicted by (3.31).

SOUND SPEED
The sound sﬁéed, defined by,

ap o : -
=\ .. .(5.27)

can be obtained from (5.20). - One gets-

. . v . . .
Slpg = 1{-& = 9_E L - (5.28)

- By _ixsing tl.le-.ii:cﬂﬁe;s of AE and m- in (1.2) we get

v o= 5.0 . L (5.29)

' PHONON SPECTRUM

For pc gwen by (5 4) one gets, from. (5.2) the dispersion rela.tmn

m 2m

LAE (51 R
w(p) = +( ) - S (5-30)
:Fér,._sr'na_.ll momeﬁta;,_oné-ﬁnds,_,_from (5.30) the phonon spectrum. .

wh(F) = Py ?RE | o (5.31)

) {vhich, by using (5.28) can be-written as usual, as:

WwPHF) = v, p . | i (5.32)

ROTON SPECTRUM
The eﬂ'ective Hamiltonian (3.18) déscribes Helium-4 at very low temperatures. As

the tempera,ture mcreases other effective Halmltoma.u might be more appropriate.
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However if we Just admit that what happens at higher temperatmes is svmmet;y K

restoration then, by followmg our strategy for the rela.tlwstm case, onecan g et

relevant: part of the spectrum at high temperatures. W'e just recall tha

reIathstm case one can get the spectrum of exc1tatlons in the symmetnc phase b} o
.'mtroducmg a. coupling between the low temperature phase excitations. A"‘ :'é,r_xd"

X~ By: repeating this strategy in the nonrelahvxstlc case one introduces: a couphng_

. between the Goldstone mode and the massive mode through the substltutmn

' Mpomd) AE N
G_’GI_:( (Punp) ? ) o (5‘33)_..

iAE N (pyn.P)

.The- Eoupling between the Goldstone mode and the massive one leads to ﬂi_e

. following, new modes

g I\ 2 .
At(n;B.p,) = g—m_— AE + 23p, + \f,\’*’poz— (%) — (AEY:
_. ” Y 9 2 .
NilmBie) = o = AE + 2, — W2~ () —(amp

and (_:oﬁsequ_ently- F'— F' where

. A : he Bu(E N
Flop VT = V[ AEp + p"] + Y ﬁ-in(l—e 3“’("’%)) (5.35)

8J (2n)

and the new dispersion relation is

- 2 : :
- K2 o
wik, p,) = \J (ﬂ ~AE + 2/\p0)' +(AE)?2 - X2p2 . : (§.36)

In order to get the thermodynamical properties of the system, and as can be
inferred from (5.5)(5.8), all one has to do is to substitute o, bY p. given by (5.4):

In this way, for phenomenoclogical applications one has to analyse
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- k2
w(F, pe) = J (% ~AE ¥ z,\pc) +(AER - A2 (5.37)

The main prediction that can be made by using (5.37) is that. the-spectum ex-
hibits different feature as the condensate becomes less populated. In particular, the

spectruny (5.37) has a_minimum- whenever

pdT) < % pc(T:O} (2Apc<AE) ) B (5.38)

When condltlon {5. 38) is met, then, from (5.37) it follows a roton-like dispersion

relatxon

wff) = \}(%..AE) +(AER . (5.39)

For comparison we write the phonon spectrum

wphoncfl(g_) = J (f_; +AE) — (AE)Z - ’ ‘ - (5-4'0)

The spectrum (5.37) has a minimum for
B, = VImAE . . {5.41)

At the minimum we get
A = E(p) = AE . _ . (5.42)

The first non-trivial relation that follows from (5.41) and (5.42) is that. ..
A= 2o ' (5.43)
Finally by expanding around p=p, one gets the roton spectrum

wmlon(p) — @;mp£ + A . . (544)
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. From. (5.44) and (2.2) it follows. tha, -

I thls W _;we ha.ve been successful in gettlng Landaw’s roton spectrum Landau’s
: pa:camfzters pu CoAand e are predlcted by our. expressxons {5 41), (5.42) and (5:45),
by using (1.2) to be . '

AL =102-10%6V 0 Ay = 9-10%eV.
= 281036V ppeg = 381036V . (5.46)

g

B &2 1.75.10% eV 1.12_109 eV < ,uexp < 2,62 10° eV .

The resuit for. the gap is.in. an excelleni; agreement with the expenmenta.l resuls.
The: rﬁult for - Po:is. not so-good..: The expenmenta.l result for . p - seems to.depend
- o the method: for its determination (calorimetric method is the upper hound and
neutron: scattering correspgn&s-_.tdfg;the;;ldw_er_.bound){g'r). - In ref. (9): it has been
pointed out that both methods-,.se_iems.to-.cpnverge fo a value smaller than the lower

bound. .

SUPE‘RFLQW‘ PEED LIMIT

Our. dlsp&sum relatmn (5;37) can. be written g

2 2
o(F) =.{_J (Zjim_%) + AXTY (5.47)

\?hgre .
B(T) = 2m[(AE) — 22 p(T)] (5.48)
ANT) = (AEV —NpfT) .  (5.49)

The superfiow speed limit, should be given, from (3.47) and (2.10) as
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S \H(;’;@)) +A2(T)] ~ (D) L (550)

m

Exl')res.sibn:(s-..'iﬂ;} allows us to get an upper bound for the critical velocity. This

maximum speed is, from (5.50) ;

< 1/%‘3@) = —A;? =, . (5.51)

The sound speed is then an upper bound to the critical velocities. Tt follows also
from (5.51) that, if |
AT) = 0 : _ (5.52)
then, there is no superfluidity:
‘We have seen in this Chapter that most features of superfluid Helium-4 can be
described in a very simples way. We have made a prediction on the zero-temperature

eqﬁation which deserves to be tested. QOur prediction for P(0) implies
P(0) = 6-10% (eV)* . : (5.53)

By extrapola.tmg the 1sopycmcals in Keesom's book(28) we would get for p =
1.6 10 (eV)® .a value of ‘ .
P(0) = 48101 (eV)* (5.54)

By using (5.54) and (2.7) we will get

PO)
Pl

Our model predicts, from (5.54) and {5.10)

= 31076V . '  (5.55)

B

PHc

= 51071V . ' (5.56)
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VI. NORMAL AND SUPERFLUID COMPONENTS

VL. Two-Fluid Picture

In: Chapter II we have pointed out that superfiuid Helium behaves as » mixture of *

two-fluids.  The nature of these fluid components has not yet been settled(14) 'By

: Iookmg at our dispersion relation it is possible to shed some hght on this problem .

' Flrst of all one cansee that for

P Ype = VimA RV

the: sﬁéétrum-- of the excitations. ca.n be approximated by

wi(p) = (";—f-ﬁf FION

However for excitations such that -

P> p0 - . (63)

The dispersion relation is of the form:

oy <

In this way one expects two types of excitations. Those whose momenta _ohegrs- i
(6.1) are rotons. Those obeying (6.3) will be named normal. For very low tempera- )
tures one can also distinguish these two types of excitations (although as we will see - . 3

the normal component is practically a,bsént). The first excitation will be the phonor;'_' S

w(p} = vp| . (6.5) -
For momenta such that :
P> po . : (6.6).
One has :
7 .
wh(F) = am (67)

From (6.2), (6.4), (6.5) and {6.7) it follows: that one has two types of excitations
in the system. Normal-excitations are those with low momentum, that is, those
satisfying (6.4). The other excitations cé.n_ Be- named superfluid.

From the previous distinction one can separate each physical quantities in

momentum space and write, whenever integral over momenta. occurs

J25 = [Pt foua®? - 9

where; from (6.3) or (6.6),

L= L e

- andthe superﬁmd cotponent is just’ the complement of (6.9) and should be inferred

from: (6.9) and (6:8).
From (6:2), (6:4); (6:5): and (8:7)-we wilt be-able to define appromma.t;ons for the

integrand of certair |ntegrals For example, i one deﬁ.ues
N(F) = (exp (—TP») -1) R

Then, from (6.2)~(6.7) and (5.39) and (5.40) one can define

NOHF). : (exp (25: T) - 1) - | | (6.11)-
}v(fl(p') - (exp ((”;‘%ﬂz + —?—) - 1) B (6.12)
N®(F) — (exp ("}ﬁ) - 1) (6.13)

From (6.11)}-(6.13) one can define normal, roton and phonon thermal averages.

For the kinetic energy one can define the roton contribution as
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2 )
5 p? (r)(~) : (6.14)

Ky = (277 2m

Expression (6.14) is. just, in_.Landa.u’s_nbtation (p™),, that is
: h = 2Ry . 5

whereas.the average number of rotons.is given by'

d"p

W= S

VL.2. Normal Component of the Flmd Denszty

Our 1dent1ﬁca.tmn of the normal and superﬂ!.ud excxtatlon allows us to write ex-
plicit expressmns for the normal and superfluid’ component of the fluid density. In

order to-do this we write the basic equation of condensation phenomena explicitiy

~AE 4 Xp. + ( = fdap {(?)“AEJFZ’\_%E}I

\/ (,;’_ A+ pc) f__j(r}@z + (e v

L = 0. (6.17)

® — 2 '
[exp 3 \/ (%— AE + 2,'\;;;) +(AER - () - 1] '

If one divides (6.17) by A and by using (a 9} and (5. 10) and neglectmg the

condensate dependence in the mtegrals in (6 17) one can write

(’ﬁ_‘w) : .1

N"’(p) | O (s16)

: pHe._'o°+ jd3-'\/

(%ng‘ _ ) +L\E2 [e‘{p /3\/ L\...E).z-i-AE? -1

(6.18)

Let us decompose the integral in (6.18) into two:pieces, following (6.8), and write
P = Pstpu _ _ (6.19)

The normal component of the Helium density should be inferred from-'(6 17) when.
one takes into account restriction (6 6). For P sa.tlsfymg {6.6) the integrand of {6 18)

can be approximated by

2
—AF 1 . '
— m = TN pz?pz ey (6.20)
[ s rom ()= 778 )

The normal component of the superfluid density can be written, from (6 20) and
(6.9) as

) = o) mexp(dﬂj :f;,,o (‘;‘in # . o2

If one takes for pp the lower limit. of (6.21} one can Wnte a sn'nple analytical

expressnon for the normal cornponent Thts expression is .

pn(T,AE) = (2mT)3/2 (A,f) SR (6.22)
;v_here
AEY 1 g , 1 '
fo (T) T ox2 j\/%s— dyy e —1 - (6.23)

In fig, (2) we show the behavior of the function

WT.AB) _ (Z)"  (4F)

pa(Tr, AE) Ty o ( %E) (6-_24) _
. A
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From fig. (2) we can see that our expression’ (6.24) gives an strikingly good '

result from the experimental point of view. In fig. (2} we present also the result of
Andronikashviﬁ(zg_). The agreement is very good. We have verified that an even
better result is,qbta.ined_i.f one uses instead. of (6.21)

&2 1
pope (27)° exp (w -}3')) _1

pn(T AE) =2 f (6.25)

with r.u(p) glven by (5.39).
One can easﬂy see that p, defined in (6. 19) exhibits the following properties -

Pr - T":(; 0 (626}
&5 1
= —— 9
~ |eimT — :

where . pg., is the free gas density. In pa,rticuiar, from {6.22) and (6.23), that for
AE=0 S
PelSE =0, T} = 2pun(T) . {6.28)

VL.3. Sup.erﬂuid Component of the Fluid Denéity

The definition of the superfluid compenent is, from (6.19), given by

Ps = Py " P (6.29)

where p, is defined by {6.21).
As caﬁ be seen from {6.18) part of the superfluid component of the Auid density
is made of particles that are in the condensed state (the p=0 state). The other

part has a contribution due to excitations. In this way one has, on general grounds

Ps = pdT) + pexdT) - (6.30)
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The contribution due to excitation depeh‘ds on whether phonons or roton con-
tributions are the relevant excitations. In the following we make a simple estimate
of the roton contribution to the superfiuid: component. as defined by equation (6:29).
For the roton spectrum the relevant integration comes.from the region in momentum
space-for which p = ps. Let us then define from (6.18) the roton contribution to

ps as

) L . St L
2po p_zdp (%_AE) . 1

(pd}ral‘.on = dm

[ oy ‘/(%_AE)Z-FAEQ [exp ﬁ\/(%HAE)2+/_\E - 1} :

(6.31)

After a change of variables (6.31) can be written under the alternative form-

(0s) = / 2dy(y =1) )
e \/(y-—1)2+1 eXP( \/(y 1)2+j-— 1

If one expands the exponential around’ y = 1" (roton contribution) and takes for

the denominator its maximum value in the interval one gets the following estimate

for (Ps )rotun

2

(P2)soton 31‘_2 T f ¥(y* - 1)dy

372 AE . L
e QGmAEPR -G : (6.33)
2

T

Landau's estimates for (g hroton is(w)_

: andau AE
(%’)L N = ﬁﬁ-(QmAE)(mT)'/2 e T (6.34)
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From (6.33) and (6:34) it follo.ws_,that' o

a2, = gy f2AE.  (6.35)
YA ey e T

GO

: .Exl.)r&'éioﬁz' {635} ¢ shows.that our definition: p, is essehti.illy identical to Landaﬁ’s

.. The. agreemen}: between OUT:: expressmn is.even. better wheu compared with.

Landaus (p("j), deﬁned i (6 15} In this:case one gets fr,om (6 33) and (6. 15)

—(mp_,}m,m_ - _8. (i) . R (6.36)
' S (P(n})mmn o AE : : )
" Once aggin' the agreement. with: Landan’s estimates. is very good in’the. temp;oera-
ture interval. 1.I°K. < T < 2, I°K...
As a final remark in this section we would like to point out that equation (6.18)

leads fo the following equation for _the.oqcupaéion of the 7=0 state:

dw :
plT) = py— s [ &5 SR i (6.37)

OB

V(F):is dofned i (6:10).

_ VI.4. .Cntu:al Velocxty

'I_‘he main experimental eudence for our mterpret:atlon of the normal component

of the: ﬂmd as being; associafed. with excitations- of the ideal gas type lies in the

study of the inferaction of the superﬂmd component with the walis As pointed out -

- earlier: by Gumzburﬂ'(so) a.lthough t.hese excxtatlons rmghl: not: be Very numerous,
_ thus ma.kmg & neg11g1ble contr:butmn to the thermodynamw functions, they would
be 1mporta.nt i dxsszpatmg r.he ﬂow Let us see that for ﬁlms of Very narrow slzts

(d < 107 ¢m) one can make a 51mp1e predlctlon for the critical velocxt\
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The dispersion of the momenta is given by the uncertainty principle as
C Apd A1 . . (6.38)

where. d is thé characteristic dimensiou of the ﬁ];-tﬁ,-o:.slit. ) .F_‘ol_,,lowil_}g Guinzb.u_rg@ﬂ)

' one-theﬁ.ha.s to minimize,.for- determining, v,, the expression

( 2mp )_m . _ (6.39)

From (6.38) ahd'(6.39) one gef:.s .
ved < % (1,6 167* cmz/seg) . l (6.40)

The bound {6.40) was a much arched one some years ago (sée discussion.in the
Atldns book(7)).-_ This Iboulnd has been obtained also.by Fetter(31) and Anderson(20).
Although a dependence of the form' v, d/* x 1 is more appropiiate from the phe-
nomenological point of Iview(g), s0Ime. experi.l:ﬁepts exhibits the behavior predicted
by (6.40)(9). Result (6.40) is in a agreement with: some experimental- results._- The
conclusmn is then that the normal excitations are responsible for dlsmpatmg the flow
if a certa.m velocity is exceeded. Furthersnore it explains why the cntlcal velocity is

or_ders of x_r_aagmtude smalier tha.n that predicted by the phenon or rot.on. spectrum.




VII. THE A-POINT

As pointed out in Chapter IH one of the basic ingredients of our approach to:
Bose-Einstein condensation, equation (5.4); is the determination of the occupation
of the Macroscopic etate with p= 0. The critical temperature is the one for whlch
from equation (4.21), this occupation is zero. By using this cnter:on one gets the

following equation for. determining the critical temperature

CeGeNT
‘9 [ (;”;3 En( 1—e It )] = AE . (7:1)
Y pb_=_0.__ _ .

" The critical temperature equation.{7.1) can be, written under a fairly simple form

if one uses (6.10) and (5.10):

- & de(#,p, = 0) -
mﬂs—;@;yfﬂ@>

where N(p) is-defined in. (6 10}.. ;

P He- .

Clearly equatmn (7.2} can also. be obta.med ﬁ'om (6 34).1

By using;| the dxspersxon rela.tmn i (5 39) in (7. 1) OF; equ:va.lently, (7 2) one gets:- .

the followmg expressmn for . T..

.

(ﬁ)ﬁ-*AE) . L . mAE

-j(dq_-_

2,1-)3 T ) . gy 2 2
J(§W~¢E)-f&Ezem>@ ((ﬁJ.—AE)ﬁ%AEP—i
* After some changes of variables.e.}.cpres_sion.(7.3) can be written as | -
AEY = B '
S T (T4
f ('-TC ) ) 32\/_5 avmAE . } " (74

where
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16ma-”

ABEY Ay —1 1.
f(:r) =/ 0D AE (7.3)
V- 1241 {exp[ ,/(y _1)24—1}—1}
A numerical solution of equation. (T:4) leads us to.
.= 4,5K . | | (7.6)

Althoughi- result (7.6) is-a. faétor-2 of the ;experiinental’ result it shiows clearly
that Bose-Einstein' condensation'is indeed related to the: A-point.. If one is able to

understand what is happening at the phase transition one would get a better result

for the cntical temperature

We ha.ve showu that at zero temperature the particles i the condensate are

- b1nded'_. : Let-us a.naixze;unde:_:_wh.t_cb.cqnd:tmns-. there.would be.unbinding of particles

as result of tempe;atuié increase: This would happen for T. given by

A
T, = =

Ml -

&)
_Cqﬁditi’onf (7.7) im-p_I:ie-s.— :
o . S . - Tc _ 3.301( . . . (7,8)

"~ Hour argumeﬁt.- that: the-critical temperature is the one for which there is unbind-

ing of the atoms in. the:cehdensate,:then a better estimate of the critical tempefa;ture

would be

N

to| =

' =2 e e -
~ L P Sob e
=V f &5 - N () (1)
that is,, when the averape Kinetic eniergy is equal to-the ttal 'energj'r'of the boand

systeny -

. -a

wl®)- /da”

R AT

- Hone takes into account only the roton conﬁributién to(TlO) a.iid' writes o
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Pae.() [fp N(p) , o (r.11)

thh N gnren =by:(6 12)‘ 7--Exprf£smn (7 11) i ]us- '.vanant of Landaus cond1t1on.

; bound state leads

_.t ¥ the detenmn tlon of the cntlcal tempera.tu.re if one unposes

' further that at the cntlcal temperamre
i AE(T.._)-' =" 0. . (1a3)

 The’ reqmrement {z 13) is eqmvalenf. to saymg that the. bmdmg -energy at the
critical tempera.ture is zero. Forma]ly condition (7 13) is eqmva.ient th‘.h.\n the

" field' theoretical context, to the condition
E N

- since cond.ltmn (7 13) only requn’&s that the linear coefficient of the expansion of the
3 'f:ea enezgy as & funcf:xon of the condensate vanishes. We should then analyse better
7' tlns-, qu&etmn,by using & ﬁgld theoretlca.l approach. ¥or the moment we Just note

't_.ﬁdt; if one iﬁlposes that: the gap is'zex_'d then -_.equ'a_tiou (7.2) can be written as

@5 T g

oy = sl 1)

Crl exp (gB) -1~ 2

The str:lkmg future of equatmn (7 15) is its. Slmlla.mty to the critical temperature
) :_equa.tion denved by London wathm the free Bose gas approximation. 'The critical

’ _-i,.t_emper_ature:detenmned by London; TF was
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(7. 13) it follows from (6 18) that the cnt:cal temperature is the one: for thmh

&5

@ ( ;,:‘f—’t) o1 lp.{,. = pgulT) (7.16)
i F‘ro_l_l_l;(?.lt‘_r} and{715) 1t :f.ollo.m._r.g_:tha.t.
" f{.‘;ﬁ'“;; - 24215 : ' (7:17)
From (7.17) and (2.12) i follows
T '_.-;;.2.9§K. ) (7.18)

K Clea.rly t&sult (7 15) could be mferred cbrectly fmm (7. 2) by imposing that when

- there is o Bos&Emste.m condensatlon the d.lspermon relat.mn is the one of free par-

ticles... That 1s, 1f one: assumes tha. or (7 2) only xmxmal_ pa.rtmles contm.but.e we get.
(ras):

Fma.lly we can. see- that. for‘th cal tempera.ture determmed from condxtzon_

(t:19)

Result (7.19) is verified experimentally, and it follows from (6.24) and (7.15).-
We leave to a future publication a better description of the A-point (computation
of the specific heat, viscosity coefficient and the heat conductivity) as well as a

derivation using the field theoretical approach of the gap equation.
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in terms of th.ree parameters-

'vm; C'ONCLUSIONS-- ;

In this .paper. we. have studied the 1mperfect Bose. gas at very low temperatures
We have shown that the relevant pa.ra.meters for u.ndersi:andmg the thermodynamma.l
properties: of such a system is the scattering length: and_ the depth of the potentxal.-
Qur effective I'.Ié;m.iltor.xian'to- He! is. bﬁilf up from- these two pdrameteré which are
taken dn:ectly frofm the two-body potentlal msocmted to the interaction of Helium
atoms, - Our model does fot contain free parameters It is then a microscopic theory.

We ac}neve by using the effectwe Hamxltoman a comp!ete descnphon of Helium
superfluid for T < 1.0°K. This i is- the range of validity of the low temperature
effective Ha.mlltoma.n (3.20): For T Z 1.0 a.lthough we have not succeeded in
wntmg an effective Hamiltonian in this range we have succeeded in getting the roton
spectmm by arguing that the system isinthe process of restoring the symmetry. This
éntails, formally, a coupImg a.mong_the modes. By using the relativistic prescription
we han'r__e been able to.get the roton spectrum.

. The- méin aéhievéﬁléﬁt of our paper, beéides getﬁng the relevant features of
Helium at; low tcmpérat-u'res such as spectrum, bindihg energy, Heltum density, is

the complete determination of rel

£, microscopic quantities of Helium superfluid

The maii results of our. pa.per are contamed in the first column of Table (1).

They express ‘the releva.nt physlcal qua,ntlty in terms of the three parameters.

47

Table 1

Our Model | Predicted Value Expetimental
P | BRE 1 153.10% (V)P | 16 10° (eV)?
e —4F | -50 106V | —55: 10y
v | AR 53 1077 71077
Po ImAE " |1 128 10V - |- 3.8 10% eV
A AE | 102 107%eV | 9 10%eV
[T : %‘-m ; ; %mz o) 0.8 <o p < 0.Tm
PO)| T — . BA10% (eV)E -14.8-.,.f—10$7_(eV-)‘f
ved % | <gs100ev | < glorovev

For comparison we present in the second row of Table 1 the predicted values for
these parameters by taking o = 2_:& » AE ~10.2107*eV and 3.5 10°eV. In the
third row we present the experim;antal values.

Our c;)nclusion is that we succeeded in getting, from.a microscopie theory not only
the essential features of Helium. superfluid but we have also succeeded in getting a
good acecount of a very large numbers of macgoscopic parameters of Helium superfluid
at low témperatu.res. o _

Other result that is worth emphasizing is the identification. of the normal compo-
nent of the fluid as Helium atoms whose momentum is larger than v2mAE. This
confirms a conjecture first made by Tisza(’3) on the nature of the normal fluid (this
is his postulate {c)). Such a finding allows us to write explicit expressions for all

thermodynamical variables involving the normal component. In particular one can

write _
12 h(BE
%_ - (%)32 ;%—%%-))«_ - (7.20)

The dependence of p,(T)/pn(T:) exhibited in fig (2) is in'an excellent agreemént
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with Andronikashisli determination of p.{T}/p.
Finally we comment on the determination of the critical temperature. In our first
estimate we have taken the gap as independent of temperature. This is obviously true

in the: *classical approximation”®. That is, one expects that as a result of quantum

thermal flictuatiots the gaf). disappears. | Within the constant gap approximation.

we-get T, = £5°K: However if one imposes in some of our equations that at the

critical temperature

p,_-(T;? = 0
TAET) £ 0

Then, from (7.15) it follows that

2°K

{12

T. = 2—'"[ ~H(3/2) p“"] ”

This is a very good estimate for-the A-point (¢’ zbove is the Riemann zeta func-
tion). From {6:22) and (6.18) we get - _

Pn(.Tc } = Py,
Furthermore, since (6.24) pr'.edi'cts:th'a;
Pa STl =

one gets results that are totally in agreement with:the experiments. : Furthermore
the above results are just Tisza's postulates (¢)-and (d).
I terms of the shree fundamenial parameters. a,. AE" and m one can write

for the-critical temperature

o2 (mAE 1\
T m 16m-c(3/2))-, .
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. whereas for the normal component

. . 1 .
Pn(T) _ (T).'Sj! f,_ATE dyyz 1

Pre D [ dyy?

It will be then impor-tant to analyse the gap equation taking into account quantum
corrections. The simple expression presented hy us shows that it will be possibie
to reproduce all phenomenologically relevam fea.tures of Helium superﬁuxd close to
the A-pomt These questions as well as the determination of tra.nsport coefficients
is currently pursued by us. .

One of the byf)roducts_ of our paper.was to shed some light on the Landau-Tisza
controversy(14). In fact, from (6.18) it follows that Helium density. is composed of
a uniform background (Bogoliubov’s condensate). plus excitations. However, some
excitations are just Helium atoms. We ha.\;'e shown that the normal componenf is
associated to these atoms. With regard to the separation of the Helium density
Landau was correct. However, as far the identification qf the normal component is
concerned we have checked that Tisza's view is more appropriate.

Our approach to Bose-Einstein condensation makes a simple prediction for- the

equation of state at zero temperature

which deserves to be tested experimentally.’
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- APPENDIX A

" Aimed at the Justlficatzon of the effective Hamiltonian (3 7) let us separate 2 _:;:_:.._'

(3. 3) into two terms and write, formally
p=a@tmE L (A

- After substituting {A.1) into (32) we get for the Hamiltonian dénsity,_

m..
I

Let us associate. p; to an-uniform background (condensate) and w_rité .

pE) =y - @y

For.an uniform de'néity one can write for H,, defined in (A.2)

o L EYV(E— 3" ".'. _ 4ma 2 ke
o= e one = v o

Expresmon (A 4 1mphes that pa.r.

themselves as hard spheres and that the only televant - parameter describing thexr':

mtera.ctmn is the scatterxng Iength

" Let us analyse now the interaction of partlcles in the condensate with those not

helonging to the condensate. Tha.t is, we will be interested in studymg H,, deﬁned R

By_.

It order to introduce a sensible approximation to (A.3) we just recall that in the- o
low temperature limit a single particle is insensitive to some details of _the.pote_u!-_:?'

tial. In fact, within the semiclassical approximation the only relevant region of the '

poténtial' is the point in which the potential has a minimum.
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FAEIVE -0 E ) pEIVE - )pn(x)+ S VG-
= His + Hyn + Hon - SRR (A 2):3.__- ‘

"clé'."i in the 'um'form condensate iﬁﬁeracts' among.~

= jfp,(f)V(f—f')pn(f) & EE o ."(’A}s).

If we expands V around the mxmmum one gets

H,, = me j daz p,(z) [ d3x pn(z) +].ugher moment.um dmstrlbutmn terms
- (A 6
: For an umform condensate and :f wemneglect: the higher momentum partlcle dis-

tnbutmn_‘_termg (that i 1s,~ neg_le;ctmg,deta;ls_of the pc_:tgntx_al),pne-gets an approximate-

expression fqr Hyn: o R . I T
H,, = VPC',.(V;m [Ezom@) - (A7)
The- mtera,cnon of pa.rtlcles in the condensa.te wﬂ:h a smgIe paxticle not belongmg :
to the condensate (HQ) will be: then, £rom (A7)
HY) = Vs Vo, - L (A8) -

If one adds (A 4) mth (A 8) one: would gef. a snnple expr&ssxon for the mte:ra.ctlon

of particles in the condensate that. i is:

CH = HAED Ly [(4::) P +Vﬁmﬁo]“”¥' ' (A 9)_

Expression (A.9) for. H, is equ.walent to (3.7} with. A given by (3 6) a.nd AE
given by (3.8).
Since Wun is negative, H, satisfy the requirement of being & quantum liquid

since as function of the condensate one has a minimum for

V.-
= B A0
Py e ™ (A.10)

The identification of - p, with' g leadsto-
Pue = 1.5210°(eV)® ' a (A.11)
in agreement with {2.7). . . .
The conclusion is that our effective Hamiltonian for the description of Helium-4

incorporates one global aspect of the potential (the scattering length} and a local

aspect of the potential (minimum of the potential).
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FIGURE'CAPTIONS’_ :

F:g 1 - Potential energy between two He—4 atoms ‘as function of chstance Thé

: releva».nt parameters, AE and @, are shown explicitly here.

Fig. 2 — pulp as functmn of temperature 0pen circles.are experimental va.lues of
Andromkashwh Da.rk circlés were obta.med from .Dn(T) o(T =2 2°K)

proposed in this paper. Solid line represents the fit pn fo= (T/TA}“" 5-_.__ -

v(r)

10,240 %v|--
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