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Abstract

The 1/N expansion of non-linear o model is considered in the framework
of Parisi-Wu stochastic quantization. The expansion is implemented both in
the Langevin approach and also in the functional—iﬂtegral representation of
stochastic processes. Whereas the first method guantization is possible only
in a “tricky” way, the functional-integral approach is straightforward and
thanks a BRST symmetry we show the renormalizability of the model in two

and three dimensions. -

This work was partially supported by (1) FAPESP and (2) CNPq.

1 Introduction

The stochastic quantization method (SQM) was devised by Parisi and Wu [1]
(for a review sec [2]) to avoid the introduction of gauge fixing terms in gauge
theories. Although a lot of progress has been done in this direction, [3,4], the
SQM deserves an interest in itself as an alternative method for quantization,
It is therefore important to reobtain well known results to understand the real
power behind the method. From this point of view an interesting problem is
the implementation of the 1/N expansion of field theories. We mention that
the SQM was already used to study some properties of the large N Hmit, as,
for example, the so called large N reduction [5]. In this article we study the
L/N expansion, [6], of the non-linear ¢ model, using the SQM. Classically,

the model is described by the Lagrangian density

£=3(0ue)" 1)
in which the fields are subject to the constraint ¢ud, = N/2f. Perturba-
tively, one would use the constraint to eliminate one of the basic fields from
the action to be used to generate Langevin dynamics, as was done in the
references {7, 8).

In the usual (i. e., non stoghastic) quantization approach, the simplest
way to derive the 1/N expansion is to introduce a Lagrange multiplier field,

o, to enforce the constraint, The Lagrangian for the model then becomes

1 1 a N .
L= 5@+ s+ o (- 53;) | @)

where a mass term for the ¢, field has been added. At the quantum level,
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the mass m will be adjusted so that ¢ has zero vacuum expectation value.
Arn apparent difficulty in Langevin's approach based on (2) is the lack
of a restoring term, bilinear in the ¢ field. In section 2.,we overcome this
problem by adding to the unperturbed Lagrangian and subtracting from the
interacting Lagrangian a bilinear term with a kernel fixed by demanding that,
at the static limit, in each order of 1/N, only a finite number or diagrams
contribute. With this proviso, higher order corrections can be caleulated up
to ultraviolet divergencies which must be removed by a renormalization pre-
scription. The discussion of this problem, however, is easier in the functional
approach, [9, 10] where techniques similar to those used in gauge theories can
be employed, {11]. Because the phase space has dimension n + 2, n being
the space-time dimension, the stochastic diagrams have degree of superficial
divergence higher than usual. Fortunately, as discussed in section 3., 2 BRST

symmetry puts strong restrictions to the form of the allowed counterterms.

However these restrictions are not enough to establish renormalizability. To -

achieve that, we exploit some additional Ward identities related to the basic
constraint, ¢.¢d, = f—f, which the fields should obey. For 2 < n < 4 we are
_ then able to prove the renormalizability of the model.

In the conclusibus, section 4., the model is rewritten in an explicitly su-

persymmetric form. This is a very important step, guarantying the existence

of the static limit, through the mechanism of dimensional reduction of Parisi

Sourlas, [12,13,14], adapted to the SQM, [15,16].

2 The 1/N Expansion of Non-Linear ¢ Model
in the Langevin Approach

In quantum field theeory the basic objects are the Green functions given, in

Euclidian space, by

v bl ) e 519
{0[Td(21) - - - Pz, )|0) = [2¢ ‘“i‘fw efbs(wz )

(3)

The idea of Parisi and Wu [1], to obtain these Green functions, was to in-
corporate an additional coordinate r {called fifth or fictitious time) in the
flelds, ¢(z) — ¢(z,T), and to postulate & dynamics for the field, given by a

stochastic differential equation (Langevin equation)

8¢(z,7) _ _d_65[4]

dr 264z, 1) +n(z,7) ()
where S is the Euclidian action given by
§= [z dr' L(o(z,7"), Bd(z 7)), o ®)

d is the diffusion coefficient and p(xz, v} is a Gaussian white noise with corre-

lations

(=, 7)), =0 (6)

(o) a(es, ), = 6% — 22)8(rs = 72) ™
() (Bah, Tare)), = 0 (8)
m(z,n) o)), = 30 I a(zam) (e, ), (9)

combinations

The correlations of functions of the ¢ field are given by averages over the
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noise 5 with a Gaussian measure
[Py -exp{—1/2djd"zdrr;2(z,f)}
[ Dy exp{—1/2d [drgdr nz(:z:,‘r)}

where the dots stands for any product of functions of ¢. The basic recipe

(), = (10)

of stochastic quantization is to solve {4} subject to a initial condition ¢y =

#(z, 7 = 7o) and to construct the correlations functions of ¢y,

{@{z1, 11 )by(22, 7)< - Bo(n, Tﬁ})q (11)

It is then possible to demonstrate [1,17] that at large and equal fifth times
(i. & m =1y = ... =7, = 7) these correlations tend to the corresponding

Green functions of the quantum field theory. Precisely,

Lim (gy(21, T)o(2, 7} -~ $aln, T}, = (01T b(21) (1) - -~ $(za)[0)  (12)

oo

As a test to this approach we want to a.na.lysé the 1./N expansion for the
non linear sigma model described by (2). The first idea s to consider Langevin
equation for both ¢ and . However, the Langevin equation for ¢ does not
possess a restoring term leading to divergencies in the equilibrjum. This same
behaviour is to be noted in gauge theories where the Langevin equation for
the longitudinal part of the gauge potential does not have a damping term.
In that case the problem can be circumvented by the use of the stochastic
gauge fixing [3]. In our case we can handle the problem conéidering instead
of (2) a modified Lagrangian proposed by Lowenstein and Speer [18]. It is

given by
L= Lo+ Lo
3 @b+ 5w 4 2o D(-0)
T3 \Pe) TR T 50 Yo

4

L = =06t = 50 5(-0)0 (13)

where X fixed so that at the static limit only a finite number of diagrams

contribute in each order of 1/N. Explicitly,

d%k 1
Z(p*) 2_[ 212 (k2 + m?) {(p — k)2 + m?]’ (14)

In momentum space the Langevin equations associated te (13) are
a d¢ 2 2 d¢
Z_ 4z =1, — tyo(k — 15
(G + 30 +ode =0 - & [ )n¢(p. Jolk—p,1) (15
and
0 | digyys _ d, "
[F + FEE)okt) = n+ —a(k 12(k)

s |t o= p.0) (1)

where dy and d, are diffusion coefficients. Their precise values are not im-
portant since the equilibrivum limit is indepéndent of them.

We will solve these equations taking as initial conditions that the fields ¢,
and o vanish for ¢ tending to minus infinity. The free field Green functions,

obtained by replacing the right hand side of (16} by delta functions, are

Garlkst) = Gue FW+mg(y) (17)
Colk,t) = e FEENgy) (18)

so that the free field propagators are

; e 2(k2+m’)l!|
Dullitnt) = (Gulk, Dk’ £)) = QI8+ K) T
(19)
' (k"‘)|t ol
Do(k;t,t) = (a(k,t)o(k, i})(2¢)“5“(k+k)-Tm-— (20)




Solving Langevin equations by iteration, it turns out to be convenient to
introduce a graphical notation as indicated in fig. 1. One can then verify
that graphs containing the insertion of the bilinear vertice are cancelled by
graphs containing one loop diagrams of fig. 2. as subgraphs (this is necessary
to have a finite number of graphs in each order of &). Indeed, we have the

following contributions to the graphs listed in fig. 2.

i 2,
ds 2 P e~ FEE) -7 ]
Gl + G! = ?S(k )_id‘rl e 2 (=) I)Tkg)'—"“- + (t —F t‘) (21) ‘

FL e~ |

t n _
Gs+CGs = dydy fd*ky jdﬁ‘/d’_ze—izﬂ'-z[k’)(tuﬂ)e ?

2 (2','r)“_°° . n(k?}
-2k Pmdn-n]
€ -2 (H+m)(n—2) = =
= (k — kl)z Fm? € + (t i, T2 1"1) (22)
G.l + Gﬁ = Gs + Gs With. (kl = k —_ kl) (23)
&k f, f
= i B — B (=) o~ R B )(t'-m2)
G d? (ZW)"_idﬁ_-!ode e 2 e 2
e R H+m) | n =72 | o= -k P Hm3] = | )
T Hrm (k= k)2 4 a2 24)
The static limit is reached by setting £ = /. We get
1
G+ Gy = ) (25)
d*ky 1

Gat-r + G

=Y Gy SO [/ 0 + - Rt Bt o]
{ d, /dy 1
(

B mh) [k~ k2 +m?] | S [(k = k) + 7]

1 . 1 ’
IR mz)}- ) 29

6 .

so that the sum of all these contributions vanish, as promised. Therefore both
graphs with the bilinear insertion and graphs with the one loop diagrams of
fig. 2 can be omitted once and for all.

We are in a position to discuss higher order corrections and the inevitable

ultraviolet divergencies. However, as the stochastic diagrams are very differ-

ent from the ordinary Feynman graphs, the discussion can become somehow
cumbersome, It is advantageous to use the functional integral approach that
keeps a closer resemblance with the usual method.s. Nonetheless, as we will
see shortly, there will be additional divergencies, not present in the usual

formalism.

3 The 1/N Expansion of the Non-Linear o
Model in the Functional-Integral Approach

Following Gozzi [9] and Nakano {10] we will derive a functional generator

Z|[J] for the correlations funetions (11), i.e.,

_ & Z1J)
(fﬁ,,.(.’,l:]_,‘i'l) T ¢T|(Im’rﬂ))n = 5«7(1’1,71)‘ . 6J(mmfn) J=o

(27)
expressed in a functional integral form over the fields. To construct the func-
tional generator for the non linear sigma model we shall consider Langevin’s

equation and the constraint. We have

oo 285l 2
.¢‘a = "2(54)0 +\/N0¢'a)+‘fla
., N
¢u—§= (28)
with | .
£ =040 + img? | 29
Tgherel T T e )
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As shown in [11}, there is a BRST symmetry in the functional repre-
sentation for stochastic processes. This symmetry will allow us to analyse
the renormalization of the model in a systematic way. Let us introduce the

simplified notation

() @) =-() @

where the first row of each matrix is actually a N component column matrix.

Equations (28) can be rewritten now as

Flf)=vw (31) V

where
F(sﬁ,ﬂ)—zfﬁa (e +Foda) fora=1,..,N (32)
F(¢»)—¢»n—-~—F fora=N+1
The generating functional is then

Z[K] = <e ST dvedr Kagy > | (33)

&

where £; is the solution of F(€) = v. For our Gaussian process
Z[K] NjDueLw A zdr Ky M7 anzdr a2 (34)
where Dv =[], Dn,. This equation can be rewritien as
BIK| = N [DDES(E, — )l s st otp [T ersind ()
so that, because of

6{6; - 5:) = 6(Fa(5) - Vu)

%H (36)
we have

Jirstr (dpd-Ket) (37

ZIK) =N [ DuDES(E(E) ~ ) ‘22 o

8

Using now the identities

6(F (&) —ws) = /Dﬂ o= J "7 Bal Falf)-va) (38)
5 .

where (D and D are Grassmann fields)

() () o) w

we have (for notational simplicity we will write # instead of (z, 7))

ZIK} = ¥ [ DvDEDSDDDD exp{— [ [,Ba(Fa(f) -

- [ D@5 D) - Kt + 2]} (41)

Integrating in v, = (TS‘), we finally obtain

Z1K] = X [ DEDADDDD oxp{ - [ de [B.Fu(6) - 282

- [ D@ G D] + [ de et (12)
with
f=0Of where O= (; g) (43)

It is important to observe, [11], that the effective action in (42),

S(6.8,D,D) =5 [de i+ [doBbl6) - [ dedyDo(e) Mz, )DA0)
(1)

where
8F, ()
nb( :y) ‘5E (y)

(45)




is invariant under the following transformation (¥ is a Grassmann variable)

8fa(z) = EDu(z)

§Dufz) = 0
6D.(z) = &h(2)
8Bu(z) = 0 (486)

which is nilpotent, §2 = 0, and is called BRST by analogy with the corre-

sponding symmetry found in gauge theories. To derive the Ward identities

associated to this symmetry we add external sources ¥, ¥ and M for D, D

and £ respectively. We have then
ZE,M,9,9] = N f DEDFDDDD exp{—S(¢, 8,D,T) +
+ [ dz (Kb + M+ 9.0, + Dod)}  (47)

We now change the integration variables in the way dictated by {46). If the

measure is invariant by the BRST symmetry, we obtain

fdm( LI %ﬂ):o (48)

Defining the generating functional for the 1PI functions by

F[E: IBI D: ﬁ} = W[K) M: 19! g] - fdm (Kn‘fu + Ma,@u +§aDu ‘E‘ﬁa’,a) (49)

where W is the generating functional for the connected functions, we find

that

d D, + 8. =

j = ( +has ) 0 (50)
Assuming that a regularization scheme can be devised so that the BRST

symmetry is preserved under renormalization, we obtain that the renormal-

ized effective action still satisfy the above equation. Suppose moreover that

10

this renormalized effective action has & form similar to (44),
S = [ dudy MEED.D, + (¢, 6) (1)

where MZ =0 for a =b= N+ 1. From equation (50) it follows that, [11],
SME(z,y) 6ME(z2,2)

sa(z) ~ el 0 (52)
T = | W AMEw.S) (53)
and therefore
_ SFE(x)
= ) )

where F# depends only on £.

The solution of (53) can be written as

%= j dz f,(z) FR(z) — WR(8) (55)

so that, replacing it into {51), we get

sn=-[ dody 2 (( ))D (©)Duly) + [ doBERE) - WH(B)  (56)

Notice that Fif 1 depends only on ¢ and not on o, because M7 vanishes for
a=b= N+ 1. We see that this BRST symmetry puts strong restrictions to
the form of possible counterterms. Thus, for example, monomials containing
powers of the o field only, are not allowed if the BRST symmetry is preserved
under renormalization. However, the BRST symmetry by itself does not
guarantee the renormalizability of the model; it still remains to prove that
FR(£) depends on £ in the way dictated by (32) and that WH(3) is quadratic
in ﬂ . .

Using power counting, let us establish that the renormalized effective

action has indeed the form (51), At this point it is convenient to go back to

11




the original notation, writing the effective action in terms of the components

of the fields £, 3, D and D. We have

S(‘?‘(’, oA e, 51 e, c) = jd“:z:dr l:_ g‘\: + AaFo(, ‘7) + %F(fb)]

— [@drarstar [c g G+ Tt SF, \/1_ gi ]
(87)
and, using (32), we obtain
= [ zdr {_i\i + A [qéu + é(—l:z+ m?)é, + %mﬁa}
v (¢2 2f) Cul + 50+ m)
+—-j~_ﬁa] c, - v,—ﬁam ~ b
(58)

The Feynman rules adequate to the 1/N expansion based on this La-
grangian may be obtained by summing bubble diagrams and inverting the
resulting quadratic form. They aré dep1cted on fig. 3. Using that figure we
venfy that T';, =0 and

ToolBp, ) — pg~=° (59)
Too(Bp, ffw) — ™1 (60)
TeE(Bp, fo)) — ™ (61)

as f# tends to infinity. From those results we may compute the degree of

superficial divergence of a generic graph . We have
§=DL— Zd‘-n,- +3.D, (62)

12

where n; = number of internal lines of the type i {i. e., lines associated with a
given propagator), d; is the ultraviolet degree of the propagator of the type ¢
(G:(Bp, f*w) — §~% as B — oc); L is the number of loops in the graph, D, =
number of derivatives at the vertex v and D = n+2 where n is the dimension
of the space-time. This formula can be put into a more manageable form by
using the usual relations between number of loops, number of internal lines,

external lines and of vertices belonging to the graph. In this way we obtain

§=D~ 3 [AilNs - 22(D - [L.]) (63)

where
D—dy

[4i] = 5

and [L,]=D,+ Z (4] (64)

with dy, = asymptotic behaviour of the A4; propagator for large momenta
and w’s (3794 whenever k — Ak, w —+ f%w and § — co); N, = number
of external lines associated to the A; field (in the case of a line associated
to the contraction of two different fields, i.e., mixed propagators, one should
count endé of external lines directly attached to the graph); D, = number

of derivatives at the vertex v; v

#¢ = pumber of lines associated to A; joining

at the vertex v; [A;] = canonical dimension of the 4; field; [£,] = operator
dimension of the vertex v and ¥,y = sum over all vertices of G.

As a general observation concerning the present approach, notice that
due to the effective increase by two in the dimension of the phase space many
more superficially divergent diagrams are generated. We shall see shortly

how additional Ward identities can be used to overcome this problem.
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The dimensions of the basic fields are easily obtained using (64) and (58),

[¢]==3* [o]=2
=23 [a] =4 (65}

Cl+lCl=n  [E+E=6
It follows then that for all vertices [£,] < D so that in the less favorable
situation (63) gives

5=D - T [4INs (66)

Let us now try to satisfy the requirements of the BRST symmetry. Firsily,
we should guarantee that the renormalized action, Sk, does not depend on
Tc. From (66) this implies that

[+ld=6>n+2, (67)

i. & n < 4. Similarly, in order for Sp to be at most quadratic in CC, Ce and

eC we would need
| o B EN
which is obeyed if n > 2. On the other hand, the coefficient of CC, Ce and
€C will depend only on ¢ and ¢ if
[Cl+[C]+ A = 42
Cl+[Cl+[al=n+4

Cl+id+N=n+4 [>7F2 (69)
[C] +{c] + [o] = 2414

which leads to n > 2. We are theref;)re limited to the interval 2<n< 4. In
that interval we can go from (51) to (56) without having to verify explicitly

the vanishing of some of the counterterms. Thus, for example, graphs with

two external ¢ lines have degree of superficial divergence § = n — 2 leading

14

? counterterm is

apparently to a non renormalizable theory. However, a o
allowed by (51) but not by (56}, implicating thai it must vanish. Although
we have proven that, as consequence of the BRST symmetry, the renormalized
action has the form (56) we still have to prove that W?(3) is quadratic in A
and that A, FF(¢,0) and aFR{$) are renormalized versions of {32). The first
condition, namely that W# is quad.fa.tic in A, is satisfled if

o] i["{‘]\]==8n2_ﬂ£ } >n+2 (70)

i. e, n < 6 which is compatible with the interval determined by the BRS
symmetry. Concerning A, FF and F® notice that at n = 3 it would be possible

to generate counterterms of the type

(Mata)dy € (Aata)iel (1)

with § = 1 and ¢ = 0 respectively. However, as indicated in fig. 4 and
fig. 8, it is easy to verify that such counterterms do cancel. Notice that the
contributions of graphs of type (6c) are not relevant if one considers only
correlations of physical fields. Indeed, the corresponding graphs do not have
neither €' or € as external fields. Therefore, the lines associated to these
fields must form closed loops. Noting now that the propagators depend on

the fifth time in the way

{Clk,7)T(K, 7)) o 8(r—1) (72)
(elk, TYE(R, 7)) o 8'(r — 1) (73)
we arrive to the conclusion that these graphs will vanish when integrated on

the fifth time. Thus ghosts field do not contribute to the correlation function

of other fields. We arrive to the conclusion that for n = 3 the non linear

15




sigma model is renormalizable in the 1/N expansion. The same is true in

2+ ¢ dimension but, letting € — 0, we find new types of divergencies. Firstly,
thére are divergencies associated to graphs with four external ghosts(i. e.
C and C lines). In this case, we do not add the c;)rresponding countert-
erms because this would destroy the BRST symmetry of the renormalized
Lagrangian. Since, as mentioned earlier, closed loops of ghosts fielde vanish,
the physical sector consisting of the correlations functions of the ¢, fields will
be free from this type of divergence. Besides that, new divergencies arise be-
cause the field ¢, has zero dimension at n = 2 and so the degree of superficial
divergence does not change if the number of external ¢, lines is increased.
Notice however that the divergent graphs must have at least one external
line different from those associated to the ¢, field, in accordance with (56).
These diagrams would generate counterterms containing powers of ¢2. If the
divergence is only logarithimic, we could use the sam;a mechanism indicated
in fig 4b and 4e, to show that there is a cancellation of the corresponding
contributions. Nonetheless, this does not exhaust all the possibilities. In
the c:;se of a graph with one external A, line and three external ¢, lines the
graph is quadratica.lly divergent and in principle would need couterterms like
Au¢a9? and A ¢.0,4484¢. To rule out the second possibility we should use
the identity in fig. 4a. We concluded that also in two dimensions the model
will remain renormalizable as before . 7

We now integrate in C, C, Zand ¢ (or D and D in (47)) resulting

ZlI) =N f D¢DaDADe det Mexp{- j drzdt [—g)& + A (q's,

+ 500t m - on) + 2 (- 32~ 94]|
16

(74)

where (as can be seen from (45))

SF /AT 55,
[24.9 Nﬁa

det M = l fs? o (75)
w Ve
It is possible to show that, [7,9,11],
.
det M ~ exp 25 (G)Id"wdr oz, T) (76)

which plays the role of a counterterm to cancel some divergencies of the
perturbative series, [20]. Alternatively, using dimensional regularization one
can disregard (76) because §7(0) = (f d™k)g = 0 (7,11, 20], where R indicates

that the integral is dimensionally regularized. From (74), integrating in A,

we obtain
2N =N j D¢DoDe det Mexp{-— f dzdt [%
ot 3 CEUP LN S (PO A B
X (45“ + 5(-D+ m3) g, + ﬁmﬁa) + e (Gf'a 2f) Jqs]}

(77}
and, discarding the contribution of the determinant, we arrive at

bAN =NfD¢’Do"Da exp{-—fd":cdt [—2-1&

2d V.
x¢,(KfK + %ax +-4 =Ko+ %& + 2L wa) b — 2—?% - Jaéa] }
' (78)
where

- 4.4 2

K = d.'t+2( O+ m®) {79)
d d

t e L D 2

K' = -4 3(-0+m’) ‘ (80)

17




This expression could be used as a starting point to do 1/N calculations.
The advantage over (47) is that it is more economic, employing less auxiliary
fields.

Integrating over the ¢, fields one gets

ZN=N j DoDa exp{—Ad- - g f d*zdt J,,D“J,} (81)
where
d d &2 2d
D=K'K+—=0K+—=Klo+ =o* + =
+ \/_.a 7 o+ ot + \/_a (82)

and the effective action Aus has the following power series expansion

s~ (1N

Ao =3 Tr [(K'E}’{)'1 (io’K + 4 Kty + f,,ﬂ + 2—da)]k+1
Sk+12 VN VN N VN

_ —é\/_-?njd“xdt alz,t) = VNAD 4 4@ 4 .. (83)

Stability at large N implies that 4®) must vanish. This condition gives

dnk dw d 1
(@) w2+ E(B2 y w2y 2f

=0 (84)

which'is rapidly recognized as the usual mass gap formula,

d"k 1 1
@y B +m2 2 0 (85)

At n = 2, defining a renormalized coupling constant fr by

1 11, A?
faw) tor N (86)

where A is a Pauli Villars regularization mass and g plays the role of the

renormalization point, we get the well known formula
_3z
m? = ple I (87)

18

A® which furnishes the propagators is given by

AD = [drods [ ot af {%a’(m, (@ — o, ¢ - t)a(a", )

1 !
+%a(z,t)1"m(a: — 2t —tNalz, t') + §a(:c, ez — 2yt — o', 1)

+ %a(:n, $)Ta(z — 'yt — t’)a(x',t')} (88)
where
& [ drkdw 1 1
Fooles®) = =5 | Gay#t S+ 20 5 8) 1w~ F A — P 7 7]
& [ dkdw 1 1 =0
T2y i IR mB i(w - ) + Sk q)F + Y]
(89)
d*kdw d d
Ceclts ) = =2 | s BT P oo T S
(90)
d*kdw 1 d
Faa(qy Q) = d2d,[(21r)“+1 —i + g(kz + mﬂ) (w - Q)a + %[(k — g)z + mz]z
(91)
Paa(?a Q) = Pcw(ﬂ'a ﬂ) (92)

The static limit may be obtained by integrating over 2,

+oo
1
Flg)=5- [ d0F(,Q) (93)
giving the same results as in the usual, non stochastic, approach. In partic-
ular,
dk 1 1 )
PQ&(Q} = —2./(27f)" k2 + m2 (k _ q)g + m2 (94)

Although more complicated the integrals in (90) and (91) can be explicitly

calculated. To illustrate the general method we consider the expression for

19




Foa We use,
——-d +°°rl P - 40 +m?)le|
W (R miE _£ iy =g
d +oo ) e _g[(k_q)n_'_mﬂ]l‘l'
3 & 2 22 ] ' =) 7 2 )
(w— ) + S[(k - 9)* + m7] (k~gf+m

so that, integrating in w and then in ¢, we get

o ~§(F+m?)t o~ H(k-g)?+m] e
—4 t
f(z )nfdt ) e G (%6}

This expression can be further simplified introducing Feynman parametric

integrals, giving

d"k oo oo . -co »
—df [ ~5(#+m?)a - ik +m?]p
de./(2rr)" -./dt cos(§2t) !dae z .‘fdﬂe H (97)

In fact, the integration in k is Gaussian and can be done immediately. We

get | N

—_"""(271.?;"/2 /dt cos(Qit) fdzjdaa{a —t/z)8(a—t/(1 - x))

efga[:r:(l —z)g?+m3}

x an/2-1 (98)

where we have made a change of variables, & = axz, f = a(l — z).After
integrating in £ we obtain
£ 1/2 o ga[::(lnn:)q’+m2]

~ EmdyiQ f dxf da sin(fuz) (%9)
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In two dimensions, n = 2, there is a considerable simplification. In this

case we obtain the final result

1
Toula ) = —gﬁ{

1 A— g - AT +4¢m? A + VAT + dg%m?
\/A2+4q2m2 A~ + JA L APmE A — /A + dgm?
1 In B+ ¢ +B*+4¢@m* B — /B ¥+ 4¢%m? 100)
VBT rAgmE | B+ gl - B+ 4¢mE B + /B? + 4¢m?
where
= ¢ -i-%z (101)
B = —q“+¥i (102)

4 Conclusions

In this work we have studied the stochastic quantization of the non linear
sigma model in the context of the 1/N expansion. We have considered two
approaches. The first approach was based on Langevin equations and, to
have a well defined equilibrium limit in the linear approximation, a nonlocal
bilinear term was added to the free Lagrangian. The same term was, of course,
subtracted from the interacting Lagrangian. Although very complicated for
finite times, the added term has a simpler form at the field theoretical limit.
The second method of quantization, a functional integral approach, is more
adequate to the discussion of the ultraviolet divergencies. In that case a
BRST symmetry strongly restricts the form of the allowed counterterms so
that we are able to prove that all divergencies in the physical sector can
be eliminated by a renormalization prescription. It should be remarked that

this result is a consequence not only of the BRST symmetry but also of Ward

21




identities related to-the geometric nature of field ¢,. There is another (anti)
BRS symmetry, [12], which ensures that the static limit corresponds to the
usual non linear sigma model. Using this symmetry, the model can be written

in a explicitly supersymmetric form. In fact, defining the superfields

Ba(z,1,0,6) $a(z,t) + 0 Cul2,£) + Cul2, 1) 8 + Ao(z,2) 58 (103)

(s, 1,5,0) = %[a(z, 1) +8c(z,t) +2(2, )8 + oz, 1) 8] (104)

we find that the action (58) can be written as

8=]d"mdtd9d§ {w@aﬁDtI’a+ (@2—‘%) E+E[¢I>]} (105)
where the covariant derivatives D and D are given by
_ @ a
D = i Ga (1086)
- a
and for simplicity we have taken d = 2. Noting that
N — [z didddd (37— 2=
’ (@5 - E) = [DRefwesud(e-5), (108)
the g—enerating functional becomes
N — .
— 2 _ 2V} —Ssa-fdnodidd 47 Fada
Zald] [ D&§ (@a ;S f) oS8 (109)
where
Sss = f dcdtdddd (~2.DD &, + L£[8]) (110)
and .
To = Lu(z,1)6(8)5(8) (111)

Formula {109} shows that the constraint has to be imposed supersymmetri-

cally to the free stochastic dynamics. “This explicit supersymmetry is essential
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to recover via dimensional reduction the correct static limt, [15, 16]. It is very
important also, as we saw, to prove the renormalizability of the model. By

contrast, the functional
Z[J} = NngSD)\ §(¢? — —)expq — /d":rdt [—. A2
o 2f a

+ z\u(qh +(-O+ m?)¢a+) - J¢] }
: (112)

which also corresponds to a free stochastic dynamics but with a non super-
symmetric constraint, and which could appear perfectly reasonably, does not
enjoy the explicit supersymmetry and it is not clear if its equilibrium limit
does exist or even if it is renormalizable.

As a last remark we observe that, although having the same static limit,
the two approaches tha;t we have considered are not equivalent for finite values
of the fifth time. In particular the geometric constraint satisfied by the fields
holds only at the static limit in the case of Langevin method whereas it is

imposed at all times in the functional integral method.
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FIGURE CAPTIONS
Figure 1: Graphical notation used in the solution of Langevin equations.

Figure 2: Cancellation of contributions from one loop diagrams and bilinear

o insertions.

Figure 3: Feynman rules for the action {58), used in the functional integral
method. The propagators for the A, and « fields vanish in the leading
1/N order.

Figure 4: Various mechanisms of cancellation involving insertions of Auga,

$apa and $.C,.

Figure 5: Typical contributions to Green functions containing a ¢,¢. in-
sertion. In diagram (a) the lines emanating from the ¢,4, vertex go to

different vertices.
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