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We study ﬁmte-temperature eﬂ'ects toone Ioop order mﬁeId theorxes, by relating
 them.to the forward scattermg of thermal partrd& Th.ls appmach allows for an exact
eva[uatxon of all tpera.hrre—dependent contnbutmns to the thermal self-energy in
terms. of genera.].rzed Zeta. flmcttons We obtam & dosedform expressxon for the
two—pol.nt;gluon ﬁmctxon in thermal Yang MJ]ls theory

I [NTRO]jUCTION

There have been maﬁy‘ studies ot thermal Green functions in field theories [1-5],
with special emphasis on the tnigh-tempera.ture domain. In particular, the contribu-
tions to'the thermal two-point: function, in the one-loop a.ppronmat:on, have been
expressed- as a. series: of terms in. a high- temperature expansmn. o )

Orne. of the purposes of t}:us—work is. to ca.lcula.te i @ cIosed' and, explieit form
all- ﬁmte—tempera.ture effects. assocxated wrth tke £wo—pomt.’ funetmns, which arise to
one loop order in- thermal ﬁeld theones-. We. employ an. analyiic. contmua.tlon of the
lmagma.ry time formahsm and use an idea of Barton. [6], which relaf.es these functions
to 2 momentem integral of the forwa.rd sca.ttermg amphtude of the thermal particles.
This approach has been further developed and shown to be very useful for determining
the pa.rtltron finctions in QCD &nd Qua.ntum Gravity at high tempera.tures [7].

We will show that all ﬁmte-temperatu.re eﬁ'ects arising in tlus case can he ex--

pressed in terms of the generalized Zeta functlon {(z,1 + q) for integer values of z,

g being . a ratio of the extemal momenta. and temperature T]ns function can be-.
represented asa series:. .

C(z.l+q) E

=1 (_:IHT ' [Rez>1] | .. .(.1)'

2nd reduces at g=01c Ricmann’s Zeta function {(z)[8].

We. begm sectlon II by: consrdenng the massless Ag? theory in n-dlmenmona,
a model 1llustrat1ng the main features: of the method. In 6 d.unensions, this model
has many similarities with the Ya.ng—Mllls theory, such as a: dlmensmnless coupling
constant and asymptotic freedom,. The results obtuned in tlus case; wﬂl be required
in section I, where we study the Ya.ng—MJJIs theory and present an exact expresslon-' _

for the gluon se!f-energy at ﬁmte temperatures. s




II. THE SCALAR MODEL
In orden to lllustra.te our approach and to derive several results which will be

'requzted la.ter on, we cons1der here the massless MS3 model in n-dxmenslons To

.order A%, the therma.l part of the two-point function shown in Fig. (la.), is.given by a -

momentum mtegral of the forward scattering amplitude of the thermal particle with
momenta @, = (|Q[,Q)[7}, as represented in Figs. (1b) and (lc). We find, apart

from tempera.tu:e;independent' terms, the following contribution:

() = (2"'1')".”‘1 2(:TQN (Q) [k! +12Q PR~ —12Q._k]- (?)

where @ =Q|and N ( ) denotes the Bos-e distribution.

The real-time limit of the Green function: ca.n  be obtained from the a.na.lytxcally
éontlnued'lmaglna.ty-tlme. result, via the prescription ky = (1 + ig) Ky, where £ — O+
and Ky is real[9]. The presence of the. fa.ctot i€ associated with the imaginary part of
ko lel alwa.ys be understood, unless otherwise indicated.

s In_térms. ofz = costl; where § is the angle between k-and Q, we find that the
' abov; éxpres.s-ic.m'becomes: _
n(k . 5 k2 1 (1225 e fao Qn_,N_(g)_ dQH
27 TT{(n ~ 272 J1 (ho— KT o T) @ — P
(3)

For even. values of n. > 2, the @ mtegra.tlon can be expressed via'elementary

functmns and i i terms of:

: I)= f— Q2+(2ny)zemp(Q}T§' R OLOR RO
where y-= 4;‘1, pre
$) = Inls) = 3= = $l0) (5)
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" Here (y) = ﬁl@}"(y) 1_11?1.10tes the psi function([8).

We will start by econsidering i’.he 4-dimensional case, and proceed with the

# infegration. Making a cha.nge of vatiables. from z to y and usmg that

Re(y} = —¢'Re(ka),. where e — 0"’ -we find:

Ly(k, T) = 0[Be(~ko}} {Fulq(ko)] — Fil—a(~ko)]} + (ko > ko) (6)

where

(ko)__z""j}k' N

Fo) = 5 j Fu)dy = g [1a0(a) ~ g ) + 5t )4+ constant]
(8
The choice of C' is immaterial, since the ¢-independent constant cancels out in
expression: (6) _ _ - _
Next we turn to the 6-dimensional X¢* model. Frons (3), we find with the help of
eqs:(4;5) that: .

R0 + —yn} @

O P L d=(1-z){5

Bdm Jy [kiz)?
The first term in the bracket yields a contribution proportional to T2, which is

leading in the high-temperature domain:

, 1 72 k3 Ko o (ko + |kl
ns(k,r):mj?(l_@) [1~ et (ko—lki)] (10)

The real part of (10) is obtained by taking the absolute value of the expreésion
which appears in the logarithm. From its argument, we get in the limit &£ — 0F the
imaginary part:

e Ekﬁkzl

Im{ﬂg(k, T)} = Ez' ; lk[:

B(—R?) oo (1
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In the second term of (9) most of the factors can be easily integrated after changing
varables f_pom_:_:.t_o y. The most,.d._i_ﬁ.cl;l.t,part-i.nvdves;the integration over the psi
function ¥(y) multiplied:by. 2 power of y. The relevant, integrals, discussed in the
appendix A give: ) '

ha)=[ o) = a0, + FQien1s 0= 3¢+ Tin(q) + constant

(12)'

where {(z,1 +q) _deﬁb_t_eg.ﬂie- derivative with réépect to 2 of the generalized Zeta

" Function. Fu.tthermorc we find:

~h{g)y= fqy"f(y)dy—-—q’C(ﬂ L+q)+ 2¢( (=1 1+q) (-2, 1+q)—

n, F
~18? +12

In terms oi thm functions, we can then express the second part of }Is ina form
which i simifar to. IL After a stra.lghtforward ca.iculat:on we obta.m. S

He(k, T) GERE( ko)i {Fs[q(ko)I—Fs[ —a(- ko)i}+(f=o«-» —ko) (19)

where q(_ko} is defined by (7) and

Filg) = -E:;T[F | a(q)+=m(q) oW

_w1th F4 given by e (8)

The results obtamed for II; and ]Ig are ;:remse[y the one :eqtured in the case of

T the: Ya.ng-Mi]]s theo:y, to w}:uch we Dow tum

ln(q) + constant (13) -

III. THE YANG-MILLS THEORY
The-diagramé contributing to- the: two-point thermal gluon function, via the for-
ward scattering amplitude are shown in: Fi-g.z. We are workiag in the Feyaman gauge
and for this reason it is: nécess_uy_ to cansider: also the contributions associated with
the forward scattering of ghost pa.rtlcles,as indicated in Fig.(2b).
To order g%, apart from. an overall colour factor N§%®, these graphs yield the

following temp.erétﬁre-dépendent contﬁﬁﬁtion'

d“Q Q
Hw(k T) (2.,)3 N (T) X
k2 — 4k, psar ulic £ 2( Gk ”k" kk
L [k —4 Qg +4¢;:‘i;éq +Q ) +(kﬁ_k)] (16)

As it is well known[3], at finite tempera.tume both the tra.nsvezm and the longi-

tudinal parts of I, are independent, and can be expressed in terms of IF; and g

Using (16} we find t}_iat_ th&é_componenta can be xelate:i. to. IT,. a.nd I[s as follows:
; 11_:':__=1—"'3f- +10R°T0, )

and
2 _ 71k|2 ' ) o .
= R TKE 27” 32” _ sy

Tlni_s, the study of the properties of the thermal two-point gluon function can be
reduced to the analysis of the scalar factors which we have ﬁreviousiy discussed. As
we have seen, the present approach ylelds ex'pkmt expressions for Il (eq. 6) and for I
(eq- 10 ,14), giving the real and the imaginary parts of the Green f\mctlons We have
shown that these structures can be:cxpmsscdam the ia.ctors Fy (eq. 8) and F (eq:

. 15) whmh are given in closed-form in terms-of InI'(g), {{(~1,1 + q) and {'(-2,1+ q),

apart from other elementary functions. Since Iar(1 +¢) equa.ls to {'(0,1 4+ g) up to

a constant (eq. A4), we see that the behaviour of the thermal self-energy can be

5.




described in terms of the derivatives of the generalized Zeta function ('(—n, 1+ g) for
n=0,1,2 '

We may now consider a special case of particular interest, corresponding fo the -

. high-température expansion of the thermal iwo-point functions. To this end we dis-

cuss in the first part of appendix B the asymptotic behaviour of {'(—n,1 + ¢} for

small values of the parameter g(ky) = z‘fT:]&L Apart from irrelevant constant terms

which cancel in egs. (6) and (14) we find with help of (B4) that:

1 bl i
Fig) = i |- 2in(a) + (1 1) — g inlg) + -0 qag)
b |k§ 2 : i=2 I :
where ¥ denotes the Euler constant and

o

1 T T2g
(1 ~ 37)9 + [k2 ( - 5) + 14:"42 - T] In{g)+

(4m)?
¢ B 1 iTko. q T2
+E( D¢ ’)‘1[ @l 2w I+1+I+2]}

We remark that these expressions yield, at most, linear contributions in T, which

e(‘i’)

(20)

are non-leading in the high-temperature limit.
In order to compare our results with those of previous caleulations, we now con-
sider the real parts of the gluon Green functions 1% (eq- 17) and Il (eq. 18). To

this end, from .ﬂle structures given for I (eq. 6) and IIf (eq. 14} we obtain that

Re{IL} = RelF, [q(ko)]— ek} ()

Where 1 denotes II, and I, respectively forn=4andn="6.

From equa.tlons (10) (19) (20)  and using the relation (21), we find that the real

pa.rf.iof the, gl_uou self;ene:gy is given by an expression which is in agrecment with -

those-pieviously derive&[?., 5] in’the high temperature limit.

7

Another special case of some interest corzresponds to the low-temperature limit
of the thermal two-point functions. With the help of the relation (B8) describing the

asymptotic behaviour of {'(—n,1 + ¢) for large g, we find that:

i = 1.

Fda) = B k] - Zzz g 1) &1 (22)
where By are the Bernoulli numbers, and
) = Th% () + £ B 11
_ = B 24« T TaT (an)? g N
By 1t [k 1 q* iky ¢ T
+E 2l g3 [T(47r)’2l+1 otz Tm—s|f -(23)

As expected, in thelow temperature limit the thermal part of the Green functions
is small and quadratic in 7', the dominant contribution being given by the vacuum

(T=0) part.
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APPENDHK A
Here we derive zelations (12,13). .To this end we use the formula:

'az,,,)zL.ig(';_l,,,) O ay

which car be easily verified f:om eq. (1) Dlﬁ'erentmtmg (Al) with mpect to z, and_ .

mtegra.tmg the resuit vnth tespect to y gives the mdeﬁmte integral:

[etend= = e =L3)+ 3 «:'(z—_l.y) (a9
o pmve{m)werequm:
f ¥¥(¥)dy = v Inl(y) f WL(y)dy - . - (A3)
W‘t& the help of the relation[8]: IR _
SO =RE-mEE o (ag
and m’ki;g_nuin(.u) we obtain that: o R
o sldy= T () - tnn) - c(— 4= C'{—l,v)f" oy
Fmaiiy, usmg the functional. rela.t:on[B] _
R . ;‘i(f} e

wherc Boi(y) denote the. Bemou]h polynozma.ls We: ﬁnd the result

f yfﬁ(y)dy == (y —y+ 6) +yl lﬂI‘ (y) In\/ﬁ} '( I,y) (37) _

Similarly, with help of the zbove relatmns we get
f Vidlydy = -—y - iy - —y +y’[lnf‘(y) Im/27] 2yC'( l,y) +{(-2,y)
{A8)
The rcla.tmns (12) and (13) can now be. ea.s:ly deduced from (AT) and (AS)

9

APPENDIX B _ )
Here we discuss the behaviour of the. gener:.lized -Zeta. function. for- asymptotic
values of the parameter g = §5t&t To this end, we start from the representa.tmn[S]

i=T
=g /""'-'—'?}—_a e

At high tempen.tures, we can expmd (Bl) ina powe: serie of q Making use of
the integral tepmenhtmn of R.rema.n.n s:Zeta. functlon We. ﬁnd

C(z,1+q) ZP(;(:”)’)( q)‘( 240y . {B2)

k=]

Taking the dcnvatwe of (32) w:th respeet to z, we obtain in terms of the psi

function ¥{z) that:

Ol 4 )= z( —a) r‘”;"{wa( D=+ D+ Cla e} ®9

We are actually interested in the values of ¢'(z,1+ g} for £ — —n, where n.is a
natural number. Afiera long czlculation we obtain. that:

Cemitg- z:,. {c(t = dlt-n), > :}_.

k=nlfl

fE

+ 3¢ 1)'-+' "‘—-—-“ —1) - (B4

l=nitl. - .

Using t}us relatlon, it is stmghtfotwud to arrive at the results given by eqs. (19)

‘and (20).

Iniorder to determine the behawour of C (z, 1 +q) for. a.symptotlcally lazge values of
g, it is convxmcnt to make the change of vmables t = m (Bl) Then, after deforming

a.na.htxcally the contou: of mtegratmn to the rea.l axis, we obtain the :ep:&sentatmn

10




et a) =5 [ e (85)

0 ¢ ev—1

With help of the expa.nsién:

LT -
EI,— 1 &
where B are the Bernoulli numbers and using the integral representation of gamma

functions{8] we find for large values of g the series:

& B IMz+l-1)
C(Z; 1+ q) = g l!qa“l_]_ P(Z) (BT)

We next consider the derivative {'(z,1 + g) for negative integer values of z. Pro-

ceeding as in the previous case, we arrive at the result:

(n+
{(—n,1+q) = { "*‘(Q)+q] n(q )—fn ++1;2
¥ 2 (e Vot kﬂgﬂ P
£ Y (- 1)"“ (1—;;-2_)! q,f.'_l © (B8)

l‘-n»l-z
By evaluating (B8) at n. = 90,1,2,we may now venfy equa.tlons (22} a.nd (23)m a

strmghtforward way.
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FIGURES

FIG. I. One-loop diagram contributing to the thermal two-point function in the Ag?

_theor.y (a} and the corresponding forward scattering amplitude {b,c). Solid lines represent

scalor particles.

FIG: 2- Forward scattering diagrams contributing to the. thermal self-energy func-
tion in the Yang-Mills theory. Wavy lines denote giuons.and broken lines represent ghost

particles. Crossed graphs {(k « —k‘) are.to be understaod.
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