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kS . The:. density of  states is numerically calculated for =
non-integrable. Hamiltonia.n whose.. shortest periodic orbit family
undergoes: a- 'period—doubhng bifurca.tlon in the energy  interval
considered..’; Smoothing . the - density- using a suitable width SE,
oscillations. are:observed: due to only the. family of shortest period
or also its period-doubling. The period-doubling resonance results
in a: iugher . average . a.mplitude of  the correspending spectral
oscillations .than: for- the pPrimitive orbit. The main periodic
famhes pruduce strong scars . in the. wave intensities. Projections
of the Husuni distributions also exhibit scars that a.r'e, however,
not so clear. o '

1.Introduction

In. the: last. two. decades a great amount. - of'.. work has been done.r

to understand the implications.. of the:. Gutzwii_}.ep‘ : trace.m

(Gutzwiller 1971) in a . number of s_imtuationg;...,'ma-,_maa-m{-diff:icu'1tyf
resides in. the intrinsic structure of the  trace. i‘qrmula, which._
connects the semiclassical density of states to a sum over a:ll the .
pemodic orbits of the associated: classical: problem. If the exact
spectrum is usually hard to obtain, . 80- is the tutallty of the

classical periodic .orbits, . The 1n£1uence oi‘ the per_iodic orblts An

the eigenstates seens . to be e:ven more: complex.

averaged local density of states: (Heller 1986 Mor:e accura.te‘__'

results . were then obtained by . Bogomainy (1988} for' l_:he_*"-
probabihty density in  the. coordlnate representation. Finally, -
Berry (198%9) le‘ted the results - of: Bogomlny to the phase.
space via the Wigner function. A_l_.'l of these: theorle_s-,__ however; .rely
strengly on energy averages, and do not_appl.y to individual states.
It is therefore important . to. provide numerical e@ples. of. the
scarring effect to guide the development of theories.

We consider here a smooth, non-integrable, Hamiltontan: (“"soft
chaos"} in contrast to.. the existing___studies_ that.i_refer-_ to.
billiards and/cr syst.ems.- exhibit:ing; a . symbolic: code- for .their'.

periodic orbits.. In- the extreme case of. a separable Hamilionian,




the Gutzwiller formula can be shown to agree with the EBK torus

quantisation .conditions (Berry 1976) , which greatly simplifies

the calculations. However, in the geﬁeral non-integrable case,
- where ch.a.os" and  tori are intermixed, the only known way to
oyercome: the classical complexity is by smoothing (Balian and
Bloch, - 1974} the density of states. This procedure, although poorer
in. resolution, opens the possibility of cutting off the
contribution of_ long periodic orbits, leading to a more treatable

trace formula.

In-- this paper we investigate, numerically, the smoothed

densit.y_. _of'states for the smooth.. non—integrable, Hamiltonian
. (p;;2 + pya)"/' z} vx ¥, ' (0
with.
V(xy) =y - 272025005 2 | (2)
The- -silﬁplest pericdic . orbits of this system have been

extensively studied by Baranger and Davies (1987). This potential

{codename NELSON} has a minimum at zero energy , and due to the

reflexion symmetry in both x and 1;»)c , the plane x = o, ;px = 0 is an-

" tnvariant plane in the phase space. Since the potential is harmenic
along. this plane, it is foliated by a family of "VERTICAL"

(. y—direction ) oscillations of constant peried T =2n 7/ V 2.

According to .the numerical study of Barangerand .I')aﬁ.ies (1987},
this is the family of orbits with the shortest period in the efiergy’
interval (0.0 , 0.300) . In this in‘;e‘f‘v&l‘, the vertical family
undergoes - three main bifurcations : a perlod-quadrupling at
E = 0.019 , = period-tripling at E = 0.077 , remaining elliptic
in both cases, and finally, = péhiéd—d'oumfﬁg at E « 0.136, then
hecoming \-i;ea.kly hyperbolic. { We shall call these bifurcated
families V4, V3 and V2, respectively.) Thgse- famiiiés have thé
shortest periods in the above mentidhed t‘-:néi:'g}',-ii int.él:'val. Another
important family of this system is the - "HORTZONTAL® family, So
ca.lled because it starts out as a harmonic oscilla'tién in th.e,
x~direction. Its. period is always greater tha&x the- perioﬂ' of V4., .
and in that energy: intervall it Iundergo.es'."—-f;mr' consecutive.
isochronous bifurcations . (Aguiar and . ﬁalii’._ar-,._ 1s_§a_a-, _ﬁ'afanger-_j and

Davies 1987), one of the generated families: tieing; e'ui'ptic.j

Qur purpose in this paper ‘is:tov. identif': h& signatm"e of some'
of these families iIn the qua.ntlm spectr@ and eigenfunctions'
including. the classical, phenomenon:: of bifurcation. This wul'-be-:.
done by contr'olhng the smoothmg of‘ the spectr‘al den51ty, as 1n'
the previous work of Phlta. and Ozorio de Almelda (1990) We also .
present the. Husimi (1940) distributions-. projected on both- (x,px)
and (y,p ) plancs. These projections may provide information. about
the scarred states but, in order to obtain fine details, a. long

computation time is required. The wave intensities, on the other

hand, can be calculated with very good precision and much less




vy

effort.

. This paper is organised as follows : in section .2 we
present: the- s_mt;othed_ density of st..at_es and show the signature of
tﬁé cl.assi_cal,. oz.:-*l:;i.fs-.a.nd: bifurcations in its (discrete) Fourier
transfﬁrm:._. gsing._(;aussién-. 'b;rindous {Harris 1978}. In section 3 we
shbw .scars--éf periodic orbits in thé averaged.wave intensities .anc!

in the Husimk d_isti.‘ibutions. The conclusion: is given in section 4.

2. The-smoothed .density of states

The: eigenvalue 'problem- oftheNELSON quantum: system ,
AR =B g ay) .

was: salvediusing thersexpansion

H N .
PAERCIED I R Al W I NN ¢ 2 S )

N=0 n=0

where - ¢n(x)_ cand ¢n..(y) are . the eigenfunctions of the

one-dimensional harmonic. oscillator Hamiltonians H’c and H
; ; - i ¥
H =p%2 + 0055
x - % . :
\ (4}

2 . 2
= rd +
.Hy py 2+ y

The prime in the summation meaning that only even n {even parity)
or only odd n (odd parity) are included.

The truncation value N = ¥ , in the expansion (3), is chosen
according to the energy interval to be investigated , for a given
h . Semiclassical results are obtained by using a small h., and for
a given energy interval, the smaller h 1is; the _lar'ger' M has to be,
We used M = 118 and diagonalised a matrix .= 3600%x3600 . The
calculation has been done for h= 8.0 10°% éhd.'h._x, g.0 107, for
which the- level spacing of the vertical ha.rmo.nic o_sc.illator. hw,
is approximately - 8.5 10™% and. .12.7 10;3' , respectively. For the
truncation value used, the ..eigenvalu_e.s .g_or_ltained_ in the energy
interval (8,0.200) are good. The corresponding éigenf_unc_tions are
fair‘ly. good for-the larger value of h used but are not so good for
the smaller. value*_(of"course, the lower the eigenvalue, the better

the corresponding eigenfunction). '

The density of: statés. '_(histogrmns], as a- function .of' f‘he'
energy E, has been. calculated i;n the above _.enérgy-ihter*val , with
various degrees of smoothing. These densities have been Gaussian
smoothed, with half width -8£ ,in order to elimlnate spurious
fluctuations that arise when the number of states contained.in &E
is small.

According to the periodic orbit theory, the density of states

may be.separated in two terms (Berry 1983),

d(E) =d (E)+d (E) -, - (5
av . ose : B




'ui_ler'e'- d.“(E) - is the average density of states (the so called Weyl

) _tégr:m)_ corresponding tg zero pericd orbits, and d _(E)} 1is the

asC

6sci.11a§.oby-— term which_'inc'orp'prates the contribution of the

* periodic: orbits: af period greater than,zero. The contribution.'ta

dO;G(EJ : of the: lowest period orbits may be analysed numerzcally,
4by appr'opmately choosmg the valtie  of  BE - used in the
) _calculatlon ‘AS"the vertical fa.m:.ly has the lowest period, d c(F_")

will exh:.blt no oscﬂlatmns . a8 h->0, if SE> h (m= \/2] {for

_smal-l values of‘_ h ,. there. w111 be no oscillations only .if 8E- is

‘ 'f.‘alrly lar'ger- than il wy ). In order to observe the contrlbution of

the _pemo_d—lc- fa.rully vz, .'resulti-.ng- from - a. period-doubling
bifurcation of the vertical family, &E mu;t be smal'l(.er' tha.n_.ﬁ wy/2.
_For SE _slightly smaller- th.an {1‘ wy/ll ,. in. the eﬁergy interval
.under consideration, desc(E) will have contributions of the
'ver‘ticé.l .fa.mily and of all the p.er'.iodic families: resulting from a
rericd n-upling bifurcation, n = 4, of this verf.ical family, i e
.families- ¥2,. V3 .and V4.

The r.esulting_smoothed leval.density for h = 6.0 107 , using
8E = 1.0 107°, is displayed in Ffigure 1, and for h = 9.0 '10‘3.
using &8E = 2.0 _10'3 , is dis’ﬁl‘ayed in figujrg- 2: It should be
.ment.ioned that these dénsities were obtaine_d ﬁumer‘ica.lly. , at
energy points separated by 1.0 107, and a line was drawn joining
consecutive points. .

The term d sc(E) is obtained by subtracting the Weyl term ',
[od

d (E) , from the level density d{E) . The Weyl term has been
avy

obtained numerically , using &E = 40.0 107° (see figure 3). It

. s'hould be mentioned that , for the NELSON potential ; the Weyl term
may be calculated a.nalytlcaily and it is a 11near functzon of E .
(1n fa.ct thls 11nea.r‘ beha.vieur ‘of d (E‘) is, used to ver'ify the

-appropmateness of - the. tr'uncatnan value, N=-N, for- “the energy

interval under" 1nvest1gat'ion). The - ratio. of Ehe angular
coefficients ‘of the dﬁ(f) terms displayed in ..£iguré 3 is equal to
the ‘ratio’ of the corresponding k2, In agreement with the

analytical result.

In flgures A.and 5 we tﬁspla,v the ‘Herm - d (E} . obtained by .

subtracting the corresponding ﬂ'eyi term in flgur'e 3, from d{E) in:

figures 1 and' 2, respectlvely. In the semlclassmal permdic orbit -

theory, the-oscillations exhibited by dosc(E) in figures 4 and 5,

should be due to the contributions: of the periodic orbits with-
pef-'iod- up to 2m W/SE. The 3E value used;. for:both values of - h, is-

smaller tha.n [+ uy/4 , therefore, the vertical orbit and the orbits-

of VZI, V3 and V4 { plus all their mth repetitions for which
= 2n B/8E ) should be contributing to those oscillations.In the
energy region after the period-doubling bifurcation has ocurred,

the main conbtribution should <ome from F2, as the vertical

orbit becomes hyperbolic after this. Nevertheless, the contribution.

of ‘the vertical orbit remains significant even after’ its
period-doubling bifurcation , because its instability sets in very
sloﬁiy. The contributions of .-V3 and V4 are not so significant

sihce,' as already mentioned, the verktical orbit remains stable at

L)

L]




those bifurcations.

In érder to verify all those facis mentioned above, we made a
Fourier analysis of dosc(E_) “in figures 4 and 5, wusing Gaussian
windowsfHa’rvis 1978}.- Considering:-the whole ' energy interval {(a
singlé window}; . t_he;:Fouriér analysis sh_ous that,” in both cases, the
main fré.qtiency:-.f contributing is: 2 (h wy)—?.' ‘but’ the frequency.
. (5w still contributes. significantly ( see figurés 6 and 7).
As foz- S the .f.requenciés 3 (h m)})_l Cand 4 (h w’y)-l' ;' their
contributions: are: small, as expected {it should be mentic-med that
the single: yindowl-.‘ourier' analysis does not exhibit peaks at these

frequencies. if - (k u)-r/a') < 3E < (h my/z)_.' e
3.: Averaged'wave. intensities and Husimi® distributions:

" The:classiecal: structure, underlying the- wave f‘uctio.ns in the
semiclassical® limit;. may " be. observed - through the . wave
intensities, |§(x;¥)|% and also. through  the ' Husimi  (1940)
distributions; h;(_x-,y, p:'t.pyﬂii[a Gaussian ' smoothed version of the

Wigner- distribution}. -

We are interested in detecting the existence of scars due to
.the vertical . family, and its period n-upling bifurcations.

- . Therefore, . we: have calculated the state density distribution

averaged over y,. given by

n

pi(xJ

I w,l(x’y)lzdy =

4

i n,N-n RN’ =H+n,N-n .
f I I c c $.(0) 9,

\ R wl X7 (8)

-N
N=0 N'=0 n=0

Only even parity states may exhibit a scar due .to the vertical
family as the odd parity stétes are zero at the origin. Both the
period-doubled and the period-quadrupled orbit are symmetric
libfations, while the period-.—_tripled crbits are symmetric rotations
(there is also a. pair of period-tripled. %@etnic Librations
which are hyperbolic},

The averaged wave intensity) p,( x) . for. .the ‘elgenstates
corresioonding to the eigenvalues U..12.34.- b 0.0401 and’ .0.1198

are shown in figures 8,9 and 10, respectively (h = 9.¢ 10°%). The

scar seen in figure 8 is. immediatly identified as due to the

vertical- family. The set. of states exhibiting this scar are
separated in energy by h _wy.. Tl_le scar seen in figure 9 . can. alsoc
be easily identified as due to . the horizental family since it
bélongs to a set of states that acquire a pair of .oscillations as
the energy is increased, the energy difference of . the fir_rst' two.

states being approximately: 2h @ -The scar seen in figure 10 is

" exhibited by a set of sté.tes.-separ'ated in energy by h wy . To each

rember of this set there correspohds a member- of the set éxhibiting

the vertical orbit scar (figure 8). In order to confirm the above

10




“analysis we.also: calculated. the projected Husimi distribution for

thé"féigggsj;g_ieé; as the Husimi distribution , being a function of
four variables ié-....ir'éf-y—'ﬁ;rd; ta: visualize (and to computa).

‘I‘h‘g .p.'ro,j_iactibh's 6f h-l_(x,y,'px,. p;) on a.'ca.nonicél__ly conjugate
pair ._.(x;_pkj-qr: (y, _i'ay') are oi:t.ained by intggra.ting- over the otﬁer
"parr-}' "'Lél;? |g;}'_ ‘and’ |2> be the: usual coherent states for the

;"bs:gizl_zlaftorré': ofeq. (£), with

z = (.1x&id p;ﬂo.j e,

. B 7
oz, (VZyedipne e
Then, the Husimi distribution hl can be written as
. H N-
= I L. N s n,K~=n 2z
by = [ < |z, z,> =] EL L’ ¢ <njz > <N—n|zy>] , (8)
' H=t0 n=0.
where:
<n|z> = (2/1)" exp (-z z /2 Wt . (9)
The. projection of h on the plane (x,p ) is given by
M H=-N
= y ’ n,N . 2
h(z)= L | E’ ¢ “<nfz>|". (10}
N=0 n=0

11

The projectiom on the plane (y,py) is given by a ‘similar
expression . .

The. projections  h(z). and ' h(z ) were caleulated. for a

large . number: of eigenstates:. For: the. elgenstates exhibiting the

sear shown: n figure: 8, the Husini: projectlon h(z.) (figure. 11) has -

a single, narrow, peak
the scar r.s.t.ndwn-.:'in figure i(.);_-"thez H&simi .préjéct_iﬁi-):.a-'h( zx)-, also. has
a single (br;oader) peak at the origin (figure. 12). Now, for the’
former type of eigenstates, the: Husimi projection h(zy) exhibits
peaks  alopg..the y-axis only (see figure  11), while. for the
létter typé,."of_" eigenstates, it also exhibits peaks away. from the
the y-axis (see figure 12), indicating that ,_gh;g-.sét._ of states. has:
some guanta {an even numbe.r. ~due- to- the: x H-x K&.'.-Snrn.metr‘y):. i.l'x: the
"horizental! direction (remember: tha.t.-élaésfgé;lly the orbit is a
horizontal. oscillation only,--at.‘.-\.rrery_- low-'.ene:!'gies). In figﬁre 13
we display the projected- Husimi  distributions: for the eigenstate
whose wave intensity is shown:. in figure: 8 (horizontal -family).'
Following Mahoney. {19887},  we associate to each pair of

eigenstates ; n,n', a period, and a mean energy, defined as.

T ,=k2rw/iE-E | .
n,n n n

(11)

E ={E +E K )2,
23 n

n,n

12

beiorigin. For the eigenstates exhibiting

wh




respectively. We may then construct Ext plots as in the classical
case (Baranger and Davies 1887, Aguiar et al 1987). In figure 14

we display the En plot (k=1) for the set of stateg

art™ Toner
exhibiting the scar of the ¥V family (figure.8). These points lie on
the vertical line © = (2% wy)_l » Which . is the {classical) Ext plot
of the V family. In figure 14 we-alsa display the En .n,x LA plot
(l=2)- associated to. the eénergy separation - between the states in
. the set above a_.nd. the corresponding state in the set characterized
by the scar shown in figure: 10 (points.on the: other curve). The
continuous curve that would fit these points: has. approximately the
same- slope .of the Ext plot of the (classical) "horizontal® family
( Baranger and. Davies, 1987 ), but: would lie above it. The
e X Tn,nd-i plot. for the: set of states exhibiting the scar
of the horizontal:family (figure IQ) lies closer to the classical
horizontal family plot, but does not coincide with it. It should
be mentioned that: this plot. tends. to. the classical one as B gets

sma.ller-;
4. Final discussion
In the previous work of Malta and Ozorio de Almeida (1990),

all attention was directed at the effect, on the spectrum, of the

first. iteration of the shortest periodic orbit. The above results

extend our view to higher iterations and their bifurcation.

rescnances. The computational difficulty that arises is that the

13

number of levels within these higher frequency oscillations of the
spectrum is smaller, so that even Caussian smoothing may become
unreliable.

It is easy to calculate the amplitude of the oscillations for
each of the pericdic orbits viewed through the Gaussian window
employed in analysing the spectrum. Figure 15 shows tﬁe Gutzwill.er
amplitudes, with the amplitude of the second repetition of the
V. orbit exhibiting a singular peak at. the pe_fiod—doubling
bifurcation point (E = 0.138 ). The theory of Qzorio de. Almeida
and  Hannagy (1987) substitutes this singularity by a finite peak,
but the general picture is the same. It is, therefore, satisfying.
that figures 4 and § indeed confirm the prediction that the period-
doubled orbit has a larger average amplitude: than the primitive one.
It should be noted that the spectrum was not resolved to the point.:_
of distinguishing the stable period-doubled orbit from. the_. second
repetition of the unstable vertical orbit. (O course, it wduld;: be: .
wo.rthwhile to determine the Fourier é.mblitudes. of" tﬁe spectrﬁm-,. for
narrow energy windows, as a function of the centre 6f‘ the window.
However, though we can discern the broadened peaks for ¥V and
¥2 (figure-16) the amplitudes were.found to fluctuate erratically.
A consistent picture of the enérgy evolution éf the oscillatiol;ls_
requires that the spectrum be obtained for considerably smaller
value of Planck’s constant, so that thé density of states within
each oscillation exhibits less fluctuation. We hope to be. able to

reveal the detailed behaviour of the orbit applitude as a function

14




of the energy in future -calcﬁlations.. _ EE _ - Acknowledgements
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with no. qua.lita.tive chzmge in shape (conﬂrming a previous private
communa.cation of Leboeuf and Sa.r-aceno) This is not the case of the.
next. symme_tr.ie'- sequence of _states_. {two horizo‘nt.a.l_. quanta,.. scar of
i:he- type shoﬁn- in: figure- 16}, 'Fhough. there is still a regular
sequence in the chaotic region, with the wave intensity more spread
out- than in: the proper scars. (figure ID) the: peak- at the periedic
orb1t gmws at. the expense of the other maxima.- while becoming
thinner “(figure: 17). He can thus. understand the . at t.imes_
bewilderi‘ng-,_ .nuiber-- ef .scarred sta.tes as originating in’ torus )
states, as: some bifurcation parameter is \_raried-. The' concentration
of  the: states .at the i:er'iodic orbit'.l. while ﬁmntaininé a spread.
around -it. is compatible with the hypothesis .of homoclinic
ciua.ntis'.atlon' praposed by O_Z_Qrie de Almeida (1988), For h = B.0
10_3. the picture is the same and, besides, because h is smaller, the
scars are- more neat and there are other symmetric sequences

corresponding to four and six "horizontal” quanta.

e
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Gaussi:an smoothed d(E); for h = 6.0 10_3.‘ using SE=1.0 1073,
Gaussian smoothed d(E)}, .for' ix = 9.0 107, using 88=2.0 1072,
The Weyl term, d_(E), for h = 6.0 10-'_3 {steeper curve} and
for h = 9.0 107°, :

d (E) for h = 6.0 107, using 8E = 1.0 10 ~°.
o5C

3 usiog 3E = 2.0 10 -

d_(E) for h = 9.0 10 ~ One should
note that T = 2t h/8E ls smaller here.than in figure 4,
resulting in smaller frequency and amplitude of the
fluctuations.

Single Gaussian-window Fourlér _analysi_s of d'm'ic(E) .in Fig 4.
Single Gaussian-window Foprier' analysis:of dosc_(E) in Fig 5.
pi(x) for- the eigenstate with E = 0, 12:34, =90 1073

p,(x) for the eigenstate with E = 0.040%, h = 9.0 107,

p,(x) for the eigenstate With £ = 0.1185, h = 9.0 107°,

The Husimi projeétions h‘(zx) and hi(zy) for the state in
Fig 8.

The Husimi projections. h-l(zx) and hl(zy) for the state in
Fig 10.

The Husimi projections hi(zx) and hl(zy) for the state in
Fig 8.

Ext plots. (see description in the text).
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Fig. 15 The Gutzwiller amplitudes. The éont-inuous line ié the
second. .repetibion of V (2V), long dash is ¥, short da.;_;h is
¥2 and dot-dash is the sum of V2 and 2v.

Fig.16 Fourier. amplitude, as f‘unc_:tio_n of E, using Gaussian windows

of width AE = 6.05. The continucus line is the amplitude. of
V2 and the dashed Iine ig the.amplitude of V.
Fig. 17 p(x) for an eigenstate in the chaotic regioen (E = 0.1861),

well above. the period-doubling bifurcation [ k = 8.0 10 '3}.
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