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Abstract -

1t is shown that within a Glauber-DWBA description of the heavy—ion inelastic

xcitation of giant resonances at intermediate energ:es simple data~to—data (DTD)_

elations that relate the cross—section of these excitations to the elastic angular

istribution, can be derived. Within the angular region where the DTD relations held, the .

greement with the data on the GDR and GQR in the reaction 170 +208Pb  at .-

'.L = 84 MeV.A is remarkable.
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I. Introduction

Recently the experimental study of the formation and decay of glant resonances in

_ the reaction 170 4 208Pb at ELab = 84 MeV.A has been reported by Bertrand et alV).

This study, as well as others on GR excitation with intermediate energy heavy ions, opens

 the possibility of a detailed investigation of the multipolarity content, relative strength,

decay branching ratios and other aspects of the highly collective nuclear states. Usually,

- the data are successfully analysed with appropriate DWBA codesz), and related

formalisms®. A complicating feature of the analysis is the preseﬁce of strong nuclear -

effects, which renders the mvestlga.txon of the GR more model dependent as compared to

the case of pure Coulomb excitation. e

The thrast of this paper_ is to show that the presence of both strong Coulomb and
nuclear interactions in the scattering of heavy ions allows the derivation of simple
data—to--data (DTD) relations that connects the inelastic cross—seciions to the elastic
fmgul&r distribution®. This is made possible owing to the dominance, at the sma)l angles
where data are available, of Coulomb rainbow (CR) scattering. On the dark side of the CR.
no Coulomb—nuclear interference is present owing to the existence in the elastic and
inelastic amplitudes of only one complex stationary phase contribution. We present
arguments that in this angular region the cross—section a)l‘nel(q) for the excitation of a
crlant resonance of multipolarity A, behaves as C A o .1(q) where q is the momentum
tra,nsfer and o, is the elastic angular distribution. The factor C A does not depend on
q. Thus we propose that the ¢? o'el(q). behaviour of a)i‘nel(q) in the dark side of the CR
Is universal and does not depend on A. We base our analysis on DWBA with eikonal
distorted waves.

We remind the reader that DTD relations have been derived and used previously by
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Amado et al:® for proton—induced reactions in the 800 MeV range. The 'm'ajor difference _

‘between our work here and that of Ref. 5) is the strong Coulomb effects in our heavy—ion
System.
H. The Data—to—Data Relations

Within the DWBA—¢inkonal theory, the inelastic amplitude for the excitation of

giant multipole resonance {Am) is given by -

o = Mo+ 0 -

where the nuclear, f;‘rﬂ and Coulomb, fé'“(q) components are given by

fﬁ\'fc(”) = gk f eiﬁ'f4;i¥(b)<f-,,\;;lUN’Cli‘,(}>dl;dz - (2)

where ¥ = {l;',z) .

In (2) the eikoned fase x(b) is given by

o0

x(b) = - f [UN(W) + UC(\/ET-TZE)J d (3)

—w

vhere the optical potential UN(q,IEE+zE is the ground state expectation value of UN of
2q.(2), and U, is the Coulomb interaction between the two ions.

To set the stage for our DTD analysis we c_oxﬁpa.re Eq.(2) to the elastic amplitude

given by
fqlq) = iX f 4T 1P| b 4z = ik f [1-eiX(b)] Joabydb . (4)

If the small g regior is avoided, the factor 1 inside the square brackets may be ignored

and a straightforward comparison with Eq.(2) can be made. Recognizing that the matrix

element <f,)\y|UN[i’,0> is related to the derivation of the spherical optical potential,

and ignoring % iy line with the eikoned approximation one can immediately see that,

the z—integral in (2) can be related to y(b) and its derivatives with respect to b. Thus

through integration by parts the integral in (2) comes out proportional to - qf,(q) .
irrespective to the multipolarity.

We now turn to a detéiled analysis of the problem. First, we evaluate the elastic
scattering amplitude and assess the‘nature of the process. We use the "t o p" model for the
nuclear optical potential, taking full account of medium effects on the nucleon—nucleon
t—matrix®), After employing a Gaussian approximation for the densities of the projectile
and target, which is reasonable owing to the surface nature of the excitation (see Fig. 1},

we obtain for the nuclear phase x,(b) , the following

a} of _p? .
a1 Pag © bfel ' (5)

Xyb) = —m E <t >

—1%/ao? 1.
where o = o? -+ a% » pyc) = Pai® /o v by =g ih v o (E) {I-eg (E)] . The
parameters relevant at 84 MeV.A are Oy =30mb, . .=1, o=2aFR;,
b= 2o 2% p 017, a=065 and R =12 AP 6m . The
comparison to the elastic scattering data of Barrette et al.T), is shown in Fig.(1). 1t is

obvious that our eikonal calculation of g,(q) is quite good.




More insight can be gained if one performs a near/far decomposition of the elastic -

amplitude (and cross—section)s). This is accomplished By employing the following

decomposition of the Bessel function

Tofab) = § [ (ab) + B (ab)] | ©

where Hé(z)(qb) are Hankel functions of zero order of the first and second t&pe,

respectively. Asymptotically these functions behave as

-Hé@)(x)'x»—l; [?r—x—]lﬁexp[-}-(—.)i [x_g” - | | (7)

The amplitude, {,,(q) can then be written as a sum of two contributions '

(@) = 25%q) + £30) 3 o ®

is obtained from by replacing J, by 1/2 Hgg)(qb) and fg‘i“ by replacing J,

Near

where 7"

by 1/2 H§V(gb) . n fig. (2) we show the contributions of f¥°%¥ and fFa’(q) to the cross
section. It is clear that in the.angle range 0 < # < 6°, the cross sectlon is completely near

side dommated

Since the product qb in the surface region is rather large, one can use the

asymptotic form of Ho(z) Eq.(7), to evaluate fNea’ and fFa‘r within the stationary phase
approximation. These solutions are obtained from the condition d/db (vqb + x{b)} =.0

or

=dam| = am . )
N(F)

The function q(b) is called the momentum transfer furction and was introduced in

Ref.(9). It is the Glauber analog of the WKB—based classical deflection function.

In fig.(3) we show q(b) vs b for the 17O + 208Pb system at E, , = 84 MeV.A. '
It is clear that two stationary phase solutions contribute to fNear(q) at
q < q, = .86 , the Coulomb rainbow transfer. The far~side amplitude, fFa: , much
smaller, may contain two—stationary phase contributions, since g(b)} exhibits also nuclear

rainbow at large negative values of q(b) . However, the inner contribution should be even

~more damped due to absorption. We concentrate now on f {q). Calling the two

stationary phase impact parameters, b; and b, (b, <b,, b, <b,, b, =1L7fm) the
near—side amplitude fi:*"(q) can be easily evaluated and we find, using the primitive

semiclassical approximation,

Near ) _ =ik ol /2 ari X (by(@)) —ig by(q)
fei (@) = i (q) —X"(b ) e —+
(10
—ik 1/2 _om iX (by(q)) —iq by(q)
J_i _I xu b )i

Note that x"{b,) = q'(b,) is negative (see fig.(3)). Further, [x"(b)| > |x"(by)| . This
makes the contribution of the second term (the Coulomb term) to be increasingly dominant
as q Is decreased. The oscillations seen in the elastic angular distribution in the anéle

range 0% < #< 2% result from the interference between the two contributions to fNear( )

-glven in Eq.(10).

On the dark side of the Coulomb rainbow, q>q,=1.86fm? (4 =3.3°%,

b, = 11.5 fm} only one complex stationary phase contributes. The imaginary part of b is

_such as to give an over all damping in the amplitude in this case is to use the Alry

A




approximationm), which gives, for q > cjk ) the_ following

____l €3I uI -
ea.'( ) = K_ ——l?l'/‘i (b 15)1/2 1 e 3 9r .
E T
exp [i (xr—br X' "."%br. 62 Xlll)] : y (11)

‘ 2(9q,) ‘ ‘
where £ = " andit represents the imaginary part of the complex stationary point .

[ar]
b =1, —1¢. The subscript r efers to the rainbow, and ¢, = gb' x(b) .
. : =h

—Mr

ete..

The cross—section q~dependence in the shadow region of the rainbow, then is given’

by

1/3
lqu]

(la 1)1/2 @(g-a,))*

_2 [z(q«;,) rﬂ
1 e

2
ﬁ%(q>qr) & lqi—br

which shows clearly the damping alluded to above, a3 one goes further inside the classmally

. forbidden region.

IL.b The Inelastic Amplitude

The inelastic scattering amplitude, Eq.(2) can be further simplified after mtegratmu

over the azimuthal angle db=ddb d¢ . The we have, usmg the Tassie model“)

N - — o . _

i C, k 1v(b A / -

ff\\r#c(q) T T : f ‘b dbJ,(qb) et )f dar UN,C(A)( b+2?) Pt ™
. ] w :

(13)

. o i
where sinB:% and 12 =1b%+ 22. The Coulomb interaction with C{)) means W :

can be conveniently written as

e
- M2 T eyt [u))! [ b J—Inl [M] I#I.
Al . 2/\ M dr(é-)p|)! N En) L2 _I
dk—l#! 2 . , o
L | e ,

It is clear from the structure of Eq.(14) for P /\‘u( 6) , that the second integral in
Eq.(13) can be written as a linear combination of X c(b) and their higher derivation -
whith respect to b. Let us call the z integral Flﬁ Lo )\)(b) Thus, with the asymptotic : '
form of J p(qb) » which is vahd since gb > 2(R,+R,},

J-ﬁ(qb) = %COS[Qb—Mg"g] ,

and considering only the near—side contribution, we have
PO (h) = '*1 f pl/2 FA'“ o (b) db iX(b)=iab (15)

Since bI/ 2 FI%I#C( ,\\(b) ~ varies slowly wi_th b, one may evaluate the above integral

Y




" employing the Airy approximation and we find in the shadow of the rainbow

\ 1+,u CgN
fal () = T FRf ooy B@) 25 (16)

where b(q) is the complex sté.tionary point impact parameter, given by br;if (see
Eq. 11). ' '

Eq. (16) is the basis of our data~to—data relations. We ﬁave a.'pplied. the formali;sm
above to the case of the isovector giant dii)ole resonance (IVGDR) and the isoscalar giant
quadrupole resonance (ISGQR) The evaluation of the quantity FN o ,\)(b(q)) is lenrrthy

but straight forwa.rd4 12), We obtain the following forms for the cross-sect:ons

ol@ = o[ + 2] = oo = & -(,;?—[ a 040

(1)
Zy 7y € B2 2, & : -
where 7= —w and G, ——J%u—- RT pG’l‘ aT . The deformation length
172 '
ST N’I‘ ZT h2 - -
BiRp=|—"—"—x| ,and
g 2 A, my, E)c
_ ole2212 2,002
0'2+(q) = 2,fN f + ’fN l
5 ) NiZ . )
7,0 = gz ’Cll q? b 7er(a) (18
3/2 12 | 20 hé 7
N _ 7 h*
N=2" g and R = |

2 S ——
5 7 A5 . ] 2
. 1/_ ,ﬂp&T _ | 3 A‘I‘_mN‘Ex

10

In deriving (17) we have taken the modified—Coulomb amplitude fél(q) a8 86 e
dominant, which is reasonable for the isovector dipole excitation. In contrast, Eq. (18) was
obtained assuming pure nuclear excitation. Clearly improvements can be made sincethe

general amplitude

.1 .
Pg) = a) + ) = Thye | OY EAAB() + OF TAK Bl |
B) L a>q, - " (19)

_ In figure 4 and 5, we show our results based on Egs. (i?) and (18). The data are
from Ref. 7). The elastié data are shown in Fig 1. Notice that the deformation lengths
ﬁl R,.=0.42fm and ﬁ2 RT = (.55 fm used in our calculation are the same as those used
in the DWBA~-based calculation of Ref. 3. Thus the data~to~data relations, within the

angular region where they hold (q > q,) , seem to work remarkably well.

II1. Conclusions and Discussion

" We have derived DTD relations for the excitation of GR's in the heavy ion reactions
at intermediate energies. The region of velocity of our DTD relations is the dark side of .

the Coulomb rainbow when no interference effects are present. Applications of our

-relations to the excitation of the IVGDR and the ISGQR in the 170 + 208Ph reaction at

84 MeV/A is very good. Improvement upon the approximations employed and further

apphcatmn to other systems and GR's will be reported later.
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Tigure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Elastic cross section data for the system 170 + 208Pb at 84 MeV/nucleon.

Data are from ref. 7. The solid curve is our theoretical prediction.

The Near—side and Far—side contributions for the elastic angular

distribution. (See text for details).

The momentum transfer function g(b} versus b. See text for details.

. Cross section for the excitation of isovector glant dipole rescnance. Data are

from ref. 7. The solid curve was obtained from the data—to—data relation |

given by egs. (6) and (8), with deformation parameter 5, R=0421{m.

The same as in fig. 3, but for the isoscalar giant quadrupole resonance. We

used here B, R = 0.55 fm..
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