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The neutron-proton mass difference in nuclear matter is calculated within the
context of chiral models involving nucleon and meson degrees of freedom. The
neutron and proton self-energies are calculated in the Hartree-Fock approxima-
tion. Exchange terms are crucial to obtain different contributions for the neutron
and proton self-energies. Density dependence of meson masses and coupling con-
stants are taken into account. We find that the neutron-protor mass difference
in nuclear matter increases as the density increases, contrary to the predictions

of several quark models and of QCD sum rules at finite density.
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I. iNTRODUC’I‘ION
The Nolen-Schiffer anomaly * (NSA) is'a long-standing problem in nuclear physics.
It is related to the failure of theory to explain the experimental mass differences of
mirror nuclei. The mass difference of mirror nuclei (Z,N) and (N,Z), where a protoﬁ

is replaced by a neutron, can be written as

AMpireor. = M(Z,N) = M(N, Z) = AMopmn — AM,,, (1) -

where AM,., = M, — M, is the free space neutron-proton mass difference and
AMuemn is the difference of eletromagnetic self-energies. AMugpr is the Couldmb
energy difference if charge independence of the nuclear forces is assumed. The NSA
amounts to the fact that the experimental values of AM;or :are systematically
larger than the calcuted ones. The discrepancy between theory and experiment
increases with the mass number A and for A ~ 209 it can.reach the value of
900 KeV. |

Several nuclear structure effects have been invoked to solve the problem without
definite success 2. Recently, Henley and Krein ® suggested & possible resolution to _
the NSA based on effects oecurring at the level of the quark substructure of the
nucleons, namely effects related to a partial restoration of chiral symmetry (PRCS)
in nuclei. Using the NamEu—Jona.—Lasinio model ¢, supplemented with the Isgur
and Karl model 5, they showed that as a consequence of PRCS, the.value of AM,, '
in nuclei is smaller than its value in free space. -Clearly, as AM,, decreases, the
anomaly decreases. . |

The result of Henley and Krein was subsequently reobt#ined in an approach based
on QCD sum rules ®. In this approach, AM,, is connected directly with vacuum
properties of QCD, namely with the scalar quark density < gq >. This abproaxh

avoids the intermediate step of a phenomenclogical quark model for the nucleon, the




only important input being the decrease of the quark scalar density in the medium.

In the past, charge-symmetry breaking effects were invoked to resolve the anomaly.

In some sense, the suggestion of Ref. 3 is oppasite to this, since it is based on the
fact that the proton and neutron become isosymmetrical in nuclei as a consequence
of PRCS. An important issue is to test whether the result AM,, — 0 in medium can
also be obtained- with chiral models involving nucleons and meéons only, without
.the recurrence to quark degrees of freedom. Such a study allows to gain insight on
the role played by a PRCS realized at the level of ‘the effective nuclear degrees of
freedom on the subtle phenomenon of AM,; — 0. In this papér, we investigate
the- density dependence of the neutron-proton mass difference within the context

: ; of & simple nuclear: chifal model, the linear 'a;model.*‘_, augmented  with the w-

- mieson to simulate the short-range nucleon-nucleon repulsion.. Although the results-

c;bta.ined using either QCD- or ﬁuclé_a.z;: dégréeé of freedom are, so far, neceésa.rily
model dependent, there is the hope that common propetties of the models lead to

the same quélitati'\}e results, independent of the detailed dynamics. One ex.ample

“where such a hope is frustrated ﬁ'as shown by Griegel and Cohen 7. They showed

that the decrease of the effective &-meson méss'in medi'un:i', whiéh is. claimed to
follow from the PRCS isnota genenc property of ch.\ra.l modeIS' it depends on-the
- details of the model and on t'.he way the mass. is deﬁned
Although the initial motwatmn for the study of. AM.,, in nuclei was its possxble
relevance for the: NSA, we think that such 2 study is mterestmg in itself. The
conseq-ueﬁces of AM,.,' =» 0 should, in Ptinéiplé, be séen in other experimental
- situations, as for instance in (p,n) or (p,pn).sca.tterin.g experiments. Of cours.e,
much remains to be done until the correct in-medium QCD condensates and_their
conseqt_xeuces' are obtained; while this does not become available, one has to rely on

the insights gained by using simple models.

In Sec. II we present the formalism used to derive the neutron-proton mass
difference in nuclear matter. We use the relativistic Hartree-Fock approach to the
nucleon propagator, in which tadpoles and' exchange contri-butibn.;'. are summed to all
orders with Dyson’s equation. The neutron and ﬁroton éelf-energies are specified by

coupled nonlinear integral equations which we solve self-consistently in the so-called

" Dirac-Hartree-Fock approximation ®. In Sec, III we present the numerical results

for the momentum—depeﬁdent self-energies and the definition of effective nucleon
masses is discussed. We will show that within the context of the nuclear models
used in this paper, we obtain results contrary to the ones obtained with models

dealing with quark degrees of freedom. Discussions and conclusions are presented

in See. IV.
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IL. NEUTRO& AND PROTON SELF-ENERGIES
In this section we derive the equations for the effeetive masses of the neutron and
of the proton in nuclear matter. Our starting point is. the following Lagrangian
density

L=CLs+Lsp, (2)

where Lg is the standard chirally symmétﬁc o-model Lagrangtan, augmented with

. a neutral vector meson,

. o 1 e g
Ls = (i, 8" —g(o+ byt - _Tr)__—- 9%V W+ *2*(6,10'3_'“0' + O, .04 F)

2

A , 1 1
“Z("z +at —ag) — ZG;,,_G“" + Emf,V,,.V", (3)
and Lsp is an explicit chiral symmetry breaking density
2 = LW R A
Lgg = co — Ymgp — —par® — ptate, (4)

Here, ¥, o, = and V* staﬂd r_espectivély_ for the _nucleon, the scalar-isoscalar me-
son, the pseudoscalar-isovector meson and thie vector-isoscalar meson and G* =
VY — 3” V. The vector field is added to simulate the short range nucleon-nucleon
repulsion. In the éxplicit symmetry breaking Lagrangian we considered, in addition
to the usual e, terms mvolvmg nucieon a.nci pzon masses. These account for the
brea.kmg of the i tsospm symmetry of the nucleon and of the pmn mu is a cha.gonal

matrix in Jsospm space given by

(3)

Chiral symmetry is rea.lizéd-ih the Nambu-Goldstone mode when the o field acquires -

a monzero vacuum expectation value, le., < ¢ >,..= u. Shifting the ¢ field as

= u + s, such that < 8 >,..= 0, the Lagra.nglan density in Eq. (2) can be
rewrltten as
- o 1
L=(in,d — M — g(s +i%7 7) — gur, VI + 5(6,,36“.9 ~ m?s?)
: 1
+%6F1'f,3"fr' - %mf,oﬁfﬂg —mirty — iGwG“” + Emf,V,,V"
~qis(s* +7%) g + 772 (6)

From this Lagrangian, the free-space masses of the particles can easily be identified.

The nucleon mass matrix is given by

M=my+gu= . _ (T
0. M, .
" The o-meson mass is
. mg = A3 -ad), - . (8)
and the pion masses are
mi =X’ ~ o) 4% ml=Aut—o)+ud. ©)

0 [

The undetermined masses m,, m.,, pp and g are chosen in such a way that we obtain

the standard definitions for the coupling constants g; and ¢,

L= A= 2M(m - mb), gz—%' - - (10

a

- As usual, u is chosen to minimize the meson effective poteﬁtial, which gives the .

relation -
¢ = hu(u® - o). (1)

Notice that we could have st‘.a,rted W1th an isosymmetrical Lagrangian in Eq. (3 4)

.and broken the isospin after sh1ft1ng the o field, obtaznmg Eq. (6)
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The relativistic Hartree-Fock equations are obtained by using Dysbn’s equation
to sum to all orders the self-consistent tadpole and exchange contributions to the:

baryon propagator
Gk} = G°(k) + G*(k)E(k)G(k), (12)

where T is thie proper self-energy. The self-energy is composed of a momentum

independent tadpole term I and a exchange term L¥(k):
(k) = JILINE Ex(k). . {13}

The exchange terms, where the neutron and the proton (and the pions) have dif-
ferent masses, give different contributions to the neutron and proton self-energies,
whereas the tadpoles contribute equally to the proton and neutron self-energies. -

In order not to repeat standard formulae which can be found e.g. in Ref. (9-11),

we show here the contributions to the self-energies coming from the pions only.

Because of the translational and rotational invariances in the rest frame of the

infinite nuclear matter and the assumed invariance under parity and time reversal,

the self-energy may be written as ¥
S(k) = B*(k) — %Z°(k) + 7 - FE¥(k) (14)

The pionic contributions, shown in Fig. 1, are given by

P = mgo?

G,a) A0 i
B0 = ig” [ (B [ DD oSO )

. d'g Ga(9) Gyle)
XLy — —iq2 .4 . 1
X = ~ig" [ 5 [(k-——-q}e—m,roz tag—Bl—lw. (9
From these equations, the effect of different meson and nucleon masses on the

difference of the neutron-proton self-energies becomes clear.

We solve the cou'plé:d ini:egral ‘equations for tl.le.self-energies in the so-called Dirac-
Hartree-Fock approximation . This api-)mximation amounts to keep in the baryon
propagators the contributions from teal nucléons in the .Fermi‘.séa only, The effects
of the medium on virtual nucleons and anti-nuclécns are neglected, This yields the
familiar Hartree-Fock approximation of non-relativistic many-body theory when
the assumptions of non-relativistic kinematics and static meson exchange are made.
The nucleon propa.g'ato;: in a .Fer-m'i .sea' with Férini m.omen.t.ﬁn“;.kp is then written

as (the nuclear density is po = 2k3/37%)

Gb(k) - (TFku. + Mb (k))E.(k)

where the subscript b stands either for proton or for neutron and

ket =B 4 B0 = (K0 + BY(k), B(1+ Bi(k)) (18)

Ei(k) = V(B Y + MY, Mi(k) = My + Tik) (19)

and Ey(k) is the “single-particle energy”, which is the solution of the transcendental

equation
CBR) = (B (R — TP ey - )

.Pcrforming the angular and &° integrals in the expressions for the components of
the .self-energ;y, as those appearing in Eq. {15-16), we obtain the following coupled

nonlinear integral equations

e (Mg -
E;(k) = E-’T + 41r2k } dqq ['—L(-g)'g—(eap(ka q.') - eﬂ"p(k1 4))

EXq) 4
M) Mila)g cal o
- 0k - FiB S ontro]
8

5(k2 — E;,(k))ﬂ(kp 9B an
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2 a2 1 . p
- x? = —_— — o, {k

+20n(k0) + S0uke] ()

( )=- 41 2k2 _/kF-dqq(E;q(;q) [%"{@up(ks q) + Qﬂp(k,q))

+eBalha)] +Fonthzhs) . o)

In addition, there are the three equations for the neutron self-energy, obtained from
the above equations by just exchanging the indices for protons with. the indices for

nentrons. The equation for B¥ is

kF 2 ﬂfI;(q) ﬂ/f’(q)) 3¢ (nTy2 492 Y]
n ] 24
arzmgj; dag (E;(q) P E) i) T g @9

In.the above equations g = | J|, k= | & i,

2T=—

Oulk,g) = ‘“!Wl Balk,q) = ﬁ%@—) “1, (@)
and
Au(k,q) =B+ & + m? — (By(q) — Ey(k))?. (26)

All self-energies are evaluated at the self-consistent single-particle energies, ¢° =
E(q)..

Eq.(24) is the equation for the nucleon self-energy in a Hartree approximation to

the linear g-model 1!, the last. two terms commg from the potentxal energy in the

Lagrangla.n of Eq (6)

III. NUMERICAL RESULTS

Eqs.(21-24) are solved by a direct iteration procedure with mean-field self-energies
as sta.rtmg values. When the output va.lues coincide within a difference of less than
108 with the input values at all points, we consider that the self- consistency is
achieved. - It is known that such an iteration procedure does not converge 12,
depending. on the values of the parameters of the model, for nuclear densities larger
than approximately two times the normal nuclear density. This is not a problem
here, smce we are interested in AM,, at low densities only, such as those oceurring
in med1um to heavy auclei. .

In order to compare our calculation with the ones of Refs.(3,6), we need a def-
inition f§f_ th§ in-medium nucleon mass. The natural guiding point is to Jook at
the sin;gle-pgi;ticle spectrum given by the pole pdsition in the nucleon propagator
in nu_cl‘_:a:.'_:r'ﬁa.tter. " In mean-field approximations (Hartree), the effective nucleon
mass is defined as A/ = M + Xipy, where T}, pr is the mean-field momentum-
iude?éﬁder_:ﬁ self-energy. This is a natural definition for the effective nucleon mass
since-t'h:e '.I:).iré.c.équa,t_ion is then identical to that of 2 free particle with mass M/,
In oﬁr case, the sif._uat_ion is not.so simple because of the momentum dependence of
the sélfé.e%lef'gi_(.z‘l.s. .‘Hofo_witz and Serot # define the relativistic effective mass M*/f in

analogy to the _ﬁou&gla.tivistic definition by the relation (b=p,n)

E”cq)—q[( ()" )}. @
T k=q

"This- definition coincides with the definition of M/ in the Hartree approximation

and it is the one we adopt here. We will come back to this point later when we

discuss thé-r_esults. With this definition, we have for the in-medium neutron-proton
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mass difference (for & = kp)
AMy(ke) = M2 (he) = Me (k). e

" The parameters of the model are ¢, g,, m,, and m,. Explicit one-loop calculations
in the chiral limit of the pion self-energy ' show that u == f,, where f, is the physical
pion decay constant. Therefore, if we use the experimental values for the proton
mass and for the pion decay constant, from Eq. (11), the parameter g has the value
¢ ~ 10. It is then possible to reproduce the experimental value g.xy = 13.5 in the
linear o-model using the Goldberger-Treiman relation

Mp G N
g=—"=="= 29
’ f'lr gA ( )

with g ~ 10. We assume that the Golberger-Treiman relation is valid in medium
and so g is fixed. Thus, the only free parameters in Eq.(21-24) are g, and m,, once
we take for the vector meson mass its free-space value m, = 783 MeV. In princip-le,
m, and g, can be fitted to known ground-state nuclear matter properties. However,
in order to calculate, for example, the binﬂing energy, it is necessary to inciude the
meson loop terms in the meson self-energies 2. Since we are not interested here in
studying saturation properties of nuclear matter, we instead vary m, and g, over
a reasonably wide range of values; the saturation values must certainly be in the
chosen interval.

In Fig. Q(a) we plot AM,, as a function of kr for m, = 1000 MeV and for
several different values of g,. In Fig. 2(b) we plot the same function for g, = 3.0
and different values of m,. We note that the individual functions M (kr} and
M (kr), which we do not plot, decrease w.ihh increasing de_.nsity, similarly o the
behavior obtained with NJL-based models, but their difference increases (at some
density the difference of course will start to decrease). This shows that the self-

energy corrections to the bare masses M, and M, are such that the neutron remains

11

heavier than the proton in medium. The definition of M®// through Eq.(27) does
not spoil this fact. Mg/ and M3f/ decrease until the density reaches some value
(which depends on the parameters used) and then start to increase. However, from
Fig. 2 we note that AM,,, increases as the density increases, in contrast to what is
obtained in Refs. (3,7).

We have also studied in an approximate way the influence of possible density
dependence of the meson masses and of the coupling constants on AM,,. To calcu-
late the density dependence of these quantities, we should solve coupled nonlinear
integral equations for the meson self-energies and for the vertex functions, similar
to the ones for the nucleon self-energies. This is ¢learly a formidable task. Here we

simply parametrize this dependence as follows
m(p) = m{0)(L — & p/po), . ' - (30)

9u(p) = 9u(0)(1 — &y p/p0),  g(p) = g(O)(1 ~ cx p/po) (81)

where ¢ = o,w, 7, and (po) p is the {(normal) nuclear density. The «'s are varied ar-

bitrarily. In Fig. 3 we plot AM,, as a function of kp for density dependent massés,

with different combinations of a’s. We observe that the tendency of an increasing

neutron-proton mass difference is still obtained. Varying ¢ and g, according to
Eq.(31), the same qualitative tendency of an i.ncrea.siﬁg..neutron—proton mass dif—
ference is obtained. Different combinations of o’s do not change the qua.iité.tive
results. . . .

There has been some dispute in the literature™!? concerning the correct density

depéndence of meson masses and coupling constants. In Fig. 3 we have used only

positive a''s, i.e. decreasing masses as the density_ increases. We also studied the
case of negative of’s. The result is that we still get the same tendency, and the

same order of magnitude, of an increasing neutron-proton mass difference. This is

12
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also irue when negative o’s are used for the coupling constants. Admitedly, the
way we take into account the density dependence of the masses and the coupling
constants is not entirely. satisfactory, as-momentum dependence of the vertices and

self-energies have been neglected However we beheve that the qual:tatlve behavior
we obtained for the neutron-pmton 1nass dlﬁ'erence in nuclear matter w111 not be
modified in a more complete treatment. .

We have also studied the model dependence of the results. We have neglected the
potential energy of the o-model in Eq. (7) and obtained in this way the traditional

Walecla mode] 12 (thh plons} This implies that the last two terms in the tadpole

equa.txon Eq ("1) are now a.bsent Since the model is not chirally symmetnc;

the constra.mt of equal pion-nucleon and sigma-nucleon couplings is not requ:red

Using the ‘adequate parameters:for the saturation of nuclear matter ® we have

recalcnlated AM,, and obtained: the 'same qualitative result for AM,, as before,
ie., an increasing function of the _d_ensity. The potential energy _a.f_[’ects ma;in]y the
o-meson mass -, and this we have already shown not to affect our qualitative results,

Torend this section, we rema.rk ‘ilﬁat the élétromégﬁetié sélf-energies. are extremely

small compared to the muclear self énergies, and do not affect our results.
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_ IV. CONCLUSIONS

We have investigated the neutron-proton mass difference AM,, in nuclear mat-
ter within the context of a chiral model involving nucleon and meson degrees of
freedom 6111y. Our caleulation employed the self-consistent Dira.c-Ha.tf_ree-Fock ap-
proximation to the r'mcleon propagator.. We found that AM,, increases as the
dénsity increases. Previous calculations, using models where the chiral symimetry
is realized at the quark level, found that AM,, decreases with the density.

Within the context' of the chiral o + w model we have used in this paper, the

density dependence of meson masses and coupling constants was addressed in an

approximate way. By neglecting the momentum dependence of the vertices and

@

meson masses, the density dependence of these quantities was taken into account

by postulating an arbitrary, but presumably plausible, function of the density. The

. general trend of an increasing function AM,, with the dehsity was obtained, inde-

pendently of increasing or decreasing masses. Varying the coupling constants does

not change tl_lé qualitative results. In addition to the correct density dependence

of the meson seIf-ener_gi&sraud vertices_, the problem of the Dirac sea has to be ad-
dressed as well. This is a difficult and vet unsolved problem. All nuclear structure
caleulations using relativistic models in the Hartree-Fock approiimation suffer from
this deficiency. The renormalization of the exchange diagrams introduces compli-
cations related to the appearance of "ghost poles” 1516 which do not have a clear
physical interpretation. How dependent our results are on the polarization of the
Dirac éea is an open problem. .

To coh_élude, we obsezh".re that it might well be that in order to implement chiral

symmetry at the nuclear level, which has the correct restoration properties of the

QCD condensates; more elaborate chiral madels have to be considered. However,

if the correct implementation of chiral symmetry requires the introduction of, for

" 14




example, the p and delta ressonané:es; imuch of ti‘le beauty .of the chiral symmetry
arguments would probably be lost in the complications of the nuclear many-body
preblems which a.pp_éar "arhen_ such Tessonances are considered. We would then have
a situation where the use of the QCD deéreés of freedom would be more economical

and transparent for treating & nuclear phenomenon.
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FIG. 1. The «% and 7% exchange contribution to the neutron and proton self-energies

FIG. 2. In-medium _neuiron-proton mass difference as a function of kr for (a): m, =

-1000°'MeV and g, = 2.81 (solid), g, = 0.5 (dotted), g, = 15.0 (dashed) and (b) for g, = 3.0

and m, = 1000 MeV (solid), mq-= 700 MeV (dashed), m, = 550 MeV {dotted).

FIG.3. In-medium neutron-proton mass difference as a function of kr for g, = 2.81 and

My, rﬁv and my varying with density according to Eq.{31). The solid line is for o = 0, the

dashed line is for &, = @y = ay = 0.05, and the dotted line is for ay = @, = &y = 0.1,
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