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The Background Field Method and the non-renormalizability of the

non-linear Sigma Model in Three dimensions.

E. Abdalla, F.M. de Carvalho F°

" Instituto de Fisica, Univ. Sdo Paulo, UP 20516, Sdo Paulo, Brasill”

We show that 2+1 dimensional bosoric and supersymmetric non-linear

sigma models with an arbitrary Riemanniar manifold as target space are non-
renormalizable. The perturbative calenlations of the counterterrus through two loop
order are worked out using the background field method and the normal coordinate

[ N T
eXpansion.

I. INTRODUCTION

Non linear sigma mc;de]s have originally been sitdied i'n the context of current
algebr'a,[l], but later, they have been proved an excelent laboratory, since in two
dimensional space time they are similar to four dimensional Yang-Mills theory[2]. Af-
terwards, sigma models have been extensively used to obtain important informations
from string theory[3]. In this last case, with the background field method[4] one is
able to obtain the counterterms as functions of the gravitational fields. Conformal
invariance restraints these counterterms to zero, definning quantum corrections to
the Einstein equations[5]. It is natural to extend these methods to three dimensional
space time for several reasons. Pirst, they-i‘lre-ll'node.ls for membranes([6], in the same
sense as the two dimensional cases are models for strings. They have been used to
study fermi beson transmutation and superconductivity[7]. It is weel known that
renormalizability may be achieved in the large N expansion for O(N} and SU(N)
invariant models[8]. Our work deals with the question of whether sigma models in
three dimensional space time may be perturbatively renormalizable or not. We shall
consider one and two loop counterterms for the sigma model and supersymmetric

extension, using normal coordinates[9, 4].

II. THE BOSONIC NON LINEAR SIGMA MODEL.

The purely bosonic non linear sigma model is defined by the Lagra,néia.n
1 . '
L = 59ii{($)8,4'0"¢ (1)

The background field method using normal coordinates applied to this model is
well known([4]; using the background quantem splitting ¢ = w4+, where  is the clas-
sical background and 7 the quantum field, expanded in terms of normal coordinates

£[4] the following expansion is already standard
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We should note that naively, the theory defined in equation is perturbatively

non renormalizable; therefore we must allow terms of higher dimensions, which are

discarded in the two dimensional case{4]. In the above equation, we define
A:b - w?baﬂwi
(Du€)" = 0.8 + w?baﬂpifb 3
and w?® is the spin connection, defined by

e = Bie®; + wP(e)en; — The® = 0

Wt = —eb-'V;e"J- = —ebjage"j + eb’Pij“k (4)

At the one loop level, we have contributions from $®[p]. The relevant diagrams
are displayed in figure (1).
We do not use dimensional regularization, since in odd dimensional space time

it is in fact a renormalization prescription, which deletes all divergent contributions
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automatically, rendering the theory finite. Thus, if we wish to study the regularization
effects in detail, we must make the counterterm strueture explicit. We therefore choose
a Pauli-Villars regularization (subtracting the infinities with the use of a regulator

mass). The one loop result sumarized in figure (1) gives the result
A
(1) — 2 f a2
850 = = [ d2Cu, (5)
This counterterm may be absorved in a redefinition of the metric, as

A
9{; = gi; + — Ri; (6)
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At the two loop order we have sevéral contributions. The diagrams are displayed in
figure (2). There we see the following results. For the first diagram, we have the

square of a one loop diagram, which is easily computable. The result is
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This implies still a redefinition of the vacuum. It corresponds to a “cosmological
term”. It is in essence a one loop counterterm. The same is valid for (28} and (2¢),

which result in
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Contribution {2d} is new. It contains the first really “non renormalizable” coun-
terterm. We divide it into two pieces. The first analogous to the previous contribu-

{ions is given by
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Yipy = (EDRDR + XRDRw + BRRww), (11)

and the second ome, also non renormalizable, given by the following expression in

momentum space:
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leading to higher derivative counterterms, that is
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We have computed explicitely the counterterms in the following cases:

1.Ricci-flat spaces (R;; = 0);

2.Locally symmetric spaces, where Do R, = 0; this includes the O(n) and
C P! models.

In the first case we have finiteness at one loop level, but non renormalizability at

two loops; the counterterm is given by

500 = [wa - —RR] B, 0
1 2_1_3 :__S_A_ééi]w
961r“{[4A (o Jrp  3pl (i
w2 A2 4 A 4A . .
— —- - abe B2 By’
+10ppp [3111 B 3rp 31«‘,&]} X Riate a"q’a ¥
1

L [ (DR)(DR)+ERDRw+ERwa] X 89" 818,478, 0"

iipg

" 64n?
1 A
3252

[E(R)(DR)w + SRRwo + (D R)R + ERRR]
% 8,46' 0% 8,078,457 (14)
is not of the form of the original Lagrangian. In the second case we have 2 renormal-

izability at one loop order, and again, new infinities at two loop order. Specifically,

in the O(r) model, where the metric and the curvature are given by

Pipi
i) = & +
gJ((P) ¥ 1 — I(plﬂ
Ry = yik(‘:ﬂ)yﬂ(w) - g,-,((p)g’.k(so) (15)
we have
A3
6Logwm) = g™ {[(311. n +4)A'~’ (n -~ bn + 6) ] n
w? AZ , .
-f—ﬁ[(ﬂn ﬂ_z - é.a)pup _
Az 8A 4A2 b . .
—(hﬁhﬁ_sﬂ'zﬁ )P 7]“ ](n— } )(fd3zgija”(plauaj
1 A 3 2 . , .
s i f dz [(n —3n — 3)giigpe + (n + 3)gspgjq] B8,0' 078,078,
n+1. A? ‘_ .
_Er?ln ;;fdamgijgmau‘P g*e? 0”8, (16)

3. The supersymmetric non linear sigma model
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We shall consider now the supersymmeiric extension of Lagrangian , which reads,

in terms of superfields
L] = %g.-,- (¢*) D3' Dy’ (17)
or, in terms of components
L= % [9:‘;‘ () 8,8'0"¢ + igi; (#) F v Do’ + %Riﬂcl (¢ (1?1;')')] (18)
~ where
(D) = 8,87 + TLdugty! (19)

The background field method works well, as in the previous case[10]. We consider
the fermi fields ¥% to be quantum fields, avoiding background quantum splitting for

anticommuting variables. We obtain
55 )T D¥ = (a5(0) + FRast"e ) T DV + L Rogudylet (T
(20)
We can now write all relevant objects in terms of tangent space variables, using
=€, =, (D) = 8" + iS00t (21)

Gathering together all relevant informations, we obtain

SWl = SO+ SORI+ SO+ SOWI + S+ (22)
SO = 3 [ #oiF (16, + m)ye (23)
SOl = 5 [ Eaif iyt (21)
SO = ¢ [ PoReast T D, o (25)
SO = ; [ PeRactpie Ty (26)
SO ] = o [ ooy | (an)
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where a cutoff mass has been introduced again in order that we obtain infrared finite
results. Using the Pauli Villars regulator, we obtain a vanishing result at one loop
(see figure 3). At two loop order, we have the contributions shown in figure 4. In the

first dingram we have a contribution arising from § [], given by
1 ¢ pd T8 . ¢
659 (] = —% [ o Ruca (T (£€F° (0.4 + iy A7) ) (28)
Upon contracting the £’s and the 1’s, we obtain

55 [y] = 32; [é=R(z) (29)

which is analogous to previous computations (see eq.*****); due to a factor of 2,
there is no cancellation between these terms. Note that diagrams (b) and (c) do not

contribute. Finally, for the last contribution we have
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1. CONCLUSIONS

The conclusions we draw from this computation, though negative in the sense that
we do not find any sensible renormalizable theory in any simple case, is important
in view of the many applications of sigma models. Moreover, it is important to
point out the different result one obtains from the perturbation theory used here,
and other perturbative results based on the large n behavious[12][11], which defines
a renormalizable theory., Thus, we conclude that several of the infinites we found
are fake inﬁn.ities produced by p_eﬂurbation theory, or else, the theory has different
phases.

o,




From the 1/n perturbation of the CP" ! model one learns that the model has
two phases (not those under speculation above), one having a massive n-plel and a
massless abelian gauge field, and another with a massless (n — 1)-plet and a gauge
field displaying no pole in the propagator. In these sigma models, cancellation of
divergencies arc a consequence of the definition of the auxiliary field propagator[13],
and the identity shown in figure 5.

In the supersymmetric case, cancellation between bosons and fermions is not
enough to render the model renormalizable. We think that the same continues to be
true for higher supersymmetry {we worked out explicitely the case N = 2} Restrictions
of the manifold may result in tllle f.a;.ct that éome counterterms might be zero, but not
all of them.

We should also make some remarks concerning general 4 dimensional non linear
sigma models. Although already studied many years ago{l4], it is not difficult to
obtain the first few counterterms using the background field method. Indeed, the

Lagrangian
L =g DV +g;Dup' D (31)
has a background-quantum expansion given by
£ = La(e®, %) + Rias; (3;190‘3”99]' + %i_b‘ p?ﬁj) g (32)

with a gauge field A:" = wi8,¢".

The diagram with twb, three and four external 4,.u legs cannot be made to

vanish, and we need a counterterm Fj,,, which is non renormalizable already at one

loop level.
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One ioop order contributions

Two loop order contributions

Vanishing contribution upon use of gauge invariant regularization

Two loop contribution for the supersymmetric case

Cancellation mechanism in the 1/n expansion
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