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ABSTRACT

The description of some nuclear collective excitations may lead to a complex eigenvalue |

problem of a non Hermitian matrix. It is shown that there exists a related real matrix
which satisfles the usual standard real eigenvalue problem whose solution vields directly

the solution of the original problem.

PACS NUMBERS: 24.30Cz, 24.30He, 21.10.Re

1. Introduction

The decay properties of giant resonances (GR’s) are of special interest for the unders:
standing of structure and dynamics of these collective modes of nuclear excitation. Since
giant resonances have mostly excitation energies above particle emission thresholds th’ey
usually decay by particle emission. The total decay width consists of an “escape width”,
which represents the direct decay owing to the coupling of the 1p —1h doorway state to
the continuum and a “spreading width” which reflects the coupling to more cOm1>licatéd
np=nh states. The structure of GR is reasonably well understood in terms of particle-hole
(p — h) configurations in the tramework[1> 2 of random phasé approximation (RPA). The

. . . . -8l . ’ . . . . . Lo
inclusion of continuum effectsl® = 6] in RPA calculations gives information, in principle,

on direct nucleon escape.

Different discretization methods for the single particle continuum in nuclear structure
caleulations using RPA are currently used in the literature or are reportedly being imple-

[7 —13]

mented, They include projection methods in a number of variations including the

TR m ey ¢ ] el 7[11] ; TlO’s 1ot g iy
use of Weinberg “quasi-particles , and the use of Gamow states*¥i. Their common aim .
is to provide for a sound scheme allowing one to include the relevant features of the con-
tinuous single particle spectrum, notably single particle resonances with the corresponding
éscape widths, at reduced computational cost.

In all these discretization methods we need to solve the following, 2n x 2n, Complex -

Random Phase Approximation (CRPA) eigenvalue equation

K@):wm@) : - }",(‘1.1}

where the matrix X can take two different forms

' A B A4 B\ 0
Kjlz(“B* _A*> or K:2=(_B -—A) ,.' ] (12) .

A and B being complex non Hermitian matrices of order n which depend on'the energy"

E. The eigenvector (12/) corresponds to the eigenvalue wp,. The way in which these
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two forms arises will not be reviewed here; our main purpose is to exhibit an equivalent
real matrix for the 2n x 2n CRPA eigenvalue equation. It is important to mention that
our method does not make any difference if the size of the matrix is small but, if our shell
. basis includes two major shells in the lead region, it is worthwhile to apply the technique
developed in the present paper, where in section 2 the formalism is presented with some

_ applications given in section 3. Some conclusions are drawn in section 4.

2. Transformation of CRPA equation to the real eigenvalue problem

As we mentioned before, £q. (1.1) is simply an eigenvalue equation of the type KX =
wm& with K € C,, where Cj, means a complex square matrix of 2n rows. Here it is
worthwhile to mention that the usual library subroutines diagonalize an equivalent 4n x4n
real matrix. This eigenvalue equation can be solved with the help of the already existing

subroutines, that one can find, for example, in the NAG or IMSL subroutines libraries(14),

However, noticing the block structure of the CRPA matrices, it is interesting to see
whether K can be transformed in such way that we find an equivalent real matrix. To reach

this goal let us multiply both sides of eq. (1.1) by X, then after some trivial manipulation

(o )8 @)= () 21)

Applying now the following unitary transformation

J= \_}5 (—if’ 21{) ’ 22)

where I is the identity matrix; for to the eigenvalue problem (2.1) we get

ReD~ —-ImDt\ /ReDt ~ImD")\ /m\_ , [(m 23)
InD~ ReDt J\ImDt ReD J\n) “m\n/) :

where Re(Im) D* = Re(Im) [A + B} (2.4)

we obtain

and

(T:) = J(g) . (2.4)
1t is interesting to note here that, if Im D¥ = 0, we g;et back to the Chi[15] formalism
for solving the real RPA equation. He originally transformed the 2n real RPA eigenvalue
equation to the n symmetric eigenvalue equation, which can be solved by well-known and
reliable methods. In the present case, the 2n complex eigenvalue equation can be further

transformed to the 2n real eigenvalue equation. However, we can use this method to

transform the second eigenvalue equation presented in eq. (1.2). Therefore, if we apply

" the following orthogonal transformation

1 I I
po(I D), ”
to the matrix Ko, we get
J’UCJ:(AEB Aj]”B)szc; . (2.6)

The eigenvalue equation (1.1) takes the following new form

5= (),
0" 2)

Multiplying again the above eigenvalue equation (2.7) by K} we get two uncoupled eigen-

where

value equations of the type

Ca=(A+ BYA - Bla =wa’a (2.9a)

DB =(A~-B)YA+ B)f =wy,28 (2.95)

It is worthwhile to mention that the above two equations were obtained by Chill®! for the

case where A and B were both real. As one can also note, the previous problem of the
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dinzonalization of the complex matnx of the order 2n is transformed into the problent of

: c 3 : o ol TR e el . -
an n order complex matrix, which obviously means that we simpify onr original problen.

Howeyer, we can simplify further by defining the following 2n complex matrix eigenvaiue

equation extended from (2.9a) which is similar to the Ky from Eq. (1.2)

: [ _ C 0 LA P 2.10)
F <Pc) B ( 0 cr ) (Pc> ¢ (1’6) ( '

Using now the unitary transformation (2.4)

.
[Sv]
[y
ok

~—

: ReC ~ImC
;= T "
Py=JPJ (Im C Re C'>

which is a real matrix of 2n order. The cigenfunctions from (2.9) are also transformed

2 1/ p+pe ) o1
= === . 2.12)
v <,) V2 \=i(p— pe) (

mto

Thercfore, the original complex eigenvalue equation is now equivalent to
= o 91
Pjyr; =& 5. (2.13)

‘ .l . 2 .
By comparison of eq.(2.13) with eq.(2.9), we have { = wm? with po = 0 and § = wy, with

p = 0. For the first solution we have from (2.7)

;
f=—(A~- B _ (2.14)
Wm )

replacing this expression in eq.(2.8) and with the help of (2.2) we get the following form

for the original eigenvector

’ ~1r4
v _ L[ I+wpl(A=-B)Y () (2.15)
Z/ . \/§ —'I'%_wm ('4_‘8} 14
Therefore, as before, the original problem of diagonalizing a 2n complex matrix is sim-
d by the diagonalization of a 2n real matrix which has more reliable subroutines

piific

available.

3. Numerical Tests

Let us present now two numerical tests in order to verify our formalism by introducing

the following matrices 4 and B from the CRPA equation (1.1)

4= 16.367  —0.000: —4.277 0.000:
T —4.277 0.000: 9.067 —0.200¢ /
and
B= 670 0.000¢ 3.055 0.000z
- 3.055 0.0007 870 0.000¢

As one can see in the above matrices, the complex numbers are only in the diagonal

clements of the matrix A; however, we have also verified our method for any complex

matrices A and B. Then, using the above matrices to perform the matrix product (2.3)
we can find a real matrix which is digonalized through a standard subroutine from IMSL

called EIGRF, furnishing the following eigenvalues,
wy = 18.28834 — 0.757084 and wy = 7.04366 - 0.34292{ .

The eigenvectors obtained from the inverse transformation of (2.4) for the eigenvalues w;

.and wy, are, respectively,

/ v \ 0.80273 — 0.01216¢

Yzl 1 —0.45924 - 0.0235%¢

Z} ) - 0.01290 + 0.00233¢

Z3 —0.08367 + 0.00058:

and

Yf 0.47963 4+ 0.02393:

Y; _ 0.90731 — 0.01263:

Zg 1 —0.16170 + 0.00405:

Z:f —(.16249 — 0.00415:

The above values can be compared to those obtained through_direct'diagonalizatian‘ .

of the complex matrix with a IMSL subroutine called EIGCC, fufniéhing
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/¥
U B 4
wy = 18.28822 — 0.75708: with 71l =
3
Z;
and 5
/ ¥ /s 0.479063 -+ 0.02303,
o [ Y 0.60731 ~ 0.01263i
wy = 7.04357 — 0.342902; w 2, 1 =
wy = 7.04357 — 0.34202; with 2 —0.16170 + 0.00405¢
Zf —~{.16249 — 0.00415:

As expected, there is a neglible difference between the two results in the real part of

the eigenvalues. The imaginary part of the eigenvalues and the eigenvectors are almost,

the same. The second, and final, verification of the CRPA equation (1.1) with X5 is now

presented. We diagonalized the equivalent real eigenvalue equation (2.11) and we found

wy = 18.28846 — 0.76017: and wy = 7.04672 — 0.40037¢ .

Now, the eigenvectors are obtained from (2.15) for the eigenvalues w; and wy, resulting,

respectively,

* 0.89272 - 0.01210:

( v _ 1 —0.45526 - 0.02369:

23 B 0.01275 + 0.00287¢

z} —0.08366 — 0.000542

and

1% 0.47943 4+ 0.026214

Yf _ ( 0.90706 — 0.00967:

Z2 ] T 1 —0.16102 — 0.01076:

;“) \——0.16183 - 0.01274;

As before, these values can be compared to those obtained through direct diagonal-

ization of the complex matrix with the above mentioned subroutine

- . Y} —0.45926 — .02369

{ == 2 —_— v, 7 zh 2
wy = 18.28835 — 0.76016¢ wi K 2 } 0.01275 + 0.00287;
zZ} —0.08366 — 0.000547

Yy \ 0.89272 — 0.01210¢ \

7

and
V2 ) | 0.47044 +0. ()76"12

1
- . . Yy 0.90706 — 0.00967:
wy = 7.04665 — 0. 36: with = ; .
wy = 7.046065 — 0.40036: witkh Z:sz —0.16102 ~ 0'01“767-
z: /) ~0.16183 — 0.012744

Here, as we previously mentioned, there is still a-small difference between the two
results in the real and imaginary part of the ewenvaiues which was the same i;l the
latter diagonalization. Here the eigenvectors are almost the same. Finally, we would
1ike to comment that we present only one of the eigenvalues and eigenvecforé,‘which ‘are

normalized. It is also worthwhile to mention that all the cafviii o0 nresented were

performed in a IBM 4381 with 16MB.

4, Conclusion

The CRPA eigenvalue eigenfunctions which appear, respectively, before or after pro-
Jjecting the continuum spectrum is solved by transforming to an equivalent real eiﬂenva}ue. -

equation. This operation reduces the size of the matrix to be dlaffonahzed and increase

the reliability of the final results.
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