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Abstract
In this letter we investigate the behaviour of the Moszkowski model within the context
of quantum algebras, The Moszkowski hamiltonian is diagonalized for different numbers of
particles and for various values of the deformation parameter of the quantum =lgebras. We
also include cra.mking in our system and observe its modification in function of deformation

parameters.

PACS: 0200, 0220, 2160F

The Moszkowski model [1} is a two level model, each of them being N-fold degenerate

with two different kinds of particles, i.e., Ng particles of type a and N particles of type

b. The model is the two-dimensional analog of the Elliott model (2], which includes also a

one-body spin-orbit term. The su(2) x su(2) hamiltonian which describes the model reads
H=e(J.(a) - L(8)) + V(J2 + J3) (n
where € is the energy difference between both levels, V is the interaction,
Ji = Ji(a) + Ji(b), J’I = Zﬂ i=z,y,2 (2)
and
(o) = U@+ (@), L) = 2@~ I(), azab ()
The hamiltonian can be rewritten in terms of J4, J— and J, operators yield?ng

H = oJ.(a) = Js(3) + (T ()]0} + To(a)1 () + T (BT_(5) + J_(3)Ta (8

+274(a)_(b) + 274 (8)J_(a)). (4)

Notice that the above hamiltonian commutes with J., but does not commute with J?. The

basis of states on which the Moszkowski hamiltonian can be diagonalized are given by

N, N,
[thay >= I'_z—ma > i?bma > (5)
where
N, N, N, Ny Ny Ny
—_a _{¥a = == _2 ey - 6
my = 29 2+1: '121 g 2t 2+1r 2 ()
2
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Some features of the Moszkowski model have already been extensively discussed [3],
" but our aim in this work is somewhat different. Here we discuss the behaviour of the
model within the context of quantum algebras [4]. Quantum algebras, also known as QUE
(quantum universal enveloping) algebras are generalizations of the usual Lie algebras,
differing from them in the associativity condition. Instead of the usual Jacobi identity
necessary to identify a Lie algebra, the quantum algebras are required to satisfy a Yang-
Baxter equation, also known as braid-Jacobi equation. QUE algebras are also called Hopf
algebras. From the physical point of view, they can describe deformation of systems
previously studied within the context of Lie algebras, i.e., they can describe perturbations
from some underlying symmetry structure. Stretching effects are taken into account when
one allows the algebra to deviate from the usual Lie algebra limit by means of a deformation
parameter. It is worth pointing out that the connection of QUE algebras to q-groups is
quite different from the usual link established between Lie algebras and Lie groups.
Applications of quantum algebras to systems obeying a Lie algebra structure may
help us to understand some features as symmetry breaking or phase transitions. In this
paper we study the behaviour of a system described by the Moszkowski hamiltonian when
deviations from the su(2) x su(2) algebra are introduced.
The generators J,, J_ and J; of the quantum algebra su,(2) satisfy the following

quommautalion relations

1J21J+] = J+v [.],,J_I = '_‘I-1 [J+1 ‘]—] = [2‘121» (7)
where
=9 8
W=t ®
3

and g is the deformation parameter of the algebra, When ¢ — 1, [z] = z. Within this
formalism, the application of the raising, loﬁvering and Jz operators to a generic ket of the
basis |JM > gives

Tz|IM >= MM >

T IM >= /[T -M|[J+ M +1|JM +1 >

J|JM >= [T+ M|[J~M+1JJM -1>. (9

We then rewrite eq. (4) in terms of the deformation parameter q, and obtain the hamilto-
nian we name {(su(2) x su{2)), Moszkowski hamiltonian, which can be diagonalized with
the help of eq. (9).

In figure 1 we show the difference between the first excited state and the ground state
in function of NV/¢, where N = N, + Ny for N, = Ny = 4 for ¢ =1.0, 1.2 and 2.0 and
in figure 2 for N, = N, = 8, In figure 3 we have N, = Ny = 30 and show curves for g =
1.0, 1.1, 1.5 and 2.0 and in figure 4 N, = Ny = 50 and the curves are shown for g =1.0,
1.1 and 1.5. In all figures one may observe that, independently of the number of particles
considered, when the interaction V is turned off, -E-‘-fgﬂ is always equal to 1.0, This fact
can be easily understood since, in this c-ase, the hamiltonian just depends on J.{a) and
J.(b) and the energy difference between the first excited state and the ground state is
always 1.0.

It also appears to us that the inclusion of deformation anticipates a kind of phase
transition that would happen in the N, + N, system for larger interactions. One may
also notice that for larger systems, i.e., with more particles, this phase transition is more
prouounced for the same value of the deformation parameter. It is observable that there is
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‘a critieal g. from which; as 80on as the ihieractio’n is turned o, the gap.El — Ey increases
steadily, as can be seen in figures 3 and 4. This critical deformation parameter is reached
faster (smaller g.) in systems with more particles. We believe this is due to the fact that
when g, is reached, the interaction makes all particies very strongly correlated,

From this point on, we try to break some implicit symmetries of the systems described
by the Moszkowski hamiltonian. One way of performing a symmetry breaking is by means
of the inclusion of different number of particles of type a and b. In ﬁgere 5 we draw curves
for N, =2 and N} = 4 for ¢ = 1.0 and 2.0, from where we notice discontimuities. For the
same values of ¢, discontinuities are also observed in figure 6 for N, = 6 and N, =

Another way of introducing & symmetry breaking follows the idea developed in [2],
where cranking is considered. For this purpose we add the term —wJ, to the hamiltonian
shown in eq. (4). This choice was made in contrast to the one in ref.{2} (~wJ,) because
in our model, J, is already the symmetry axis (i.e., [H, J,] = 0). The cranked hamiltonian
is given by

Herank = H — S(J4(a) + J-(a) + J4(8) + J_(B)). (10)

The cranked hamiltonian, including N, = N; = 8 particles, is diagonalized for different
values of w and the difference between the first excited state and the ground state in
function of NV/e is shown in figure 7 for ¢ = 1.0 and in figure 8 for ¢ = 2.0, For w = 0,

the solid curves in figures 7 and 8 are the same as the ones in solid and dotted lines drawn

in figure 2. It is worth pointing out that for the deforined case (¢ = 2.0, fig.8) we can see

well pronounced minima when w = 0.5 and w = 1.0 are introduced. This feature is not

seem in the non-defermed case (vide fig.7).

Anothet mvestlgated pomt was the behavmur of the ground states in functmn of the

J, pmJectmn for- chﬂ'erent. vnlues of q. The results we obtamed are shown in ﬁ,guree 9 and
10 for N, N; =4and N, = N;, =30 partlcles reepectwely The general trend of the .

curves seems to remain the same but, for larger q's we obtain lngher minima. The slready

meritioned critical deformation parameter g; also plays its role here,  When it is reached,

_ both mdea of the curve close together, as in ﬁg 10, “when q = 2 0. Unfortuna.tely, plottmg

 the effects of the deformation on the yrast line does not make sense m our problem amee" .

the Moszkowslu bamiltonian does not commute with J, - A .
The aim of this work was to show the effects of deféi-ei_etioe l;pon' the Mos: Zkowsh -

modei and, whenever possible, explain them. B L N
Some wotk in the very same line as this one has'wy:m done, mei, the ;

application of quantum algebras to the su(2) Lipkin model [5]. Generalizations from the .

classical to the quantam su(N) algebra have also been sﬁidied {6] and they can be useful

in helping to extend the above application to the su(3), or even su(N ) L!plun modd This

work is already vnider mvestlgatlon
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Flgure cnptlons S

F:gure 1. - D:ﬁ'erence bel:ween the first exc:ted state a.nd the ground atate in functlon

" of N V/e, where N N. +N| a.nd N. = N| = 4 part:clas The sohd ll.ne shows the funchon

Figure 2, - The same as in fig. 1 but for N = N; - 8.

Figure 3 Dlﬂ'erenoe between the first exmted state and the ground state in functlon -

of NV/e, where'N =-N. 4+ Ny and N, = N; . 30 part:cles “The solid hne shows the

function for ¢ = 1.0, fbe_ _d:_ashed line for g = 1.1, the dot—daahed lme fcr. g = 1.5 and the
dottedhneforq 2.0. | | A |

: F1gure 4, - Difference between the first excxt.ed state and the ground state in function
of NV/e, where N = N 4+ Ny and N, = Ny =80 partlc}ee The sohd line 3hm the |
function for q =10, the dashed line for g ='1.1 and the dotted lme for q 1 5

F:gu.te 5. - Difference between the first excited state and t.he gtound state in functmn _ _'

 of NV/e, where N = No + Ny and N, =2 sad Ny =4 patt:clea The solid line shaws the -7

function for ¢ = 1.0 and the dashed line for ¢ = 1. 2

Fxgure 6 < Difference between the first excited state and the ground state in functmn o '

ofNV/e,whereN N.,+N. mdN.,_SandN._q,pmmla Thesohdhneshowsthe :f.'

function for g ='1.0 and the dashed line for ¢ =1. 2.

Figure 7 Dﬂference between the first excited state and the ground state in funchon LULTH

of NV/e, where N = N. +N and N, =N = 8 pa.rtlcles for g= 1.0. The solid hna shows L

the function for w= 0 0, t.he dashed line for w = 0.5 and the dotted lme for w= 1 0

anures Thesameasmﬁg 7but.forq 20




Figure 9. - Grmind state versus M, which is the pr;)jectioﬂ of the J, opex.-ator, fox;'
g = 1.0 (solid line), ¢ = 1.5 (dashed line) and ¢ = 2.0 (dotted line) for N, = N, = 4
particles and V == 42, |

Figure 10, - Ground state versus M, which is the projection of the J, opergtor, for
¢ = 1.0 (solid line), ¢ = 1.1 (dashed line) and ¢ = 2.0 (dotted line) for N, = N, = 30

particies and V = +2.
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