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Abstract

The acceleration of electrons using a laser and a static electric field perpendicular to
the former is congidered. The coupled particlefield equations are reduced to a
second—order non—linear inhomogeneous equation which determines the trajectory of the
particle. The particle energy equation is considered and found to exhibit fold catastrophes.
At these catastrophes, which may occur whenever the wave phase is nx if the direction of
the applied weak field is reversed at (2a—1)x/2 , further net acceleration occurs. The

trajectory equation is found amenable to analytical treatment.
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Laser acceleration of particles without plasma has been proposed as a means of
géjning, energy without the difficulty of plasma controt!™). In this method one uses a
strong laser field (typically the power ia ~ 10'® W/em? for a wavelength of 10 um) to set
the particles in motion, and a weak perpendicular static electric or magnetic field {with a
intensity of 107 that of the laser field). The resulting slightly deformed EM field allows for
the acceleration of the particles. Clearly the laser field alone only sets the kinetic energy of
the particle to oscillate without any net ga.in").

In a recent paper, Kawata et al.% discussed in details the optimal conditions for the
electron acceleration with a laser + small perpendicular static electric field, Eopp -
Through single—particle computation and a particle simulation, they found that the -
electron i3 accelerated in both half wavelengths of the wave, and its relativistic factor 4
increases by as much as a factor of 3.

In this letter we analytically analyse the work of ref.5 and show that the coupled
electron + EM field system i3 governed by a set of equations containing one noﬂlinea.r and
several linear ones. The non—linear eguation can be solved exactly and it governs the bulk
of the physics, the linear equé.tions are then solved from the knowledge of the solution to
the non~linear one. We predict, among other things, that the increasing in v can be
made much larger than given in ref.5 by applying, at optimally determined positions, an
array of B,/ 's with interchanging signs.

The starting point of our analysis is the coupled particle-field equations (see Fig. 1)
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where Eapp is the applied field intensity, By =v, /e, ﬁy = vy/c s B,=E,=-E;sing




with ¢ =k(ct—x). P, and P, arethe x and y components of the linear momentum of
the particle. The energy equation can be easily derived from Eqs. 1 and 2 by multiplying
Eq.1by v, and (2) by v, and add to obtain

at = —eByvy o e(t) = mc?o(t) + e By, y(i) (3)

where 7 is the time varying relativistic factor which relates P, and P, ta vx and vy
through P, =myv, and Py=m7yv,. '

Fromm (1), {2} and (3) one can obtain the solutions

Poc=mcty+eE,, y+K {4)
e
Py = —po By cosp—eEy t + Ky {5)

where K, and K, are constants determined from the initial conditions. We now show
that the dynamical eguations (1), (2) and (3) can be reduced to one—dimensional problem
through changing the independent variable from the time to the phase . This is

accomplished by introducing the new coordinate Q ,

Q = ——kc (e Ep ¥ + 2K, y) ' {6)

such that P, = dQ/dy . Using the fact that & =Xk(c—v,) =~ k/mcey (e Bopp y+K1) and
from (4),

Taking the derivative with respect to the phase ¢ of Eqs. (4) and using (5) and (7) we

finally obtain
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Fquations (8) and (9) are the Inverse-Bremsstrahlung Electron Acceleration (IBEA)

equations. Equation (8) is a second order non—linear inhomogeneous one that determines

the trajectory of the particle since x and y are explicitly given in term of Q as
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The acceleration equation, Eq.(9), is easily solved once 2 first integration of (8) is done.
The important, feature to be emphasized here is that €' is proportional to Q'sing.

Before discussing the solution of Eq.(8), we analyse the expected behaviour of the
energy as a function of  (or t). Clearly whenever o= nr, €' is zero (g i3 maximum or
minimum). If, say, at =7, Q'=P, is also zero, then ¢ is at an inflection point,
g" = 0. This behaviour is commonly referred to as fold catastrophe, according to the
classification of Thom®™. This catastrophe also characterizes the phenomenon of rainbow.

This behaviour is shown in figure 2, where a case similar to that of Ref.5 is considered,




namely the amplitude of the EM wave is E, = 01E, where Ey= @-"ﬁ;-ﬂ =
1.636x107 [‘c{_m] » A is the wavelength in_ em and E,;,/Ey=4.28 x 10° . The laser
power is 3.5 x 101 %g for A=10pm. The initial electrcmgvelocity is vy =0.99%.
The electrons are injected at an angle of 0.668° with respect to the laser direction
(along x). The figure exhibits () and Q(y)}. The inflection point alluded to above is
clearly shown (indicated by the arrow). At later times ¢ reaches a maximum at ¢ = 27
and then just oscillates along with the wave. If the applied field is reversed at 3x/2, the
origlina.l maximum in € at ¢ = 2r becomes an inflection point and the particle energy is
then pushed up to another maximum at 3x after which the oacillation set in again. The
net gain in energy after the first kick is about 300% whereas after the second kick is 600% .
Thus one can double the gain by reversing the direction of the applied electric field at the
appropriate time (or x) In figure 3 we show e(t) v3. t which exhibits the stair structure
of the acceleration quite clearly.

The mechanism responsible for this doubling of the gain in the particle energy is
governed by non—linear equations. We therefore coin it the Non—linear Amplification of
Inverse—~Bremsstrahlung Electron Acceleration {(NAIBEA). Clearly the NAIBEA can be
repeated several times by merely alternating the sign of the applied field at the appropriate
phases of the wave. A simple estimate of the net gain in energy after the elapse of nr in
¢, with accompanying changes in the sign of E, ., is ~n(Ae) where Ae is the gain
after the first kick (in our case Ae is about 150 MeV). The way to accomplish this is by
arranging an array of }‘:‘,app with interchanging signs at appropriate positions along the

x—direction. These locations are obtained from Eq.(10). The position x, at which the

first inflection point in € occurs is
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= 0.1lm

If the applied field is reversed at ¢ = 3x/2, which corresponds to the position x,
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then the position of the second kick or inflection point is
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it is easy to show that the position of the ntd reversing of the static field is given by
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and corresponding following kick

-2 Qén+1.?r
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The values of ' can be calculated from the trajectory equation, Eq.(8), to which we turn
our attention below. Before doing this we mention that the trajectory of the elecirons
accelerated with the NAIBEA mechanism is well behaved. Figure 4 shows a typical case.
The dispersion {oscillation) along the y direction is quite small.

Numerical integration of Eq.(8) is quite simple. However, to gain more insight into
what to expect we develop in what follows a procedure through which analytical solution
can be obtained albeit in an approximate way. To proceed we write the solution of
q=Q/mc, as

4= gG+Baq+B g+ (18)

where B is the laser parameter

B = ”g = 0.5093 . ' (19} .

In Eq.(18) q, satisfies the non—linear equation

(20)

whereas q, and g, are both given by linear equations
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" Eq.(20) can be easily solved analytically, and from the solusion, q,, Egs.(21) and (22) can

be integrated. The details of the full solution will be presented elsewhere’). In figure § we
present a comparison between the analytical method, based on Eq.(18) (dashed line} and
the numerically generaled one. We have here an agreement to a beiter than 7% at the
maxima and minima and better than 2% on the average. Therelore, for all practical
purposes, the set of equations (18), (20), (21) and {22) is an excellent substitute to the
numerically generated solution.

In conclusion, we have further analysed the IBEA model of Kawata et 31.5), and
found it to be amenable to analytical treatment. We also discovered a new way of
increasing the gain in electron energy through the mechanism we coined NAIBEA. Our
accelerator involves applying an array of Eopp with interchanging signs at optimally
determined positions. Further optimization can be obtained by adjusting (through

magnets) the new "entrance” angle after every kick.
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Figure Captions

Figure 1.

‘Figure 2.

Figure 3.

Figure 4.

Figure 5.
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The coupled electron—taser—static field configuration.

a} The energy € in units of the electron rest mass mc? vs. the laser phase
(see text for details). b) The trajectory variable in units of mc vs. the laser

phase.

The energy = in units of mec? vs. the time in units of 1.01 = 10° T5g

(see text and Ref.5 for details).

The trajectory of the electron. y and x are given in units of %‘f where A

is the wave length of the laser wave (see text for details).

Solid curve: numerically generated solution of Eqs.(8) and (9) in the one
kick case of Ref. 5. Dashed curve: the result obtained from the analytical

method, Eqs.(18), (20), (21) and (22) (see text for details).
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