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. Most of the recently published papers on photonuclear reactions at intermediate energies 1 either adopt
ot criticize l..he theoretical description by Hebach et al 2 we implement here a simple and realistic calculation
for the shell model knock-out contribution which considers a Woods-Saxon potential for the bound state and a
shallower optical potential for the cutgoing nucleon. Finsl states are explicitly orthogonatized to the initial state

and the effects of the orlhogonaiizntion requirement are discussed.

The aim of this report is to dedicate some thought to the theoretical descriptions of
photonuclear reactions at intermediate energies' which have been developed over the last

!, In particular, Hebach, Wortberg and Gari ? studied photonuclear reac-

several years
tions with photon energies varying from 40 Mev to 140 Mev in considerable detail. In
their approach they decomposed the cross section for single nucleon emission into different
contributions, namely the shell model contribution, the two-body initial and final state
correlations contribution and the exchange current (related to gauge invariance) contri-
bution. Their results indicate that the exchange current contributions in (v,p), (v,n)
and (%, pn) reactions are the most important ones in the energy region above the giant
resonance and below the pion threshold. Gari et al. criticised some model descriptions
which do not ensure orthogonality between initial and final state wavefunctions and to

tackle this problem, they enforced the single particle bound and scattering states to be
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eigenstates of the same hamiltonian. It has been repeatedly argued ! that the obtained

cross sections can be severely miscalculated due to the use of such an unrealistically deep

potential for the outgoing nucleon. Iﬁ fact, it is well known that the scattered nucleon feels
a much shallower potential than the one which adequately reproduces the relevant bound
orbital and this is the physics which has to be taken into account in this context. The
wavefunctions considered by Hebach et al ? are known not to be the adequate scattering
wavefunctions for the situation in hand.

In this work we concentrate just on the so-called shell model contribution and investi-
gate its sensitivity to changes in scattering wavefunctions including orthogonality require-
ments. The problem of orthogonality between initial and final states for direct nucleon
knock-out reactions at intermediate energies has also been discussed by Boffi et al. 3.
They compared the cross sections calculated with the wavefunction orthogonalized via
the Gram- Schmidt method with the cross sections caleulated with the optical potential
wavefunction. Here the orthogonalization is performed by solving a projected inhomoge-
neous Schridinger equation in an optical model continuum designed so as to reproduce the
nucleon elastic scattering at the relevant energies.

Except for exchange current effects, which we do not consider here, the absorption
of a photon leading to subsequent disintegration through an open channel f (e.g. nuclear

emission) is formally described by an amplitude which can be written as
Tyg =< ¥ | 30 d7) 190 >, ()

where the one-body operator Og (7) is associated to the perturbative absorption of a
photon of momentum % and polarization & by a nucleon at 7 (spin variables are implicitly
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included in this symbol). The target ground state | 3 > and the final state | 1,/)}_) >

satisfy the Schrédinger equations
Hl>=0 ; [E-H]|¢{)>=0. )

Since the target state energy has been set to zero, one has E = hkc. The full Hamiltonian
of the nuclear system is H and the final state contains aéymptotically free (or Coulomb)
waves in cha:lmel f and incoming waves in all open channels. Obviously < ‘q’)ol‘!,bs.-_) >=0
here.

Useful reduction of T, ¢ in order to expose a variety of competing reaction mechanisms

can be achieved by treating the equation satisfied by the final state in the framework of a

comprehensive reaction theory. We adopt here a formulation based on the so called optical
background representation of Kawai, Kerman and McVoy 1. Since the initial and final
{many-body) states are orthogonal, it is convenient to analyse the latter in terms of an
operater P projecting onto the observed channel f and a complementary projector (§ so
that

P+Q=1-|vo><do|=R (3)

in addition to the usual relation PQ = QP = 0 and the standard idempotency and
hermiticity conditions on P and Q. Eq.(3) in fact implies the splitting of the nuclear
phase space in three sectors, containing respectively the target state, the observed channel

(constructed so that | >= 0) and “everyihing else”. With the help of {3} we next write

1457 >= P17 > +Q 1477 > )

3

and find in the usual way that P | 1,[:}—) > satisfies

- 1 -
[E —ij:]P | ?f’fr Vo= VPQWVQPP [ ¢.(f ' > (5)
where
H}, = Hpp +HPQ____“'}‘_"“””“HQP (6)
opt E ~il - Hgo

is the optical Hamiltonian for channel f corresponding to an energy averaging interval of

width T and

—if —il

FiT-Heg ° 'O T E—il—Heg 9" @

Ve = Hpq

so that the right hand side of eq. (5) gives rise to fluctuation contributions with vanishing

energy average. A formal solution to this equation can be obtained as
P| xb(f_) >=| XS'_) > - fluctuation term (8)

where | x}_) > is an eigenfunction of the optical Hamiltonian, For the purpose of the

" present discussion we ignore contributions to Ty arising from the fluctuation term and

from Q | '¢r(f—) >. They mvolve either compound nucleus effects or various correlation
effects in the final state in an essential way. We focus instead on the simplest “direct”
contribution
Tgi =< X701y O 47k > 9
i
to the photodisintegration amplitude and illustrate its evaluation in the framework of a
simple model for the %0(y, py) process.
This model consists in adopting extreme independent particle ansatze for the target
state | 1y > and for the residual nucleus state in !xﬁ,_) >. In this way eq.(9) reduces ef-
fectively to a single nucleon transition from the appropriate bound orbital of | ¢ > to an
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(orthogonalj optical model scattéring st.at..e. The optical model potent.'.ia.l is determined p.he-
nomenologically and the orthogonality requirement stemming from (3) is implemented by
réstricting the optical model continuum to the subspace orthogonal to the bound nucleon
orbital in | g >. This procedure has been used previously in reaction theory calculations
% notably for analysing isobaric anzlog resonances *, where a similar orthogo_nality reguire-
ment must be imposed. It is implemented in the computer subroutine TABOO 7, which
we use in the calculations described below.

' As stated eu]i& we consider the reaction 180(v, p)!* N and celculate its shell model
angular distributions for photon energies equal to 61.9 Mev and 82 Mev.

Three different situations are considered. The first one reproduces the calculation of
Gari et al, 2 {figures 6 and 7 of their paper, respectively for B, = 61.9 Mev and E., = §2
Mev), where the initial bound and final scattering states are orthogonal eigenstates of the
same potential well. The Woods-Saxon potential parameters are Uy = 58.5M e'u.; .Rg =
2.77fm ; & = 0.5 fm and no spin-orbit potential is included so that there is no j-dependence
in the knock-out amplitude. Secondly, we consider different potentials for the bound
states and for the outgoing scattered nucleon. The same potential (mentioned above) is
taken for the bound state wavefunction. To caleulate the wavefunctions of the outgoing
nucleon we use the optical potential of Menet et al ®. Menet’s potential adapted to the
present case gives the parameters shown in table I, where W and Wp are respectively the
imaginary VOlume. and surface potential strengths and Vo is the spin-orbit potential. In
this case, one should bear in mind that the bound state wavefunctions and the scattered
particle wavefunctions are not orthogonal since the scattered proton sees a much shallower
potential than the one seen by the bound state. However, the resulting wavefunctions
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presumably give a better picture of the dynamics involving the ejecte& nucleon. The
fhird part of our calculation uses the same potential parameters as the second but the
continuum wavefunctions in the partial waves corresponding to the initial bound state are
orthogonalized to the latter.

In figures 1 and 2 we show the resulting cross sections for the three situations described
above respectively for E, = 61.9 Mev and E., = 82 Mev.

Multipoles up to L=4 have been taken into account and all contributing partial waves
included. The solid line represents the results obtained by means of the method used in
ref. 2. The dotted line represents the cross section calculated with different potentials for
the initial and final non-orthogonal states and the dashed line represents the cross section
calculated with the orthogonalized states.

One can notice that there are almost no differences between the second and third
calculations. This is easily understood from the fact that the orthogonality requirement
actually represents a minor distortign of the scattering wavefunction in the relevant par-
tial waves since the dangerous overlap is rather small anyway in the present regime. The
wavefunction obtained from the Schrédinger equation with the optical potential is indeed
very similar to the orthogonalized one while both of them are sensibly different from the
scattering wavefunction in the deep well. Henee, we emphasize that ensuring orthogonal-
ity bj.( diagonalizing a hamiltonian containing a very deep potential is a dangerous and
unrealistic ws;.y of taking the ortogonality between the initial and ﬁﬁaﬂ states into account,

A similar conclusion was reached in ref. 3, where the authors claim that the effect of
orthogonality; is very small in (-, p) reactions.

This work has been partially supported by CNPg (D.P. Menezes).

6




References

1)M. J. Leitch et al: - Phys. Rev.C 31, 1633(1985)
E. J. Beise et al. - Phys, Rev. Leit. 62, 2593(1989)
R. S. Turley et al. - Phys. Lett.B 157, 19(1985)
2)H. Hebach, A. Wortberg and M. Gari - Nucl. Phys. A267, 425(1976)
M. Gari and H. Hebach - Plys. Rep. 72, 1(1981)
. 3)S. Boff, F. Cannata, F. Capuazi, C. Giusti and F. D. Pacati - Nucl, Phys. A379,
.509(1982)
4)M.Kawai, A. K. Kerman and K.W. McVoy - Ann. Phys.(N.Y.) 156, 75(1972)
_ 5)E. Farrelly Pessoa and A.F.R. de Toledo Piza - Phys. Rev. C 29, 403(1984)
6)N. Auerbach, J. Hufner, A K. Kerman and C.M. Shakin - Revs. Mcd. Phys. 44,
48 (1972)
AF.R. de Toledo Piza - Nucl. Phys. A184, 303 (1972)
7)A. F. R. Toledo Piza - Internal report of the Instituto de Fisica - Universidade de
S&o Paulo - (1971) - unpublished
- A. F. R. Toledo Piza - Rev. Bras. Fis. 17, 195(1987)- Appendix

N. Teruya, A. F. R. Toledo Piza and H. Dias, Phys. Rev. C 44, 537 (1991)

8)C. M. Perey and F. G. Perey - At. Dat. Nuc. Dat. Tab 17, 1(1976)

Figure Captions

Figure 1 - 1“0(7, p) angular distribution for B, = 61.9 Mev, The solid line shows
the calculation for orthogonal initial and final states which are eigenstates of the same
hamiltonian containing the same potential. The dotted line shows the calculation for non-
orthogonal initial and final states obeying respectively a Woods-Saxon potential and a
realistic final state potential. The dashed line shows orthogonal initial and final states
obeying the above mentioned potentials. The experimental data are taken from ref *.

Figure 2 - The same as in figure 1 but for £, = 82 Mev.
Table Caption

Table I - Values used for the parameters of the optical potential by Menet et al 4

when E. is respectively 61.9 and 82 Mev.
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