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ABSTRACT

We implement a reaction-theory based version of the continuum Random Phase
Approximation (RPA) approach to the microscopic structure of nuclear giant
resonances in its simplest form. This invoilves a discrete RPA diagonalization of
standard size but involving complex matrices so as to account for single-particle
resonance widths. Escape widths of individual resonant structures in the case of the
giant E1 strength in '®0  are obtained in reasonable agreement with available data.
The overall strength distribution agrees with that obtained in brute-force continuum

RPA calculations.

J. INTRODUCTION

The features of nuclear giant resonances have been studied for a long time in
order to understand the structure and dynamics of these excitation modes and, in
particular, the relative importance of two different spreading mechanisms for the col-
lective strength, namely continuum spreading, due to direct coupling to the available
open channels, and many-body spreading, due to coupling to other nearby noncol-
lective modes.  Actually these two mechanisms put quite distinet demand pres-
sures on available microscopic computational techniques, such as those based on the
Random Phase Approximation (RPA). While interest in the many-body mechanism
led to the consideration of “higher” forms of the RPA, i.e., involving two-particle,
two-hole excitation operators in addition to the standﬁrd particle-hole excitations,
work concerning the consideration of continuum spreading concentrated in developing
computational tools to deal efficiently with the particle-hole continuurm.

The inclusion of continuum effects in microseopic nuclear structure calculations
has in fact been implemented several times, in the context of different frame-
works. Besides continuum extensions of the RPAlL _4}, use has been made of
coupled channels(®] and time-dependent Hartree-Foek caleulationsf6]. Although
successful in the sense of producing sensible strength distributions, these calcula-
tions are however not able to identify in microscopic terms the.nature of the more
or less autonomous resonant structures together with their corresponding relevant
parameters, notably individual escape widths. To some extent, more recent
calculations aimed at eliminating these drawbacks, equipping themselves with the
ability to identify specific resonant features! "~ 10].  Here we explore one particular
approach of this type[lll, which is closely linked to a compreliensive nuclear reaction
theory.  Because of this, the way is in principle open for the consideration of

dynamical complications such as preequilibriuvm processes and compound nucleus
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formation (related to many-body spreading) or direct channel coupling effects[12).
We concentrate, however, in demonstrating by means of a simple application to
the giant E1 strength in 80, the capability of the method to produce detailed
microscopic information on the continuum resonant structures at a very modest com-
putational cost. This last circumstance provides for the necessary encouragement to
extend the method to accommeodate more comprehensive dynamics,

For the sake of completeness, the scheme proposed in ref. [11] is briefly reviewed in
section II below. Section IIT deseribes the results of our caleulations, and concluding

remarks are presented in section IV,

II. REVIEW OF CALCULATION SCHEME

Before presenting numerical results we briefly review the scheme proposed in
ref. [11] for the calculation of the continuum particle-hole response. The aim is to

oblain an approximation ta the (retarded) response function (h = 1) {13]
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where the %, 1,!’):[ are fermion field operators. The matrix elements involve the
ground state (with energy eigenvalue set to zero by definition) and excited states
i) with energy eigenvalues E,. When lying in the continuum they are subject to
scattering boundary conditions involving incoming flux in channel ¢ and outgoing
waves in all charmels.  As in the ordinary RPA scheme, approximate excited states
will be implemented in the particle-hole excitation space of [0). Open channels will

thus correspond te unbound particle-hole states. We assume a model Hamiltonian

3

of the form

1
H = H+;3) Vy
ij

involving & mean-field part Hy and a (residual) two-body force.

A main point concerns the handling of the single-particle continuum
le-Hollal) = 0

To this effect we split the single-particle phase space by means of a pair of comple-

mentary projection operators ¢q = qi =g% and p= p]t = p? s0 that
lel) = gla}) + plal) .

The component q|a1) has finite norm and is chosen so as to contain the resonant
behavior of the continuum wavefunction in the nuclear interior, The remaining com-
ponent is correspondingly small there, having negligible {to a first approximation)
matrix elements with hole (bound) wavefunctions. The numerical implementation
of this projection scheme has been described in detail in ref. [14], which essentially
elaborates on the technique discussed long ago by Wang and Shakinf!4. The
coupling between ¢ and p subspaces gives rise to the single-particle resocnance
width. It is accounted for, within the discrete ¢ subspace, through the familiar

complex effective Hamilionian
" t -1
Hoge = Hogy + Hogp (6 - HGPP) Hopq

As shown in ref. [13], one can use this Hamiltonian to obtain a discrete set of
normalized resonance wavefunctions with complex energies, of which the imaginary
parts account for the single-particle escape widths.

Our continuum approximation then proceeds as follows. Using the above analysis

of the single-particle space one can split also the particle hole space with help of a pair
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of complementary projectors € = Qf =@Q? and P = Pt = P onio nermalized
resonance (g-space)-hole and residual continuum (p-space)-lole states respectively.
Possible bound-particle-hole states are also included in Q. The relevant approximate

excited states for eq. (2.1)are then to be found as solutions of the coupled equations

[Eu_'HQQlev) = Hgp Plv)

(£, - Hpp] Plv) = HpoQlv)

supplemented with the appropriate boundary conditions. When the incoming flux

is in channel ¢ we have

1
E, ~ Hog — Hop ———m—— = Syt )
0 ~ Hor g Hra Qlv} Harlx)) (2.2)
where |x:‘) is the appropriate scattering solution of Hpp:
[E. - Hpp] Ix]) . (2.9)

In order to handle these equations we invoke the quenching of p-space wavefune-
tions in the nuclear interior to ignore effects of the two-body force in Hgp (and
Hpg) and in Hpp. Eq. (2.3) is thus a single-particle equation (the hole is passive),

and the continuum selfencrgy

‘FIUPQ

dresses single-particle resonance energies with escape effects (shifts and widths).
Similarly, we neglect the contribution to the matrix elements entering in eq. (2.1)
of the components Fjv). Eq. (2.1) can therefore be evaluated in terms of the

solutions to eq. (2.2}, which can be written as
[ 2o} (Ral Heglx )
Q) = ¥ R (24)

n

|
=]

(2.5a)

.[E,, - Hoq| |8}

]
o

[e; - ﬁgq] 1) (2.55)

(FulRa) = b
Eqs. (2.5) involve the complex effective Hamiltonian appearing in eq. (2.2) and its
adjoin. The complex particle-hole modes [R,) have complex energies ¢, which
account for continuum escape effects. They can be described therefore in terms of
an approximate continuum Tamm-Dancoff scheme.
In the numerical results reported below this scheme is in fact replaced by an RPA

diagonalization in Q-space. Thus, instead of eqs. (2.5) we solve
LORM™ = ¢GR™ + cMGRM™ (2.6a)

g™ = der™ 4+ emer™ (2.6b)

where Gugys = (Pp — Pa)Bay 8sp, the p, being the occupation numbers (0 or 1)

of the single-particle states a in [0), and
Caps = {Ba — &) baybps

the & being single-particle energies. They are complex for resonance states. The

coupling matrix M is given as
Magns = {cblv|fy — Tﬂ)

Note that the matrix element invelving (fi,.; in eq. (2.4) is in fact an escape
amplitude, related to the imaginary part of é,. Themode |1,) in Qv} is therefore
weighted by an amplitude of Breit-Wigner form which accounts for the continuum
spreading of the mode. When this spreading is negligible, the contribution of |f,)

to the response tends to reduce to a é-function at the corresponding excitation energy.
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© We also evaluate the energy weighted strength for the multipole operator Q,\. as

SQu B) = [ dB, B 1(1Qu0)P 27

where [v) "is replaced by eq. (2.4). As a consequence of the preceding remarks
this function epproximates a series of steps at the excitation energies &, in the
case of negligible continuum spreading. An effect of the continuum spreading is the
smoothing of this discontinuous behavior.

A question of principle deserving special comment is that the effective
hamiltonians resulting from the projection approach are explicitly energy
dependent {sce e.g. eq. {(2.2)). This has been repeatedly handled in practice
by invoking the smooth energy dependence of the projected continuum propagator
(E+in— Hopp)_l , and this is certainly applicable in the context of the Tamm-
Dancoff framework sct by eqs. (2.5). A somewhat more serious situation develops,
however, when one moves from eqs. (2.5) to the corresponding RPA diagonalization,
eqs. {2.8). The purpose of this modification of the secular problem is, as is well
known, to allow for at least a restricted class of quantumn vacuum fluctuations also
known as RPA ground state correlations. This is achieved through a doubling of
the quantum phase-space allowing also for ne.gative energy solutions of the dynamical
equations, certainly a hazardous situation when one is already dealing with an energy-
dependent effective hamiltonian.  Actually, an alternzte approach to the projected
RPA scheme is possible. It consists in implementing the P-Q analysis of the quan-
tum phase space on the full continuum diagonalization problem efter it has been
cast in RPA form. This is analogous to the use of projection techniques to reduce the
response function obtained in the framework of “higher” versions of the RPA[H’E, and

leads to an effective RPPA matrix in which the backward going particle-hole processes

involve single particle energies dressed with self-energies involving (F + Hope) ™',
consequently suppressing the respective imaginary parts, in particular.

This difficulty of principle stems ultimately from a basic incongruence between the
projection method and the standard RPA space doubling trick. It may be noted,
however, that it is of little practical consequence at least in the context of hard
collective modes such as the giant multipole resonances. Here, in fact, RPA ground
state correlation (backward) effects are at least one order of magnitude down with
respect to the forward effects. Self-energy uncertainties in the backward processes,
notably imaginary parts related to escape effects are in turn typically smaller than
the involved single-particle energies, and thus unable to affect collective escape widths

significantly.

I11. NUMERICAL RESULTS: GIANT E1 MODES IN 'O

We have performed the RPA caleulations with a Landau-Migdal particle-hole
force similar to that of ref. 3. The overall strength parameter Cp is set so as
to give the spurious isoscalar dipole mode essentially at zero energy and the lowest
3~ state approximately at the 6.13 MeV experimental energy[lﬁ]. We obtained
the constant Cp = 415 MeV fin® with the lowest 3~ state at 6.16 MeV. This
adjustment provides a constant Cy only slightly different from that used in the full
continuum calculation of ref. [14] (Cy = 418.852 MeV fm®). We utilized a p-h basis
including single-particle states up to the 3s,;; (rescnance) level calculated as in
ref. [13]. OQur results are presented in figs. 1 and 2 where we display the functions
dS/dE (@, B} and S5{Q., E), respectively. Thf; most prominent contributions
to the F1 strength are shown in Table 1 where the imaginary part of the energies

are interpreted as the half values of the eseape widths (I'!). These results are in
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good agreerment with the calculations of ref. [3] that have tlie two main peaké at 24.9
and 26.2 MeV but if we compare with the experimental[lﬂ results (22.15 MeV and
Il = 1.6 MeV) our results are shifted upwards in energy by ~ 2.0 MeV. The escape
width T? jsin good agreement with the observed experimental width. Fig. 2 shows
that the function S{(7», F) exhaust approximately 1% of the classical sum rulel18]
for E =30 MeV which is in fairly good agreement with the calculations in ref. {3].
Our results are also in good agreement with the RPA calculations in ref. [1] where
the Skyrme interaction SIII is used.

A final remark concerns the calculation of ref. [8], which, like our calculation,
involves the consideration of a discrete set of resonance states. Here, however, the
definition of these stutes is based on a formal procedure which beclouds their connec-
tion with the underlying many-body scattering problem. As a result of this complex
values are produced for the energy-weighted strength. This rather unwelcome feature

is an artifact of that procedure whicl is naturally avoided in the present approach.

IV. CONCLUDING REMARKS

The results of the caleulation described in section 11 show that the approximation
scheme proposed in ref. {11] and reviewed in section II above is able to produce
results compatible with full continuum calculations as performed e.g. in ref. [3] but
at o substantially lower level of ecomputational effort and keeping the underlying
physics under ready control. In particular, the adopted formulation easily allows
for the inclusion of more complicated dynamieul effects, such as e.g. direct couplings
between open channels, at the expense of setting up descriptions of scattering states

more sophisticated than the extreme single-particle limit adopted herel11],
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TABLE CAPTION

Table 1. Energies and widths of the three most prominent E1 complex modes
calculated using egs. (2.6) with a Landau-Migdal residual interaction with

Co =415 MeV fmn3. See fig. 1 for the respective E1 strengths.

FIGURE CAPTIONS

Figure 1. Energy differential strength dS(E1; E)/dE (see eq. (2.7)). Normalization

is such that S(Fl,c0) =1,

Figure 2. Integrated relative E1 strength ( i-;(i);dm X 100) in 1°0.
A g
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Table 1
£n en — ATL  in MeV
1701 - 1045
2417 — i0.72
2540 — 042
12
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