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Abstract

We derive the current algebra of principal chiral models with & Wess-Zumino
term. At the eritical coupling where the model becomes conformally invariant
{Wess-Zumino-Novikov- Witten theory), this algebra redices to two commuting
Kac-Moody algebras, while in the limit where the coupling constant is taken
to zero (ordinary chiral model), we recover the current algebra of that model.
In this way, the latter is explicitly realized as a deformation of the former, with
the coupling constant as the deformation parameter.
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Algebraic methods have during the last few yeats been used extensively to un-
ravel the dynamical structure of two-dimensional field theoretical models, especially
integrable models and conformal field theories. In the case of conformally invariant
models, a purely algebraic approach (using, e.g., the representation theory of the Vira-
soro algebra and of Kac-Moody algebras, together with that of braid groups) may even
lead to & complete solution of the theory.

In the present paper, we shall investigate the current algebra for the principal chiral
model with a Wess-Zumino term. This model [1] contains a free coupling constant
A and, for special values of A, contains the conformally invariant WZNW model as
well as the ordinary chiral model. Therefore, the current algebra derived below is a
common generalization of the current algebras for these two special cases. Now for the
WZNW model, the current algebra is well-known to consist of two commuting Kac-
Moody algebras, while for the ordinary chiral model, it is a new kind of algebra which
— although having been known in part for some time (cf., eg., [2, pp. 323/324]) - has
only recently been specified completely [3] and whose mathematical structure is still far
from being understood. The hope is that through the “interpolating” current algebra
derived here, the well-developed theory of Kac-Moody algebras may shed some light
on the current algebra for integrable chiral models in general: this has been the main
motivation behind the present work,

We begin by fixing our conventions. The target space for the chiral models to be
considered in this paper will be a simple Lie group G (which is usually, though not
necessarily, assumed to be compact) with Lie algebra g, and we shall use the trace
ir in some irreducible representation to define a) the invariant scalar product {-s)
on g, normalized so that the long roots have length v'2, and b} the invariant closed
three-form w on g giving rise to the Wess-Zumino term. Explicitly, for X,¥,Zeg,

(X,Y) = —tr(XY) , (1)
while 1
W(X,Y,2) = —u(X[,2]) . 2)

Obvionsly, (.,.) and w extend to a biinvariant metric (.,.) on G and to a biinvariani
three-form w on G, respectively: the latter can alternatively be represented in terms
of the left invariant Maurer-Cartan form g~'dg or right invariant Maurer-Cartan form
dgg~! on G, as follows:

1 -14.13 1 —1y3
- = — {r(d . 3
W = oy trledg) 127 {dgg™) 3)

(Due to the Maurer-Cartan structure equation, this representation implies that w is
indeed a closed three-form on @, and the normalization in eqns (2) and (3) is chosen
so that w/2r generates the third de Rham cohomology group H*G, Z) of @ over the
integers, at least when G is simply connected; cf. ref. [4, p. 120 and Appendix 1].
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Finally, the minus sign in eqn (1) is introduced to ensure positive definiteness when @
is compact.)

In most of what follows, we shall work in terms of (arbitrary) local coordinates u'
on G, representing the metric {-,.) by its components gi; and the three-form w by its
components wiz. Then the total action is the sum

8§ = Seny +nSwz (4)

of the action for the ordinary chiral model

1 o
Son = W[Edz* 7 9ii{e) Q' By’ (5)

with coupling constant ), and the Wess-Zumino term

1 R .
Swi = ¢ [ 8o M ui(@) 05 0,57 0,6* = few . (6)

Here, v and ¢ are the basic field and the extended field of the theory, respectively, i.e.,
¥ is a (smooth) map from a fixed two-dimensional Lorentz manifold ¥ to G and gisa
(stooth) map from an appropriate three-dimensional manifold B to 7, chosen so that
% is the boundary of B and ¢ is the restriction of @ to that boundary:

I =08 , v = ¢lp

The conformally invariant WZNW model is obtained at A — 1i4w/lnl, while the
ordinary chiral model can be recovered in the limit X — 0. Note that if w were exact,
we could write w = da to obtain

1 . . .
Swr = 3 [ e ) ow'on’ = [ota . (7)

But of course this is not possible globally, i.e., the oy; appearing in this formula are
neither unique nor can they be chosen so as to become the components of a globally
well-defined two-form on G with respect to the u'. Still, calculations involving quantities
that arise from local variations of the actijon can be performed as if this were the case,
and may lead to results that do mnot depend on any artificial choices. For example,
recall that in the ordinary chiral model, the canonically conjugate momenta =; detived
from the action Scy are simply given by

1 .
o= 3 9i(e) ¢ (8)
and satisfy the canonical commutation relations

{¢@),e'm)} = 0, [m(=),m(y)} =0 ,
{¢'(2),ms(0)} = Eid(z—y) . (9)

2

Similé.rly, in the chiral model with a Wess-Zumino term, written in the form (7), the

canonically conjugate momenta #; derived from the action S are given by

o= m + nay(p)e’’ (10)
and satisfy the canonical commutation relations
{P'@) '@} = 0, {K=) i)} = 0 ,
{¥'(=).%(3)} = §o(z—y) . (11)

Note, however, that in contrast to the m;, the #; do not behave naturally under local
coordinate transformations on G, so that the canonical commutation relations (11)
between the ¢ and the #; look non-covariant. This suggests to consider instead the
commutation relations between the @' and the #;, which are covariant, but exhibit
non-vanishing Poisson brackets between the ;. Indeed, it follows from (11) that

{mi{=),m(w)} = {#i(=2) — nau(p(z)) ©™(z) , #;y) — naalely)) ¢'()}
= n (= {#(=), aalo(®) ¢"(¥)}
~{ aa(p(=)) ¢*(2), #:(3) 1)
n (+8iaa(p(2)) ¢"(z) 8(z — 4) ~ ajile(y)) &'z —¥)
=~ Bjoin(p(z)) ¢™(2) (2 — ) — ais(p(2)) (2 ~ 7))
= +n (Bion + Baw) (=) *(2) 6z ~ y)
+ 7 Goyi(p(2)) ™ (z) 6(z —v)

go in the presence of the Wess-Zumino term, the commutation relations between the @
and the 7; read

{#(=), @)} = 0 , {¥=),m} = E8=z—y) ,
{mz)my)} = nwinle(=)) () 6z —y) . (12)

They are obviously covariant (all expressions behave naturally under local coordinate
transformations on G), since w is a globally well-defined threeform on @.

To derive the desired current algebra, we recall next that the model under consider-
ation has an obvious global invariance under the product group &z x G, which acts
on (G according to

g — {91,98)-9=9g.99%" - (18)
This action of the Lie group G x Gp induces a representation of the corresponding
Lie algebra g, @ gy by vector fields, associating with each generator X = (X, Xp)
in g; @ gp the fundamental vector field X¢ on & given by

Xelg) = Xpg—~gXr forge@ . (14)
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As usual, invariance of the action leads to conserved Noether currents taking values in
9. P gr and denoted by j, for the ordinary chiral model and by j, for the chiral model
with a Wess-Zumino term. Explicitly, we have, for X = (Xi,Xg) in g, ® g,

. 1 P i
(dus X) = — ﬁgij(‘P) 0.9 Xo(e) (15)
while

(0 X) = = (50500 + naislp)ew0¢) Xilp) . (16)

In addition, an important role is played by the scalar field j introduced in ref. [3],
defined by

: 1 i
X @Y) = 55 9i(e) Xsle) Yale) - (17)
Note the additional factors &, which were absent in ref. [3].
3

The commutation relations of the Noether currents j, and j, under Poisson brackets
can now be computed directly. Note again, however, that in contrast to the j,, the
. do not behave naturally under local coordinate transformations on G, so that their
commutation relations look non-covariant. This suggesis to replace them by appropri-
ate covariant currents J,, which, as it turns out, can be written entirely in terms of the
Noether currents j, for the ordinary chiral model {the exact definition will be given
below): it is the commutation relations of these covariant currents J,, that form the
current algebra we wish to compute (or at least an important part thereof). The most
efficient way of arriving at the desired result is therefore to calculate, as an intermedi-
ate step, the commutation relations of the Noether currents j,, using the commutation
relations (12): this can be done along the lines of ref. [3]. In fact, for the ordinary
chiral model the calculation proceeds in exactly the same manner as outlined there,
while for the chiral model with a Wess-Zumino term, the only commutation relation
that changes is the Poisson bracket of two jy’s, which picks up an additional term due
to the fact that the m; no longer commute; thus:

{(o2), X}, (o), )} = {m{2) Xi(e(=)), m5() Yl (#))}

= (=) (8; X (p(2)) Yilp(e)) — X (p(=)) 8;Yi(#(2))) 8(= — )
+nwi(p(2)) ¢* () Xi(p(2)) Yi(e(=)) 8(z — )

= m(2) X, ¥]i(p(=)) 8(= - v)
+n w(ip(2)) (¢'(2), Xa(p(2)), Yolp(2))) (= - v)

= = (o(2),[X, Y]) 6(z ~ v)
+n w(p(=)) (¢'(z), Xep(z) — p(2)Xr, Yip(z) — ¢(2)¥x) 6(z — 9)

(18)

For later reference, we also list the commutation relations which have remained un-
changed:

{(Go(=}, X), (11.(»),Y)}

= —((=h X, Y]))6(z—y) + (@), XOY)E(z-y) , (19)
{(Gi(=), X), (1W(¥)Y)} = 0 , (20)
{(o(=), X), (i(v), Y ® 2) }

= —(i(=), [ X,Y]®Z+Y®[X,2])5(z—y) , (21)
{(h(=), X), (iy) Y ®2)} = 0 . (22)

(The additional factors ;5 drop out completely: they have been absorbed into the
normalizations of the j, and j.)

Before proceeding further, we find it convenient to pass to more standard notation,
writing g and g, rather than ¢ and @, for the basic field and the extended field of the
theory, respectively, and using the explicit definitions (1) of the metric {.,.) on G and
{2) of the three-form w on @. Then

Ser = — 2—;2-.[ d’z 7 tr (g"lapgg“iauy) ) (23)
while
Swz = ﬁ j; " [ &z et (5700570,5570.4) - (24)

(Here, the extended field 7 is assumed to be constant outside a tubular neighborhood
% x [0,1] of the boundary ¥ of B, and r is the coordinate normal to the boundary.)
Next, we decompose the currents j, and J,, both of which trke values in g; @ g5, into
left and right currents, all of which take values in g: j, = (52,7%), Ju. = (JL,JD).
Explicitly,

ir = —% 997" (25}
A (26)
and, by definition,
JE = (nw+’1—):e,.u)j“ = —3%5 (wﬁ%ew)ﬂ"gg“‘ » o (27)
JE = (n,,.,—’;—feﬂu) o= +31; (nw—z—}:ep») g7'0% ,  (28)



while the scalar field j, when viewed as taking values in the space of endomorphisms
of g, ® gr, is given by the (2 x 2)-block matrix

. 1 1 ~Ad
] = /\_2 ( _Ad(g)—-l 1(9) ) . (29)

In other words, for X = (X, Xg) in g, @ gz,
. 1 -
i%) = 55(%u~ Ad@)Xn, Xe - Adlg) ) (30)

It can be shown that the covariant currents J, defined by eqns (27,28) differ from the
Noether currents j, for the chiral model with a Wess-Zumino term by a total curl,
and that current conservation (which for both types of currents has the same physical
content, because a total curl is automatically conserved) is identical with the equations
of motion of the theory; cf., e.g., ref. [5] for more details'. (Note also that the additional
factors of 1 in eqns (24) and (25) of ref. [3], as compared to equs (25,26} and (29) above,
are due to the identification, performed there, of G with the Riemannian symmetric
space G x G/AG, which results in G being equipped with a biinvariant metric that is
iwice the one used here.)

Now in terms of an arbitrary basis (7,) of g, with structure constants f5, defined
by [Ta,Ts) = f5,T. , the various currents are represented by their components

1

jﬁ:a = (jmTaL) = “tr(jﬁlTa) y (31)
jf,a = (j.u;Tf) = _tr(jfTu) ’ (32)
Jre = (JaTh) = —te(JET) (33)
IR = (UuTh = —u(JfT) (34)

and the scalar field 5 by its components

1
o= (T OT) = GTIOT) = —Fu(hh) (35)
L, TF @ T L T, gT 36
tap = (J;Ta ®Th) = Ftr(g afd b) : ( )
where

TuL = (Tusﬂ) ’ T:z = (OiTﬂ) . (37)

With this notation, eqns {18)-(20) can easily be seen to imply the following commuta-
tion relations for the components of the currents j,:

'Qur conventions here differ from those of ref. [5] in that we write A? instead of A and use
€ = 41,60y = —I: thus the formulas valid for = > 0 (» < 0) there correspond to the formulas
valid for n < 0 (n > 0) heze.

Ul b)) = - f5ik)8e-3) + X il )b —v) ,  (39)
(oal@) s} = = foitd2) 6z —y) + 1ub(z—y) , (39)
{ifa=)il)} = 0 (40)
Unleh it} = - fadfe)be —9) =2 iR 8o —g) | (a1)
U@ it} = - i@ e —1) + bz —y) , (12)
{ifale), i)} = 0, . (43)
U&= Xe)se-y) | (44)
Uoa@)ili} = tu(@)6lz-y) , (45)
GEEHO) = @) Fa—1) (46)
{ial)ils@)} = 0 . (47)

They must be supplemented by the commutation relations between the components of
the currents j, and those of the field ¢, which follow from eqns (21} and (22);

{Ga=htec®)l = — fhtalz)bz—y) , (48)
Ua(2)ti@)} = — f2tulz)8(z —y) , (49)
{Hlale)tly)} = 0, (50)
{ifale)te(®)} = 0, (51)
Finally, the components of the field £ commute among themselves:
{tab(z)stea(y)} = 0 . (52}

In terms of light-cone components, which for any vector a, are defined by ay = ayta;,
these commutation relations take the form

k) ) = -3 [(% 2) o) - (1722 22,(0)] 8(e — )
248z —vy) (53) |
R = -3 532 20) i) - (14 22) 2.0 8 - )
2946 (z—y) , (59)
{ifaehifs)} = [(1= ’;—f) ta(z) + (1% ';—f) ta(8)] 6= - 9) , (55)
7



B (@), 75} W(2)6(z - ),

| F(1F 7;—)
RSO = T2 @ -y,

‘. 'ﬂd

{i%a(2), (1)}
{ifa(=) i)}
bgether with eqn (52).

It

:--y a normalization factor:

2
JE = (1:!:%)

2
I = _(14:%)31

“nain result of this paper; they read

{2 (=), TE4(w)}

= 2(1:!:

) ab [(3 + %) Ji,c(z)

2(1+ %) et 8'(z — y)

{JLa(=), IE4()}
nX?
)

4

(3%
2

i2(1¢%)2nae,5’(z—y),

Db = - 15 [(1- 2 i) + (14
TR} = 2514 25) B ) + (1

= fatalz)b(z —y)
= factoal=)B(z —¥)

nA?
q;) TE(=) -

) (@) 8- ), (56)
) @] s -1}, (57)
(58)

(59)

(80)
(61)

Passing to the commutation relations for the currents J, instead of the currents Ju
now trivial, because according to eqns (27,28), their light-cone components just differ

, (62)

, (63)

Ve nevertheless write down the corresponding formulas, becanse they constitute the

- (12 15 @) 6z )

(64)

(15 525) I2.(0)] 6= 9

(65)




Hence the case n < 0 can be reduced to the case n> 0 by exchanging either left and right
components or light-cone components, 50 we may assume without Joss of generality that
n>0. Next, recall that the critical value of the coupling constant A is A = /4% /n;
here

Jp=2j; . Jt=0, (73)
JR =28 0 gf =0 . (14)

Il

The vanishing of the two current components JE and J¥ can be interpreted as con-
straints, and inspection of the commutation relations (64)~(72) (for A*> = 4 /n) shows
that these constraints are first class, whereas the remaining commutation relations state
that the non-vanishing current components J and J? satisfy a Kac-Moody algebra,
differing only in the sign of the central extension, and commute with each other:

{TEa@)IE@)t = —2f5Ji{2)8(z -y} + 8na &z —9) (75)
{72 (2),d2, )} = —255JE(2)8(z—y) — 8 Bz —y) (76)
{J5a(2), 00w} = 0 . (17)

On the other hand, by taking the limit A — 0, or simply by setting n=0, we recover
the current algebra for the ordinary chiral model derived in ref. {3] from eqns (38)-(51)
(which are equivalent to eqns (53)—(61) or (64)-(72)), together with eqn (52).
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(UL (), I4(0)}
nAl 2  mAZ, ni?
= 2(1- () 055 tale) + (1 2) ta)] 8= -9), (69)
CRORID)
1o BN nAlye2 o
sfal(l-) =) + (1+5) E2)) 6 -v), (67)
R (2), I, 0}
- _1 . ‘”__Az 2R Az p
3 a [(1+ ) Th(e) + (1-T) TR@)] 8- 9) (68)
WEe 56 = #(1- (D)) (2D @ se-n, (@)
VEEEEY = (- ()N D) h@se-n, @
and
Wheh ) = -(122) ftu(e)se-1) (71)
VR )} = - (1F20) fhtue) e 1) (r2)

together with eqn (52).

Note that all these Poisson bracket relations are consistent with the discrete sym-
metries of the model, which are built from

¢ the exchange L < R of left and right components, which originates from the
transformation g — ¢! in G and must therefore be accompanied by a transpo-
sition of indices in ¢,

o the exchange + < — of light-cone components, which originates from =z parity
transformation and must therefore be accompanied by an extra change of sign in
spatial derivatives of ¢ and of the delta function,

¢ the exchange »n & —n.

More specifically, the action of the model and the Poisson bracket relations are invariant
under the combination of any two of these three symmetries:

a) L & R and n - —mn,

b) + <+ — and n « —n,

)L+ R and + & —.



