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Abstract

The open chemical noneguilibrium model, proposed by

Kondepudi and Nelson to study the chiral-symmetry-breaking

phenomenum, is analysed by the inclusion of the racemization

process responsible for the interconversion of left- and

right-enantjomers. We study the steady states of the chemical

system as a function of +the matter pumping and of the

racemization rate.

1. Introduction

As is well ¥nown, ! Earth’s biochemistry is
overwhelmingly dissymetric or chiral. Living organisms are
characterized by the presence of optically active and
enantiomerically pure molecules. Proteins are composed of L-anmino
acids while nucleic acids only contain D-sugars. The transition
from racemic geochemistry to homochiral biochemistry remains a
wajor problem of chemical evolution. Plausible mechanisms have
been demonstrated for synthesizing,2 under primitive terrestrial
conditions, most of the racemic monomers required for the
assembly of the chiral biopolymers, and for the production of
diastereomeric mixture of macromolecules needed by the 1living
cells. But a testable mechanism for the natural selection of the
L-aminc acids and D-sugars, remains tor be demonstrated. Many
mechanisms have been proposed” > to explain how the
"one-handedness" of biomatter came inta pPlay on the Earth.
Classical mechanisms 1like adsofption or surface catalysis by
enantiomorphous mineral crystals, such as quartz, the
differential circular photolysis of racemates by reflected solar
radiation, or the CcCoriolis force due to the rotation of the

Earth, which differ in the two hemispheres, might equally




generate an initial enantiomer excess of D-amino acids or
L-sugars. So, the particular ocutcome, L ox D handed sugars or
amino acids in viewed generally as a "matter of chance".?
Theoretical models have been proposed45 consisting of general
kinetic schemes involving stages of autocatalysis and wmutual
inibitions. The kinetic behaviors are analysed in terms of
concepts drawn from non-linear chemical dynamics.&? It is shown
that under certain conditions the racemate state is unstable.
Thus, during a critical period the course of evolution of the
system is particularly sensitive to small external perturbations.
With the discovery of Parity Vielation in Weak Interactions many
attempts have been made to show the interrelation of this effect
with the homochiral dominance.®?® Amazing results have been
obtained recently by Kondepudi and Nelson®™® and Tennakone!®!!
considering the parity violation effect in open nonegquilibrium
model chemical systems. It was demonstrated that the very small
neutral weak currents (WHC) suffices to bréak the chiral symmetry
of racemic reaction sequences in an open nonequilibrium systems.

? that if these reactions occur in a system where

Tt was shown™
the net effect of random fluctuations can be taken as very small
perturbkations, the production of L-enantiomers will be enhanced

since the weak forces favors the left-handed enanticmers. Thus,

chirally asymmetric life could evolve in these chemical systens.

We must note, however, that in the reaction schemes
proposed by Kondepudi and Nelson®™? and by Tennakone!'%!! the
interconversion of the left- and right-handed enantiomers due to
racemization effects is not taken into account. In this Paper the
Kondepudi and Nelson® model will be reanalysed including the
racemization effects. We will not analyse here what happens when
the <chemical process occurs in a randomly fluctuating
environment. This case, when the amplitude of the chiral
dissymmetry would obey a stochastic (Langevin) equation,® will be

studied in a forthcoming paper.




2, ChiraluSymmetrz—Breaking Chemical Systems

We analyze the chiral—symmetry—breaking phenomenum in
an auto-catalytic chemical model where matter is continuocsly
introduced and removed from the system at different rates. This
model is based on the open reaction scheme proposed by Kondepudi
and Nelscvn,g’g where substrate molecules A and B, which have no
chirality, combine to produce chiral molecules, XL {left-handed)

or X, (right-handed), X, and X_. react to form a substance ¢

D L D
ireversibly. We must note that, ip this scheme, the racemization
r
effect XL XD’ where r is the racemization rate, was not taken

inte account. Only the racemization produced by circularly
ultravielet light was considered, assumed as a small fluctuating
perturbation, and estimated by using a stochastic {Langevin)
equation.® However, we know': that L- and D~amino acids and
Sugars, regardless of their state, gas, in liquid selutions or in
solid state, tend to racemize. Although detailed theories?®'®
and experimental results'® about racemization are lacking, we
know that, for many substances, the racemization rates r strongly
increases when the temperature is raised. Substances that are
protected from racemization over long periods of time at
temperatures below 30°C show substantial rates of racemization

for higher temperatures. Thus, depending on the physical

conditions of the chemical system and of the chiral molecules, XL

and XD’ that are being produced, the reversible interconversion
of the D and L enantiomers cannot be neglected. So, we study, in
this paper, the chiral symmetry breaking phenomena in chemical

systems including in the reaction scheme +the racemization

Ir
——

Lo«

equation X XD. Thus, considering this effect, the reaction

g

scheme of Kondepudi and Nelson™® will now be given by

X +A + B 2%, {2.1)

X+ X — C and




where Kl, K—l' Kz, K_2 and K3 are the kinetic coefficients of the
reactions. The kinetic coefficients K and the racemization rate r
are measured in s_l. In this model the concentrations of the
reactants A, B and C are assumed to be maintained constant.

Let us indicate by XL’ XD’ A and B the concentrations
of the reactants. Using the law of mass action, the variation in

time of the concentrations XL and X according to Egs. (2.1),

DJ
will be given by

2 — —
ax /dat = Ky A - K_ypXp, * Kypa¥p - K_, X[ KX Xy - r(X -Xp),
(2.2)
2
ax,/dt = KA - K_jpXp + KypaXpy = K_, X5 - K XX, = x(Xp-X.),
{2.3)

where A = AB.

It is important to remark that Egs. (2.2) and (2.3)
gontain the two essential aspects of auto catalysis and
competition (or mutual destruction) which seem to be necessary in
any chemical system that is to break chiral symmnetry. From the
thecretical analysis of Kondepudi and Nelson™® we see that it is
possible for the parity violating WNC interaction to become the
selector of molecular chirality. However, the difficult of the

abave chemical model is that the complete sequence of reactions,

described by Egs. (2.1), seems to be a highly improbable event in
a prebiotic medium. Up to now, no experiment has demonstrated
spontaneous chiral symmetry breaking directly or indirectly. But,
as pointed out by Kondepudi and Nelson,B locking at the current
wealth of chiral chemistry, it seens entirely possible, in a near
future, to realize such a chemical system.

In next section we will obtain the steady state
solutions, symmetric and asymmetric, of the Egs. (2.2) and (2.3),

showing that for 2 = A_ occurs a bifurcation. We determine how

C
these steady solutions and the critical parameter AC depends on
the racemization rate r.

As is shown in this work, the critical concentration
parameter fhat defines the bifurcation phenomenum in the
RKondepudi and Nelson scheme,®’® is a sensitive function of the
racemization rate. Thus, our analysis is iwmportant in the sense
that it permit us +to establish more accurately in what

experimental conditions we must expect an enhancement in the

L-enantiomers production.




3. Steady state solutions of the kinetic equations

In this section we obtain the steady state solutions of
the kinetic equations (2.2) and (2.3) and the corresponding

bifurcation equation where K = K = K,n, ete.” Defining

Kipe ¥or,
the new variables a = (XL - XD)/z and 8 = (XL + XD)/Z, we get

from Egs. (2.2) and (2.3) the following kinetic equations:

de/dt = —K_la + KzAa - 2K_2aB - 2ra, (3.1)

dp/dt

!

Kyd = KB + K28 - K, (®+8%) + K, (%=g%). (3.2)

The chemical system described by the above eguations
evolves in time and eventually it reaches nonegquilibrium steady
states characterized by constant values of the concentrations XL
and XD.

The system presents three different steady states. For
a fixed value of r, we observe that for low values of A the
stable steady state is one that is called symetric (8) i.e., X o=

X what implies oy, = 0. When A increases, there is a value a = A,

D
where the symetric solution becomes unstable and two new

asymnetric (A&} solutions {XL * XD), with oy and ~Oy arises. For

A > Ac these asymmetric solutions are stable.
The symmetric solutions is obtained placing « = 0 in

Egs. (3.1) and (3.2). This procedure gives

a. =0, {3.3)

5 -
2 1) + 4{K3+Kw2) th

By = . (3.4)
2(K_,+Ky)

K a-K_, + \/(KZA—K_

2

The asymmetric solutions, obtained from Egs. (3.1) and

{3.2), are given by

) (3-5)

w, = + /5§-(2r3A+K1A)/(K3—K

KA - 2r - K_
B, = . (3.6)
A 2K _

The transition from the symmetric steady state to one
of the asymmetric states, where the bifurcation takes place,
occurs when €y = ag = 0 (that is equivalent %o By = Bg)- So,

using Egs. (3.3) ~ {3.6), with these conditions, we obtain the

0




equation for ‘the line of critical points, Ao, versus r, defined by

2 2
+ —
A, r AZrAC+A3AC+A4r+AS;\C+A6 o, {(3.7)

_ - _ J— _ =
where A, = 4(Ky + K_,), &, = 4K.K,, A, = K5 (K, K_,), B, =
4K_K A_ = -2K_. (K, ~ K__) - 4K.K-,_ and A. = K>, (K. - K )

3f-1r s -1 53 -2 1%-2 6 -1 H3 -2/

Analysing E®g. (3.7) we verify that, as long as K, >

K_2, AC is a increasing function of r. This is shown in Fig. 1,

for the particular values of the reaction rates K, = K3 = 107t
and X_; =K, = k_, = 107%, adopted by Kondepudi and Nelson.®
( INSERT PTG, 1)

From the above analysis we conclude that the
bifurcation that appears in the Kondepudi and HNelson scheme is
not modified by the racemization effect. The racemization only
modifies the critical parameter Ao, that increases as r raises.
Fig. 2 illustrates qualitatively the bifurcation when the

racemization is taken into account.
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(INSERT FIG. 2}

The stability of the symmetric and asymmetric solutieons
of the Egs. (3.1) and (3.2) are analysed in the appendix.

In next section, assuming that there is a small
difference in the energies of the L and D enantiomers, due to the
WNC, we obtain the steady states solutions of the kinetic
eguations (3.1) and (3.2) as a function of the parameters A and

r.

12




4. Weak Chiral Interaction

The system that eveolves in time according to Egs. (3.1)

and {(3.2) can go, for A > 2 to a steady state with greater

c’
concentration XL or to a steady state with greater concentration
Xp- These are the asymmetric solutions (o, , Ba) and (-«,, BA),
respectively, given by Egs. (3.5) and {(3.6). The system can
attain anyone of these states with egqual probability.

However, as discussed in section 2, the effect éf a
weak chiral interaction, can be very relevant in the process of
selection of one of the asymmetric solutions. In order to
introduce this effect we assume™’ that K1L = Kl (1 + g/2) and
KlD = K, (1 - g/2), where g = AE/KT, AE the small difference in
the energies of XL and XD, due to a weak chiral interaction, k
the Boltzmann constant and T the temperature of the system. The

parameter g behaves as a weak chiral symmetry breaking "Fieldr.

In this approach the kinetic equations are now given by

2

a¥p /dt = K (1+g/2) a - K_yXp, + KpAX) = K_Xp - KX X - r(XpXp),
(4.1)
2
dXp/at = K,(1-g/2) A = K_ X + KXy = K_pXp = KoXpXp = r(Xp-Xp),

{4.2)

Using the variables a = (XL—XD)/Z and g = (XL+XD)/2 the
above egquations for XL and XD are rewritten as

da/dt = thg/2 - K_la + K2Aa - 2K_2a8 - 2ro : {(4.3)

2, .2 2_.2
de/dt = Kjd — E_;B + K A8 - K_,(a“+8%) + K, (a®-g7). (4.4)

As it can be seen from Egs. (4.3) and (4.4), the
symmetric solution ag = 4] (XL = XD) is no more a steady state of

the system. Only asymmetric steady states are solutions of these

equations.

From Eg. (4.4) we obtain for the stationary regime,
dpsdt = 0, the stationary value of B as a function of the

stationary value of «:

2 2
K_,8, + T + \/(K_zﬁA + )RR ) (Kph + (K3Ky) o) s

(K3 + K_2)

where 8, = (K, A - 2r - K_;) / 2K_,-

i




Substituting g, given by Eg. (4.5}, in Edg. (4.3) we get . Bg defined by Eg. (3.4).
the following equation for the time evolution of a: In order to see how the branch selection occurs for

@€ > 0 and ¢ < 0, we investigate the behaviour of ¢ as a function

da/dt = thg/z + 2K*28Aa - ERSZT:%§;ﬁJ{K-2BA + r + of A near to RC (given by Eg. (3.7}), for a fixed wvalue of r.
In this case we expand the coefficient, g, - B that
1/2 A s’
- (K—ZBA + r)2 " (K3 + K_g) (th + (K3 _ K—z) az)] } multiplies o in*eq. (4.7)* up to linear terms in A - AC and
consider BA = BA' where BA = BA(AC). The remaining coefficients
(4.6)

- *
will be calculated for A = AC and Bs = BA. Thus, near to A = AC’
Eg. (4.7) becomes

Now we study the behaviour of the Eg. (4.6) when o« is

small. In this case we expand the radical in Eg. (4.86) da/at = _anB + Vo (r - Ac) « +Waq, (4.8)
2 2 i/2
[(K_ZBA + r) + (K3 + K_2) (th + (K3 - K_2) o ):l where
, 1/2 (®,% - x,%) o )
E[(K“26A+r) +(K3+K_2)K1A] I+ 3 - 2K, (K3 - K_z)
2[(K_26A+r) +K13(K2+K_2)J u = R
K3 (K3AC - K_l - 2r) - 2K_2r
In these conditions, Eg. (4.6) becomes *
Ba rK,
V = |—— Kz - (KZK—Z / K3) 1+ * +
g.— r/K . K__B, (K,+K__}
A 3 -27A 3 2
K_,(K,-K_,) 3 K;Ag
da/dt = - [ 2Km2 (BA—BS) o + R
Bg (K +K_,) = (K_,B,+r) 2 .
(Kl/K2BA)
(4-7)

and W = thc/é.

i5 16




Thus, in the vicinity of the critical point a = a the

CI

stationary value of a is a solution of the equation
—Ua3+V(A—A)a+W=0 (4.9)
o o c el T i

A solution with « > 0 is always a stable solution of Eg. (4.9).
For A = A, the only sclution of this equation is that with « > 0.
Thus, we see that when the parameter A is increased from Ac the
system will attain a steady state with « > 0, i.e. a sclution
where the amount of L molecules is greater tran the amount of D

mulecules. When A = 2 where i, = Aa_ + (3U0/4V0) (4Wg/Uo)2/3,

1’ I C
two new solutions with a < 0 appear. One of them, the greater in

intensity, is always stable and the other is always unstable. The

o brances as function of (A - AC) / Ao are shown in Fig. 3 for
-4

i
=
I

= . = -4 i - = = =
r =20and r =10 °, taking Kl 5 10 -, K2 K—l K_2 10

and g = 10747,

(INSERT FIG. 3)
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When the racemization increases, since it tends to
edqualize the X;, and X populations, the chiral selection of the
L-enantiomers is inhibited if the reagent concentration A = AB is
maintained constant. This inhibition effect can be calculated
integrating, for given values of A and r, the set of ordinary
equations (£.3) and (4.4) from an initial state, up to the final
steady state with o > 0. In Fig. 4, where the steady state value
of o is plotted as function of A, for r = g and r = 10_4, the
inhibition effect due to the racemization is clearly shown. To

obtain Fig. 4 we have used the same kinetic coefficients and g

adopted in Fig. 3.

(INSERT FIG. 4)
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APPENDIX. Linear Analysis of Stability

Here we study the stability of the kinetic equations
(3-1) and (3.2).

Let us perform the 1linear stability analysis of the
Egs. (3.1} and (3.2) defining the small deviations E(t) =
a(t) - o and m{t) = B(t) - B*, where B* and o are stationary
values of the referred eguations. Tn this way, the equations for

£(t}) and n(t), up to linear terms in £(t) and n(t), are given by

d&/dt = Mllg + M7, (A.1)

dg/dt = M, 8 + My, (A.2)
where M11 = (BF/aa)a=a*,ﬁmB*’ M12 = (BF/GB)a=a*,BzB*’ M21 =
(8G/8a) _ * g=p*r My, = (3G/8R) _ * g-g* and F{o,B), G{«,B) are

the right hand side of the Egs. (3.1) and (3.2), respectively.

Defining by ) and .y the eigenvalues of the matrix

Mij’ the dgeneral sclutions for £(t) and m(t) are written in the
form
_ w. t w,t
£(t) = a, e 17 + a,e 27,
t

_ w, t w
n{t) = ble 1™ + b2e 27,

19

S0, if the real part of w, or w. are positive or

1

negative, the solutions are unstable or stable, respectively.

2

For the symmetric solution we verify that

w, = 2K_2 (BA—BS) and w, = K2 - EK_ As w, is

1 2 2 3)- 2
always negative, for feasible values of A the symmetric solution

L - 2Bg (K, + K

is =table as long as BA < Bg with BS and By defined by Egs.

(3.4) and (3.6), respectively. This occurs for A < es as is
4

shown in Fig. 5. In these figures for r = 0 and r = 10 R BA and

BS have been calculated, as a function of a, taking Kl = K. =

3
107} and K, =K, =K_, = 10°%, in agreement with Kondepudi and

Nelson.® When a = 3 By and w, = 0. For A > A, the

c’ BA
symmetric solution becomes unstable. Adopting the sane procedure

2

to find the eigenvalues corresponding +to the asymmetric

solutions, we verify that for A > A_. the asymmetric solutions are

C
indeed stable. The scheme of fixed points and their stability is

gualitatively illustrated in Fig. 6.

(INSERT FIG. 5 AND FIG. &)
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Fig.

Fig.

FIGURE CAPTIONS

The critical parameter A~ @as a function of

racemization rate r.

the

The steady state « wvalues as a function of A, for
different values of r.

a/ao, where a, = a(ac), as a function of (A - AC}/AC,
for r = 0 and ¥ = 10 %.

The positive o branch as a function of a, for r = 0
and r = 10~%. Solid 1lines ( ) are stable and
dashed lines (-=——- } are unstable.

Bg and 8, versus A for r = 0 and r = i0 .

The scheme of stability of fixed points of Egs. (3.1)

and (3.2) for: (a) A < Ao and (b) a > Aae 8 is the

fixed point corresponding to the symmetric solution, I

is a fixed point with no physical meaning. A, and A,

are the two fixed points corresponding to

asymmetric sclutions.
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