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Abstract

We analyze the recent n + 22

Th TRIPLE data with an optical
model potential that contains a parity non-conserving term. We
account for the data on the analyzing power, with an effective PNC
interaction that is three orders of magnitude- larger than
estimates based on standard meson - exchange models. Our findings
not only support the recent ones by Koonin, Johnson and Vogel
(KTV), but show that with an up-to-date OM potential, the KIJV
effect (enhanced PNC in the nuclear medium) is, in fact, ten times
bigger. : ' '
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Recently there has been extensive work both theoretical’! and
experimentala on the gquestion of parity conservation in low
energy neutron-nucleus resonance reactions. It is expected that,
due to the high density of states, parity mixing is enhanced in
the compounal nucleus. The usual approach based on the statistical
theory, though clearly points to this enhancement, predicts a
logitudinal analyzing power which exhibits no sign correlations,
contrary to recent observations by the TRIPLE collaboration™.

Several models for a possible coherent mechanism were
suggested to account for the observed sign ocorrelation®™®. No
detailed caliculations, however are available. Recently, Koonin,
Johnson and vOgelﬂ have taken the simple optical model picture to
discuss the average properties of the cross section and analyzing
power. Their conclusion is that with a standard Buck—Pereym
strong potential, the PNC effective interaction that is needed to
account for the average longitudinal analyzing power, comes up to
be 100 times larger than estimates based on conventional
meson-exchange models. '

In this Letter, we point out that the optical-model analysis

of PNC neutron scattering is strongly dependent on the background

strong interaction. In fact our detailed calculation using an
up-to-date optical model potential that represents very well the
neutron scattering data in the actinide region shows that the
effective PNC interaction comes out 10 times larger that the one
obtained by KIV''. This, in turn, indicates that the effect of the
nuclear medium on the PNC interaction is an order of magnitude
larger than suggested by these authors.

The interaction of a neutron with a spin zero target of mass
nunker A is taken to be the sum of a complex strong (parity
conserving, PC) and weak (parity non-conserving, PHC) potential.

V=V (r) + Y, | (1)
Vi(r) = U(r) + V_(x) 1.8 (2)
V. = B v + vir) &.3 ' (3)
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The PNC interaction is spherically symmetric and time-reversal
invariant (v(r) is real). The potential U(r) is complex and taken
to be the Madland-Young optical potential” which describes very

- well neutron scattering from actinide nuclei at En < 10 MevV. It is

given by

u(r) =='—V°fr(r) - iWof:(r)

r-Rr |
fl(r) = [1 + exp Tl]
N=-

— - Z -—
Vo = B50.378 27.073 [ % ] 0.354 El.ah (MeV)
R = 1.264 A" fm, a = 0.612 fm
W, = 9.265 - 12,666 [2:2-| - 0.232 E__ + 0.003318 E_ (MeV)
[} * : A ' Lab * Lab .
' (4)
1s3
RI = 1,256 A B = 0.553 + 00,0144 ELab (MeV)
_h o 1 ’
Voo @) = =5 Vg —+ £,(x)
m_C
i3
)
Vso = 6.2 MeV
_ 1/3
RSO = 1.01 A fm
aso =0.75 fm

To calculate the effect on the neutron scattering of the
interaction Vescr We will first analyze the problem of elastic
scattering due to the potential V,. We will then use the DWBA to
estimate the effect of Voue®

The elastic scattering amplitude owing to LA is written as
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F (8) = £ (R.E’) + i6.k x ®'g(k.B)

f (k.5 = %Z[u_‘_l) tg""t"“z e tz"gt'uz]i't(f.k')

g(fc.f:’) =]J_{, [tj=£+:/2 _ t1=£-:/a ] Pi(ﬁ.l‘:‘) 7

£ ¢

to oo

where ti ig the t-matrix element.In order to calculate, with DWBA,
the effect of Vet We need, aside from the outgoing wave whose
partial wave expansion is

l A~ .
wh_‘,"c?: =an ¥ (i) FEJT)(r) <E|lFivs <& v k> (8)
jev

and asymptotic form is

LI

ikr

-
(+) k. e
* +F (8 &« . - (2)

¥y

-
(r} =5 e
the adjoint incoming-wave solution

e v B s a7 rP e § e < ) %
' (10)

The resulting DWBA correction to the scatt'ering, can be calculated
from

1 2M (- (+)
8F = - = ;—5 <$R’ IVPNCME > (11)
Thus .
SF(8,¢) = = &.(k+k’) h (k’sk) ' {12)
with

o E i W) e g ] o

where the t-matrix is taken to be of the general form




¢ t’
Lt L2+l (14)
e . . :
t! t!
&, 8+4 841,841

. J s Py )
The diagonal terms t".,!'Z and t£+1,£+1£ enter in the definition of
F (), Egs.§,6é and ¥.

The elastic scattering angular distribution is then givem by

do _

dr

N

Tr (FF') (15)

while the polarization is

Plo,p) = .._TEEO‘_‘.F : (16)
Tr FF -
with
F = F (6) + 8F(6,9) (17)

We thus obtain

% = |f(cose)|® + sin’e |g(cose) |? + 2(1 + cose) |h(coss) | (18)
ang
z[(er:f) Im[f(cose)g*(cose] - (k+%?) Re{f(cosa)h*(cose)]]'
P(6,¢) =
* (19)

It is now a simple matter to calculate the shape elastic
cross-section, o, ythe absorption (compound) cross section, -
and the total cross~section, o, For this purpose, we introduce
the partial S-matrix, defined by i

3 _ ’ 1] : )
St,er = 8,00 *2Yy 4, (20)

We find
n 25 1)1 . 432 ] 2 J z 3 2
% = L@ E_ T [lsz,e LT+ A8y g 17+ 1S, 0007 # |Sz,;.,|]
T 2 23+1 J - 3 - ol
— o.k Y =242 2 re [Sz o [Se PRI TR 1]] | (21)

2
+ 1=

2

3
| 83,80

2
_ W 2j+1 - b - 3
Cpas ~ ;zz 2 [1 l St,!l | Sl,lﬂ
]

2 . *
i o2 2j+1 3 3 s
* I 58, tn ] * 2 """Z 2 2R | 5 [Shet Suata
' (22)
— = 2n N2 +1 _ 3 - 1
o, = O‘E + Fops = kz Z 5 [1 . Re Sl,tn + 1 Re slu.&x]
2 o+ A 2341 J
+ ;C-E .k Z—-—l’z—-— 2Re [Sl,bl-l] . : (23)
The spin-averaged total cross-section is
= o 2r \zj+l _ ] _ ] :
g, = = Z % [1 Re 8 , + 1 - Re sﬂn,lu] (24)
]

Finally, the longitudinal asymmetry coefficient, £, defined from
Eq.(23), as ‘

o -0 .

T+ T-
E = ——— 25
O‘T’ * G‘T_ ( . )

is found to be
an 23 + 1] Re s} . z.s
kz Z,£+: ’ : ( )
e = ] .
3
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We have calculated, o, , 0,, ¢, and € for n + >“th in
energy region 10 °MeV < E < 10 Mev, using the Madland-Younqm
(M-Y)optical potential and a PNC potential, Eg.(3), with a form
factor v(r} given by -

173
-— -1
r r OA

v(r) =2 e he 1077 [:L + exp[ - (5)

r, = 1.25 fm, a = 0.6 fm.

The parameter €, is properly adjusted to account for the
experimental value of the longitudinal asymmetry e(Pif2). The
expressions for the cross-section, polarization and asymmetry are
well known and can be found e.g. in Ref. 7).,

The potential, Eq.(1) gives for the s- and p- wave strength

function S, , S, in “’Th the values (at E =1 ev).

8§ =T (81/2) @ 4154 1074 (6)

2n v E . (ev)

2 2
5, = [ 1 T (P1/2) +% T (P3/2) {k 1:2] = 2.0x10°
2n v E . (ev) 2n v E . (ev) 1+k°R

(7)

In Egs.{28) and (29) T refers to the transmission coefficient
and R in Eg. (29) in taken to be 1.25 fm. The above values of 5,
and 5, are in reasonable agreement w:Lth the exper:x.mental ones
given, respectively, by 0.84 % 0.07x10™° and 1.48 : o0.07x10°%. The
value of s1obtainec} in Ref. 7) with the Perey-Buck potentialg),
or eguivalently the Wilmore-Hodgson potential'® is 5.26x107%. The
difference between the Wilmore-Hodgson or Perey-Buck potential and
the Madland-Young potential is 'clearly exhibited in Fig.1, which
shows the corresponding strength functions vs. the mass number

We have also calculated the longitudinal asynmetry
coefficient e(Pi/2) for e, = 1, for the two potentials and the
results are shown in Fig.2. We see clearly that where as for
A<100 the two potentials give practically equal asymmetries, in
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the heavy targets region there is an appreciable difference. For’
A = 232, we have for the Perey-Buck potential the value guoted by
Koonin et al”, €(P1l/2) = 2.7x10™° (En = 1 eV, €, = 1). The value
we obtain with the Madland-Young potential is e(Pl/2) = 6.7x10™*
(Eh lev, €, = 1).

The compound nucleus resonances in the n + 2Th system start
at a neutron Lab. energy of 8 eV. Therefore we have to know the
value e(Pl/Z)/e at this energy. In Fig.3 we show c(P1/2)/e as a
function of E and conclude that it exhibits an E "2 dependence
as observed by the TRIPLE people . At En— 8 eV we get e(P1/2) =
2.37x107 (En = 8 eV, e, = 1). Thus to account for the
experimental value of £(Pi/2) in the rescnance region (E > 8 eV),
which is 816% we have to take for €,= 307 t 240. This is more than
10 times bigger than the value ohtained by Koonin et al.”

The conclusions we draw from the above is that the effective
PNC interaction is more than three orders of magnitude bigger than
estimates based on standard meson-exchange models. We are thus in
agreement with the conclusions of Ref.7 that the nuclear medium
greatly enhances the PNC interaction. The enhancement we obtain
is, however, ten times bigger than theirs. Full details of the
calculation reported here will appear elsewere‘,".
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Figure Captions

Fig.1:

strength
functions vs the mass number A. The full curve is obtained
with the Wilmore-Hodgson (Perey-Buck) potential while the
dashed curve is obtained with the Madland-Young potential.
fhe neutron Lab. energy is E =1 ev.

The singlet, 5,(1a), and triplet, Sl(lb)

The asymmetry coeficient e(P1/2) for €= 1, En= 1l ev vs.
A. Details of curves are the same as in Fig.1.

The asymmetry coefficient g(P1/2) for e, = 1, A = 232, vs.
the neutron Lab. energy.Details of curves are the same as
in PFig.1.
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