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Absiract: The solutions of the Vlasov equation based on the Walecka model applied to
hot and dense nuclear matter are obtained and discussed. It is observed that the effective
mass of scalar and vector mesons raises only slightly with temperature for T < 180MeV
while the effective nucleon mass decreases. The collective longitudinal modes are obtained
and the coupling between them is studied through the energy weighted sum rule. At finite
temperature it is found that the zero sound mode merges in the continuumn of particle-hole

excitations.

1. INTRODUCTION

- Heavy-ion collisions at high incident energies offer the opportunity of studying the properties of
hot and dense hadronic matter formed in the collision. The properties of mesons are expected to
be affected by the presence of hot dense matter, A particularly interesting issue is whether snch
modifications of mesons properties could be used to diagnose the state of matter produced in high
energy heavy-ion collisions. Therefore, the accurate description of hot, dense matter is an important
problem in theoretical physics. To construct a theory for heavy-ion collisions at high energies it is
important to take into account relativistic dynamics and not just relativistic kinematics. The Walecka
model [1] which is known to describe the sataration of nuclear matter and static properties of nuclei,
provides us with a covariant framework for the description of hot and dense hadronic matter {21

Recently we have used a relativistic Vlasov equation based on the Walecka model to study the
longitudinal and transverse collective modes at zero temperafure {3, 4], and we have obtained results
similar to the more demanding calculations based on the one-loop expansion [5, 6, 7]. F has been
previously demonstrated, in low energy heavy ion collisions, that the Viasov equation is a good
approximation to the time dependent Hartree-Fock equation [8]. Therefore, the relativistic Vlasov
equation, which has been quite used lately to study heavy-ion collisions [9, 10}, appears to be an
alternative way to study relativistic systems.

The purpose of this work is to use a relativistic Vlasov equation based on the Walecka model to
study the random-phase approximation (RPA) collective m&des corresponding to small-amplitude
oscillations around a stationary state in hot and dense nuclear matter. In section II the gronnd
state of the system is determined and the thermal Vissov equation is introduced. The discrete
longitudinal collective normal modes are studied in section III and the orthogonslity, completeness
relations and sum rule fulfilled by the RPA modes are given in section IV, Finally, section V contains

some conclusions.
2. THE GROUND STATE AND THE VLASOV EQUATION

In the Walecka model the nucleons are coupled to meutral scalar, @, and vector, V¥, meson
fields. In a classical approximation the energy of the nuclear system with particles and anti-particles,
described respectively by the one-body phase-space distribution functions ny(r,p,t) and n_{r,p,t}
which give the number of particles and anti-particles at the position r instant { with momentum pis

_ drd’p
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where Ig(y4y is the field canonically conjugated to (V1Y, ,(y) is the mass of the scalar(vector)
field, and

€x(r,p,t) = \/(p TV 4+ (M- .82 £4,V0,
are the classical effective one-body Hamiltonian for particles {+) and anti-particles (-} since particles
and anti-particles have opposite baryonic charge. However, to mantain & notation according to
previous works {1, 2] it is convenient to work with the distribution function for particles at the
position r, instant ¢ with momentum p {(felr,pyt) = ny(r.p,t)), and the distribution function
for anti-particles at the position r, instant ¢ but with momentum =p {(f-(r,p,t) = n_(r,—p,t)).

Equation (2.1) can be rewsitten as

rdip 1 3 srra 222
B =t [ Gy GeepiOhs = £(ep0h) + 5 [ &r( + 9898 4+ mia?)
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where
hi(r,p,t) = £ea(r, p,0) = 24/(p—~ 0, V)2 + (M — g,8)2 + ,V° . (2.3)

The parameters of the model are given in ref.[2], ie., g7 = 122.88, g2 = 169.44, m, = 550MeV
and m, = 783MeV, and produce a zero-temperature equilibrium at kr = 1.30fm™?, with a binding
energy of 15.75MeV.

In this classical approximation, the Vlasov equation describes the time evolution of the distribu-

tion functions and may be written either as

a
%i—-%{ﬂi,fi} =0,

or as

U | tfuhst=0. (2.4)

The two forms are obviously equivalent but we prefer the second one, eq.(2.4).

In terms of the phase-space distribution functions, f4, the nuclear density is given by

o) = [ G mpi) - £-(eip.0), (2.50)
while the nuclear scalar and current density are expressed by
p =1 [ B Lm0+ 1m0, (255)
and o
3t =4 [ 22 B ey, + £-(5,8,0) (2:5¢)

respectively. In eqs.(2.5b and ¢) M~ = M - ¢, ¥, P*=p—g,/Vand ¢ = /p? 3 372,
The equations describing the time evolution of the fields & and V* are derived from Hamilton's

equations and are

9% 2 2
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It was shown in ref.[3] that if the Vlasov equation is satisfied then we have

Bu* = 0,8,V = 0. (2.7)

Therefore, the last term in the right hand side of egs.{2.6b and c) is eliminated.

The classical entropy of a Fermi gas is given by [11]

$=_4 ‘:;‘f; (f_,_ln( f+f )+In(1—f+)+f_1n( I )+In(1—f N, (28
and the thermodynamic potencial is defined as
O =E-TS uB, (2.9)
where B is the basionic number:
5= [Prote) =4 [ GHEG- 1), (2.10)

& is the chemical potential and 7T is the temperature.
For a system in equilibrium, the distribution functions should be chosen to make the thermody-

namic potencial f} stationary. We get

1
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with ¥ = gt — g,V being the effective chemical potential. We notice that f+ is a function of ¢*, and

fe(r,p,t) = {2.11)

therefore eq.(2.5¢) gives j{r,t) = 0. As explained in refs.[1, 2], from the thermodynamic potential
we can derive the equations that determine the meson fields {egs.(2.6)) and all the thermodynamic
functions.

In this approach, the ground state of the system {caractetized by the index zero) is determined in
the mean-field approximation. Since the nuclear medium is homogeneous, the classical meson fields
% and V* are constants and given by:

N Ty ?E: Ap M 2.12
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with e = /p? + M-2.

Equations (2.2) and (2.12a) can be recast as

23 7
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4 d&p M-
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where V is the volume of the system. Equation (2.13b) is a transcendental self-consistency condition
that determines ;. To solve this equation one first chooses T' and v (at low temperature, there may
be three solutions for M~ i1, 2]). These values of M*, v and T specify foy and fo. through eq.(2.11}
and can then be used to compute py(M*) and £ through egs.(2.12b) and (2.13a). As pointed out in
ref.[1], because of the different s5igns in the expressions for M* and p, there can be a finite shift in

the mass of the baryon at zero baryon density due to the presence of baryon-antibaryon pairs.

3. COLLECTIVE MODES

We are now in the position of obtaining the linearized equations of motion that describe the time
evolution of small deviations from the ground state. The solutions of the Linearized equations give
the collective modes of the systern since these modes correspond to small oscillations around the

equilibrium state. We take for the different fields

fr = for + 612, (3.1a)
= &4 68, (3.18)
V0= v 4 8vY, (3.1¢)

Ve = §VY. (3.1d)

In order to study the eigenfrequencies and eigenfurnctions of this problem we express the fluctu-

ations of the distribution functions in terms of the generators {12} §4(r, p,t) such that

df c
8 = {S foa} = {S20"} 3 . (3.2)
Substituting eq.(3.2) in the linearized Vlasov equation:
aé
D 4 (6 hos) + {fox Bhs} = 0, (3

we get the following time evolution for the generator

M
ZE 4 {Su hos} = bhy = Fg, 6% :Fyu -6V + g, 5V,

where
hop = &P+ M2 4 g, V® = e+ g,V0.

When the ansatz for the longitudinal normal modes

S+(r| p:i) Syufeos B,P)

S ir,p,t) S_.{cosb,p)
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V0 Ve
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is used in the linearized equations of motion for the fields [3] we get
HwT kL cos NSy, = $g,-%6§w + 6.8V % gt,g cos B8V, |
€ € €
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In these equations @ is the angle between p and k, and
= 2% [T ap o t o) Ea ot 4 3317,
The continuity equation (eq.{2.7)) implies
wdV0 = kEV,.

Defining the dimensionless quantities
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and & = w/k, we can rewrite the equations of normal modes as

(@ = 2)S4u(2,p) = i61Q1y ~ iG,(€) Qa0 + iGsfe)2Qs, | . (8.9q)

(@ +2)S_(z,0) = ~iG, Q1 - iGo()Q, — iG3(€)zQ;.. (3.98)
@ -ofjon = 2 [" e [ sl tor - o) 4 St (- poyy, (39¢)
(@ u})Qn, = 7 /:’ deG, / L BzlSiafor (L for} = S_ufou(1- o), (3.94)
(@ - )05, = %‘ M“:’ deGy fh ; d52’(Ssufor (1~ for) + Soufor(1— fo )], (3.9¢)

= _ pcos8 . .
where A = pfe ,z = E2% and eq.(3.7) is now equivalent to

GQ2% = Qau . (3.10)

In writing these equations we have used the relation

dfos

o —fox(l- foi) {3.11)

1t is well known that the equations of normal modes may be derived from a Lagrangian formalism,

In particular we observe that egs.(3.9) may be obtained from the following Lagrangian:

Z( PG, + PQ;) - —f dej 9zz(53 84 forll - for) = S8 fo_(1~ fo_))

g ) / dez(S351 for (1= for) + S28_fo_ (1~ fo_)) + z:( Y4 + w}Q,1?)

- IG—;& /M dff_A dzz(Si{z, &, 7) for(1 = for )+ 82z, 6,7)fo- (1 — fo_))
+3%&f: de]j d52(S4(2, 6,7 fos (1 = for) + 5 (e, 6,) for (1 = fo_)
* E% /M°° deCy [: dz2(53(z, 6, 7) forll — fou) — 52 (2, 6,7) foo(1 = fo_))
_1'% f " 4G fA doz(Si(2,6,7) for(l = for) = §_(z,6,THo (1~ fo-))

1Q3[ deG3/ d227(S3 (2, 6,7) forlL = fou) + S7(2,6,7)fo(1 = fo))

"‘%jf’u.dfci!/;/‘ dzz*($,(z, & or(l = foi) + S_dz.e,7) fo (1 - fo-). {3.12)

This Lagrangian is only formal since the time derivative of the time component of the vector field
{Q>) and its canonically conjugated momentum {F;), do not appear in a conventional Lagrangian
formalism. The Lagrangian of eq.(3.12) was written in this way in order to derive egs.(3.9).

For Jiz| > 1 we obtain the discrete solutions of 2gs.(3.9) which obey the dispersion relation

(‘"’2 - ‘-’-“1)(“’ - "“’2) + I, (“’ “*’2) + IG;(W ! ){W =114 (52 - 1)Ig,Ig, - I(Z;]Gz) =0, (3.13)

where
To, = ~Gi(Toy +1-) (3.14a)
I, = ~g3 (I + 1.}, (3.145)
Ig,6, = Gigo{he — i), {3.14¢)
1o
Ing = & fM_ dee"1{€) fos (1~ fox), (3.14c)
A z W~ pfe
1 = [ dezo = - (28 4 otn |22 - _
() Nt M Eey (3.144)
and g, = Gy /e .

In terms of w = &k and in the limit k — 0 eq.(3.13} can be rewritten as

(o - MY - D) =1, (3.15)
with solutions ;
dp(h 1
— — 2 27701
o= M, = & (24 30T (3.6)
2 7}y 1/2
w, = M, = + (mu+n ) . (3.17)

These solutions show that the mesons behave as if they had an effective mass m‘{u) = M,y)-

In figure 1 we plot A, as a function of T for k = 0 and zero baryon density. The solution of
eq.(2.13b} at this same density is zlse ploted. As pointed out in ref.[1}, the nucleon effective mass
decreases as the ternperature is raised due to the NN pair formation. With respect to the meson
effective masses the oppesite occurs. Thus, at high temperatures the baryons are essentially massless
and the mesons ( mainly the scalar one) are very heavy. This rapid decrease of M* and tapid increase
of M, and M, with increasing temperature resembles a phase transition, and at high temperature
and low density the systemn becomes a dilute gas of baryons in a sea of baryon-antibaryon pairs.
The behaviour of the scalar meson effective mass as a function of temperature is different from
the behaviour obtained in ref.[13] where the effects of the chiral transition of hot and dense quark
matter in physical quantities are analysed. This difference is due to the fact that in ref. f13] the
mesons have a quark-antiquark internal structure. Therefore, there is a competitive effect in the

temperature dependence of the meson masses between the decrease of the constituent quark masses

8




and the increase of the occupation factors for large values of momentum [14]. On the other hand, in
the Walecka model the mesons are phenomenaclogical and have no internal structure. Thus, the onty
effect present is the increase of the occupation factor ,ie. the NN pair formation, which pushes the
Meson masses up,

In figure 2 we plot the solutions of eq.(3.13) as a function of k? for T = 25MeV and T = 200MeV
with p = 0.15fm ™2 (the normal nuclear matter saturation density). We see that similarly to the case
T =0 (3] {also included in the figure for comparison), for these values of k, the relation between w?
and k? remains almost linear even for values of T' > 200MeV, beyond the phase transition. The only
effect of the temperature is the displacement of the curves. Figure 3 shows the dependence of the
selutions of eq.(3.13) with the baryon density for k = 500MeV and T = 25Mel . The behaviour
is also similar to the one obtained at T = 0. This is expected since from figure 1 we see that for
T < 100MeV there is almost no effect from the temperature in the masses.

We should point out at this moment that the present model is more adequated for temperatures
T < 100MeV since for higher temperatures the equation of state will be modified by contributions

from thermal pions [2], which are not included in this version of the Walecka model.
4. ORTHOGONALITY COMPLETENESS RELATIONS AND SUM RULE
The discrete solutions of egs.(3.9), which obey eq.(3.13), always come in pairs +@,, with n

standing for s and v, the scalar and vector mesons respectively. These solutions are described by the

wave function

Ql:l:n _if(mn)
Plin :kanf(aﬂ)
Qiin —1
P 14 :tan
o= | o | = FiT, ' (4-)

Paygn a?

SIH(Z, E) zﬁ;(GL{(Dn) + yge(izc_an — 1))

5inlz,€) T (G f(@n) + gae(d2T + 1))

where

W’ — w4 (@ - 1)lg,

{4.2)
I, 6,

f(@) =

Besides these solutions, eqs.(3.9} also have a continuum of solutions if |&5| < 1, which are described

by

_ TAg,
Qlw f(”)Qzu + ';; g:
e A
P S (@)Qu — 752
Q2w Q2w
T, = Fa, = BQ 5 , (4.3}
QS«: a-sz
P3w ‘ ‘IE"QQQ,,,
Stulz ) 58 - 2) + 5 (C1Quu + 926(@2 — 1)Q2.)
$-ulz9) 5@ + )+ F(C1 Q1w + 926(T= + 1)Ga,)
with @, satisfying the equation
Qo = — fU(AG,(Gz _“J]2 +IG])+A5'110102} (4.4)
T @ el )@ - e+ (@ - Dg,) - (@ - 1) g,
and
Ag, = G1(dos — 4-), {4.52)
A(;7 = gg(A1+ -|- Al_) 3 (4-55)
[+ =]
Ans= | dee a1 - fusots?/ ), (4.50)

From the Lagrangian eq.(3.12) it can be shown that these solutions are orthogonal and satisfy

the following orthogonality relations

3 . i o0 A .
S IV P Qiint — QhanPiame) + T,[M de'/")1 dzz[S1 5%, for(l — for)
I=1

~85nSinefo (1 - foul} = Eabe (4.6a)

3 . 1 =1 4 .
§Y (- (B Qs ~ i) + fn e L 5[5 Su for(1 - for)
=1

=8 S_wfoc{l ~ foo )] = B Aoy + 40 )8(@ - ), (4.65)

oo A
‘-23:(“1)5“( in@jw ~ QjenFiu) + %fM de _/_A dzz[SE5570 for (1 - fos)

F=1

= S5ia85fo-(1~fo-)l = 0, {4.6¢)

with

. —a i oc A
Mo = W @0~ 1458) + 5 [ e [t

IS3al* for(1 = for} — 155,17 fo- (1~ o)) - (4.7
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The normal modes form a complete set of sclutions [3, 12], Therefore, it is possible to expand

any wave function

Qa
P
0
-~ P Qo3
Yo = ¥(r=0) = Qo ' (4.8)
FPoz
H+(zl f)
H_(z,€)
in terms of the normal modes
1
T, = j: (@) ngv(qn@“ tea¥ ), (4.9)
where [12]
1 {3 ‘
Cin = i’f— (’Z(‘l)H](P;inQﬂj = QisnFoj)
n =1
+1_/wdefﬂdzz[5+'Hf (1-for)— SEIH_fo_(1
7l %), ntl+ for o+) = SipH_fo(1- fo_)]1 , (4.10)
C(U) = E(L?)
{Avs + Ao )+ 72k oo delfor (1~ for)al(@,m,6) + fo (1 fo )al (@, -, )]O(p?/e? — &)
(4.114q)
with
i 1.3 ;
H&) = = [ i3 (-1 Y(P}0Qu; ~ @ Fo;)
=1
1 00 A
L. de/:A do2[SL H, for(1 - for) - STUH_ fo (1~ fo_)}) , (4.115)
and
@+(@,2,€) = iG1 Q1 + igaQoue(zT F 1) . (4.11c)

These coefficients satisfy the following energy weighted sum rule {EWSR)

my = '/:lmzc(w)éx(;)+ E an’:’n”c+nf2+ic_"f2) -

n=g.u

i [=+] A 3 i
T |y dff_A o {[Hy [ for (1= fou) + [H-"fo_ (1 - fo_)) - 21112 + Qo)

j=1

i Q oo A R
+ L_IFQJ'LI_ d‘f_A dzz{Hi(z,€)for{1 - for) + H(z,€) fo_(1 - fo_))

G = o A
_i_};?_m /;‘,_ df./;A drz{H, (2, ) for(1 - for) +H {z,€)fo_(1- f_})
Af

1 oo A
+ %’g deGaf_A dz;z(H;(x,c)fD+(1 — fou )+ HI(z &) fo_ (1 - f2))

11

iQ' ] A
- fM deG;,j:A dzz’(Hy(2,6) forll = for) + H_(z,)fo_(1 - fo_)) . (4.12)
In order to study the distribution of strength by the discrete modes and the collective modes in

the particle-hole continrum we consider the initial condition:

0

1}

0

1]
¥y = 0 (4.13)

0

1

1]

For this condition the strength function, in the interval 0 < & < 1, becomes
s{w) = 20°8" (@)el@) , {4.14)
and the fraction exhausted by the discrete modes is
_ 2 [ - s
F(wn} = ;'n— Z ;’—'(Glf(wﬂ)Iﬂ_'_ -+ gg{w: - 1)]14_}2 y (4.15)
1 p=ay Tin

with Wn, fn f(@n}and Iy given respectively by eqs.{3.13), (4.7}, (4.2) and (3.14¢), and from eq.(4.12)
we get my = 3% [i7- d€‘f;~fo+(1 = fot)-

In figure 4 we plot the strength function eq.{4.14) for k/M = 0.5,T = 25MeV and p = 0.173 fm™?
(the saturation density af this temperature). This curve is different from the one obtained for T = ¢
{see fig.5 of ref.]3]). This difference comes from the fact that the zero sound mode, that exist as a
discrete mode for T = 0, merges in the contipuum [15). This can be proved by doing an expansion

of the distribution function in powers of 7. For small values of T we can write:

252
for : 3 ~ Or—e+ -’LET—J'(V ~€), (4.16a)

T 1+erp(sE

1
T ltep(sR) T

using this in eq.{3.13) we get for some values of k, just as in the T' = 0 case, three pairs of solutions.

fa- U (4.18h)

For T = 0.5MeV, g = 0.15fm 3 and k/M = 1.0 these solutions are (the particle-hole continuum

lies now in the range || < p. /v = 0.4544):

zero sound mode @, = 8.4565
scalar mode w, =1.2121
vector mode w, = 1.3708.

The percentages of the EWSR exhausted by these modes and the continwuwm are: 15.04% (zero

sound), 2.44% (scalar), 18.40% (vector) and 64.12% (continuum). However, for the same values of

12




the constants eq.(3.13) without any approximation has only the last two discrete solutions (scalar and
vector} located exactly at the same points and the percentages of the EWSR are: 2.44% (scalar),
18.40% (vector) and 79.16% (continuum). In figure 5 the strength function in both cases {Fermi
function and expansion for small values of T) are plotted as a function of . From this figure and
from the percentages of the EWSR it is clear that the zero sound mode merges in the continuum
for T 3 0 when the full Fermi function is used, In this figure the position of the zero-sound mode
is indicated by an arrow, and we can see that jts position coincides with the maximum of the exact
strength function.

The percentages of the EWSR exhausted by the continuum and discrete modes for T = 25MeV,
k/M = 0.5, p = 0.173fm~3 and the initial condition #q.(4.13) are plotted, as a function of E/M,
in figure 6. We see that, despite the temperature, the scalar mode remains unexcited by this initial
condition just as in the case T = 0 3. Even for T = 200MeV the percentages of The EWSR
exhausted by the scalar mode by this initial conditjon is always smaller than 16%. Comparing figure
6 with figure 4 of ref.{3] it is seen clearly that the strength exhausted by the zero-sound is contained
in the strength function of the continuum.

For the initial condition which favors the scalar mode:

¥y = (4.17)

LR = i — R~ R N

the percentages exhausted by the modes are plotted in figure 7. From both initial conditions we
learn that the system behaves essentially as if the scalar mode and the continum were decoupled,
but there is a strong coupling between the continuum and the vector field, and between the scalar
and vector fields according to the initial condition considered. For the initial condition that favors
the vector mode (Qgs = 1 and the other fields zero) both continuum and scalar modes are coupled

to the vector mode as can be seen in figure 8.

5. CONCLUSIONS

In this work we have studied the properties of hot and dense nuclear matter using a thermal
relativistic Vlasov equation based on the Walecks model. We have obtained that the masses of
the discrete RPA collective normal modes, corresponding to the meson fields, increase with the

temperature due to the NN pair formation, but temperature effects are still relatively small up to

13

T = 150MeV. The same small dependence of the collective modes on temperature is also well know
from non-relativistic nuclear physics [16}.

The dependence of the meson collective modes with transfered momentum fo k < 1GeV (w;"(v)
depends linearly on k?) does not change when temperature is introduced and for T < 100MeV the
mass of these collective modes as a function of k is only slightly affected.

An interesting effect of temperature is the fact that the zero-sound mode, also identified in refs.[3-
7] for T = 0, rnerges in the continunm of single-particle excitations at finite temperature. Therefore,
the strength distribution function of the modes in the continuum contains also the strength exhausted

by the zero-sound.
We have observed that at finite temperature the scalar mode is not dynamically coupled to the

continuum but the vector mode couples strongly both to the scalar mode and to the continuum. This
same behaviour was observed at 7' = 0.

As a concluding remark, it would be interesting to explore further the properties of collective
modes in a model that includes the contributions from thermal pions. However, in a rather different

context, the same small temperature dependence was obtained in ref.{17] for the mass of the p meson

in a hot pion gas with the standard v — p dynamics.
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Fig.1-

Fig.2-

Fig.3-

Fig.4-

Fig.5-

Fig.6-

Fig.7-

Tig.8-

FIGURE CAPTIONS

Self-consistent nucleon mass (full line), scalar meson effective mass (dashed line) and vector
meson effective mass (dotted line} in units of their free masses as a function of temperature at

vanishing baryon density and vamishing transfered momentum.

The dispersion relation for the scalar and vector modes at normal nuclear saturation density for
T = ¢ (dotted line), T = 25MeV (full line) and T = 200MeV (dashed line). The frequency w,
and wave vector k are in units of M. The top line for each T corresponds to the vector mode

and the botton line to the scalar mode.

The dispersion relation for the scalar {full line} and vector (dashed line) modes as a function of

the density for T = 25MeV and k = 500MeV. The frequency w, is in units of M.

Strenght function, as a function of & for the initial condition eq.(4.13), for T = 25MeV, p =

0.173fm™3, and k/M = 0.5.

Exact strenght function (full line) and with the expansion for small values of T (dashed line}
as a function of & for T = 0.5MeV, p = 0.15fm™3, and k/M = 1.0. The arrow indicates the

position of the zero-sound mode.

Percentages of the EWSR exhausted by the continuum (full line) and discrete modes as a function
of k, for the initial condition eq.(4.13), T = 25MeV and for p = 0.173fm™>. The dashed and

dotted lines represent the scalar and vector modes respectively.
Same as fig.6 for the initial condition eq.(4.17).

Same as fig.6 for the initial condition Qo3 = 1.0.
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