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ABSTRACT

The question of parity nonconservation in compoud nruclear reactions
withia the optical model. This model supplies a description of average cross-sec
polarization, spin-rotation, and the parity nonconservation direct testing quantity
tudinal asymmeiry. Taking for the OM potential a sum o a parity conserving (}
complex potential and a parity nonconserving (PNC) weak potential, the abos
quantities are t! en evaluated, with the PNC potential Ircated with perturbati
The compound « lastic, absorption, and total components o all the ineasurable qu:
discussed. Application is then made to the recent TRIPLI data on the n+**T

al thermal neutions energies.
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I INTRODUCTION

Recently there has been extensive work both theoreticall) and experimentalzJ on the
cquestion of parity non-conservation in low energy neuiron-nucleus resonance reactions. It
is by now widely accepted that the value of the matrix element of the parity non-conserving
(PNC} interaction, extracted from first forbidden §-decay and from a-decay of unatural
parity resonances is of the order of 1 eV 3}, Further, the fongitudinal asymmetry measured
in polarized proton scattering from very light targets {(p, ¢ and «) is of the order of 107 .

Further stringent test of PNC is supplied by the scattering of very low energy neutron-
s from heavy target nuclei. The level densities of the compound nuclei formed in these
reactions are very high and consequently, it is suggested that the PNC effects are greatly
enhanced by up to afactor of 10! for the longitudinal asymmetry. This has been confirmed
experimentally by the TRIPLE collaborationd). The statistical theory which asserts that
the &-matrix elements are members of a Gaussian Orthogonal Ensemble (GOE). When con-
sidering PNC, two GOE’s are considered coupled (+ and — pari'ty)'i). Several calculations
have heen performed and it is found that the above mentioned CN enhancement does indeed
oceur.

An important qualitative test of the statistical theory (ST} is supplied by looking at
sign corrclations among maxima of minima in the longitudinal asymmetry coeflicient, «.
According to the 8T, no sign correlations should be present. This has been recently tested by
the TRIPLE collaboration?) and the conclusion reached was that important sign correlations
were observed in the fluctuations seen in £ of »+%?Th at thermal neutron energies.

Several models for a possible coherent mechanism were suggested to account for the
observed sign correlationsS —3), In particular, Aeurbach®) has argued that in the entrance

channel of n4+*¥?Th agiant J =0 doorway is formed. Assuming that the PNC interaction

can be approximated by a one-body operator of the type &-F, he accounts well for the sign

correlation in* ¢. However some difficulties arise when he compares the doorw:

with the single particle model.

Recently, Koonin, Johnson and Vogeig) and Carlson and Hussein0} have usec

simple optical model picture to describe the average observables. They used for the
a sum of a strong parity-conserving (PC) complex potential and a weak PNC in
to account for tle asymmetry within perturbation theary. The conclusions they
that the strengtl) of effective PNC in » +¥2 Tk is several orders of magnitude b
estimates based on standard meson-exchange models.

The purpose of this paper is to supply the details of our calculations sumn

Ref. 10). In Seclion II we develop the theory of PC+PNC scattering using the opti

Schrédinger equation plus the distorted wave Born approximation{DWBA). In &

we decompose t'ie observable in ocur theory into compound elastic, absorption
components. In Section IV we give a detailed analysis of the n+?32Th system.

in Section V we present our concluding remarks.

O. SCATTERING THEORY OF SPIN-1/2 PARTICLE IN THE PRE

OF PARITY CONSERVING AND PARITY NON-CONSERVING

ACTIONS

I1.a. Introduction
We assume a Hamiltonian of the form
H = Hpc+ Venc

where we take If, to be a typical spherically symmetric optical Hamiltonian

g = oo
Hpg = - al_,u VI O(r) + Vool (-5
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in which U(r) and V,,5(r) can be complex.

The parity violating term is V, , which we take to be spherically symmetzic and of the
form

Vene(r) = &-po(r)+o(r}d -5 . (3)

The symmetrized form of Vpne(r} is Hermitian and turns time-reversal invariant, when
v(r) is real.

To estimate the effect of scattering of the term Vpyg, we will first analyze the problem
of elastic scattering due to the Hamiltonian Hpg. We will then use the DWBA to estimate

the effect of Vene.

II.b. Elastic Scattering of Neutron by an Optical Potential

As the Hamiltonian

2
- 3_ T4 U () + Vo (r) - § (a)
p‘.

Hpe =
is spherically symmetric, we can expand the wavefunctions in eigenfunctions of the total spin
jo= f+7 .

These are

) Yen(F) o (5)

1. 1
f§ _’,HJ> = Z(Bm-g-o'

ma

(v

where the x, are the spin vectors

X2 = (é) X-1/2 = (?) . {6)

The '|E % jt/) are orthonormal

T 1 L 1 .
<€ 5]:/ £§ jv> = g iy bur . (M)

5

As the spin-orbit coupling can be written as

s = j(j+1)—£(£2+1)—s(s+1) )

they diagonalize the Hamiltonian H.

The scattering wave function can be writien as

- . L, 1 . 1.
qf)(;)(r] = 4z 3 zeﬂgﬂ')(r) <r IE 2 _;w) (E 5 v

3t

k) ©)

where the radial functions F}(;") <an be expressed in terms of the in- and out-going solutions

as

F{ ) () - HP 55) ' (10)

1
2

As r— oo, the in and out solutions reduce to Hankel functions, so that we have

i -
F() == 5 (70) - 2{P(r) 52)
. Si—1
= ) + R P =
= o)+ (r) ty
Syi—1

Substituting the asymptotic form of the radial function into the expression for the wavefunc-

tion, and using the identities

dr 37 a(r) Youl#) Yo, (B) = &7 (12)
fm
Yoxext =1 (13)
6




and .
. eikr
O) — (S (19)
we have
- ikr
GF) — 14 Ry(d) £ (15)
where
4 - 1 1 -
Ao = Ty g (k"z-ﬁ, ety k> . 16
k j%; ¢ 2 >( (16)
we can rewrite this as
Fol0) = flk-EY4+ig ExF g(k-F) (17)
where
.. 1 - P
Ry = g Z[(z+1)t§‘+z 1o ]P,{k-k’) (18)
F;
and
B 1 - -1
ok-k) = LT[ - Rk Ry (19)
¢

Finally, to perform the DWBA caleulation, we need the adjoint incoming wave solution

Ny = (@) . (AFLm) = (<) = E 1 -m))

r> : (20)

Before turning directly to the DWBA calculation, let us calculate the matrix elements of

dr Y (- 1)£F(+)(r ( ‘ ><E v

G

-

G-v.

We can decompose the reduced matrix elements as

11 gl = 1. " —t—- r 11
(E S a-V”@ij) 228+ 1) () n/( €255 L) &
I iy,
(3l |3 ) crwue (21)
where
1 i
(GGlolz) =
and
" oy f d a
kvl — (A 2 Py =
Ve = () VI (o N 0)( = re) (22)
with
e = —£ , £ = 41
@ = £+1 , £ = £—1
As

, 11 B F 18 N Mf—%—f ( |‘}_ l) &1 E _
V(“§2’U)(GOG)_() Wil 383 lo 0o, ~

1
1 - £ )
e+L-j LYt
— (_) ’ 2 = ( )J (23)
300 +1) 11, 2320+ 120 + 1)
T2 2
we can put it all together to obtain
A T T A |4 e
(ei,«-{]a-v”eg;) - -(f E;Jrre) (24)
where
e = —f , & = £41
a = 41 , & = 1=

Finally, we note that, since 7 - V is a rotational invariant, its mat-ix elen 1ts are

identical to its reduced ones,




| ’(f’%j{f&‘-ﬁlf%j> = (f? "J”a v[[e (rLLT ) L )

il.c. The DWBA Matrix Element

To calculate the DWBA matrix element, we write the parity-violating {erm as

2
W

QL

Vewe = &-pV(r)+V(r)d -5 {26)

with

Vo) = 2ol

The perturbation in the scattering amplitude is then

1 ~ 12
g — - (-1 =# {+)
600.8) = = - (30|25 Vool
= —dr Z(—z}e’ k"(f’ ]V><€;JU k> it
ik
PEE
3 ,f]-rr- {+) = = (+) A‘l_
fdr(f?rg-_?r 7)) Foi (r){F - Po(r) +o(r) & 7)) F5'(r) {# 5
(27}
or
n Aol 1 I e\
5F(0,4) = — 4% T gt <k"€’§ jy>‘<£ s v k) t, (23)
Jv =
with
. . d d 23 +1
Hoe = —thy = & f rzdrv(r){(Fe(ﬂjd—F(H F o ngfj) - £, F}j*}

where in the 1n % expression,

We can wrire the perturbation more expliciily as

)

4 - ., 1, 1,
61 0,0) = T X the ((Fle+15 50) (e 50
Fil

(Fle5 ) (e+1528)

where we understand that the value of j corresponding to each £ is j = £+

10
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II.d. The Scattering Amplitude

Combining the unperturbed scattering amplitude with the perturbation, we have

£10,4) = Fu(f,9) +6F(8,9)

dr ((,{ 1. ) <| 1. t i eljy[fc)
[ g— kg = s I £4+1 = >) £ £0+1 2 N
k E 5 v 5 1Y e o £+1 %jy|k>

{30)

We have written the amplitude in a matrix form to emphasize its matrix structure in

angular momentum, we have

P (*é *EHI) (31)

tep e
with the off-diagonal elements due to the parity-violating term.

As mentioned before, the unperturbed amplitude takes the form

N ey I RS RN B <”%f”1’”“>
noe = FE((kley ) (e ko)) (40

iy <£+1 ajy|}}>
= fR-k)+id kxbg(k-E) . (32)

Here we will complete the reduction by showing that the perturbation can be written as

(e1541)

5F (0, §) f*f— Z(<k'é’% jv> ,<];:'.lf+1%]'v>) ( t;‘if tiﬁﬂ ) <e+1§jy

Ju

4
= —F- (fc + fc’) h (L k) (33)

with

11

e S O (B (8)

To perform the reduction of §F, we take the trace of the product of F wi « &.F.

We have

T (5-BF) = 2014k R a(ER) = L3
Jv
O P S T B T Js\ ooz /a1 ;
(Ei_gv'k)a-k(k |e§ i) d <€+l§-]u k>o-k<k |e§ ) Bt
L\ =z /s, Loy 1. s\ 2 5 /5 1.\,
(E+1-2—3y|k>a-k<k‘E+1§JV>t,_Hf (f+1§3yk>a-k<k ¢+ _-3-Ju>tf+,

Invariance of the trace under parity inversion permits us to discard the diagonal ter: - (those
involving ti and ti+1}. The off-diagenal terms {and the diagonal ones — whicl- nust be

zero) involve the simplification of scalar products of the form

z?:) &k (i}' le’ % ju>

To evaluate these, we first write the scalar product o - Eoas

E(Eéju

&

s 1 1 f B
sk = E S {feg - o)y O Vabisd (35)

Substituting into the sum and using the definition of the ]E 3 j1r> , we have

LR (k’le’ % 3-,,)

1.
Z<E§ju

8x L 1 0. 1. 1 1 ,
= T z (—)% (E:n§0 _','V)({"m"é-o ]V><§J§ — g ln,
Yo (R YR Yo (K) (36)

12




We next simplify the sum over Clebsch-Gordon’s:
ju) (f’m’ % a'lf

1 ¢ f ] }-
(2 + (=) 2 ()77 ( I3 )(

1 v g ]
ﬁ z (=)= (fm 5

Q| —
3 =
|

Q RO ke
h""—-——/
.

T .
ERI
3 =
e

saly ™o

(271 +1) . (.1 1 )
A L f—: = £ . 37
T (fmn| m) W 3112, 3 (37)

This leaves us with

‘;‘(%;m)& “~(i'1€’§;u> = —\Er %—eﬂ)‘ (e i —e’)
+ 3 {eminlem) Yo (k) Yi,(k) Yom () - (38)

Performing the remaining sums, we have

3T {tminllm) Yo (B) Vi (R) Yemd(R)

mm!
n

‘q. 12 . .
- (L(M) (010]0) 3 ¥ (k1Yo )

\ (20 +1)
1/2 , .
= (%) (€010£'0) %%1—)& (k- &) (39)

which, upon substitution, yields
i ik b
k> F-k (k’\f 5 ]v)
23 -+ 1) 1 4 U} )
- @ Beern w (E} 1555 2) (wtoleo) £ (i ) (40)

13

1.
(g

We note in passing that the Clebsch-Gordon coefficient is zere for the diagonal ' rms, i.e.
£=4{.

Tor the off-liagonal terms, £ =¢ + 1, we can reduce the expression further. sing the

identity
.11 (=)= 4 111
W (3_]1—; -rz') 010160) = Sl <,-. _1d -‘e’o) . 4
272 ( J3(20 + 1) 2212 )
We obtain
l - 1ah =7 /i r_]; . _ i+l (2J+1} : 1114 i i
S o (e} ) - o B G L) ).
(42)
Evaluating explicitly the tweo possibilities, we have
N L Y 1. {2i+1) {ir 3
S {egufk)ab(klerig i) = - S paER) @
r 1 (2_7+1) 3t I
%(E-I-lEJV )O’ k(k féjl!):———‘i—;r—.lpg,l(fc-k) (44)
We thus have
iz hF) = —2(04 B h(¥-B)
1 : ] .J i -I I
= — 2 L@+ (PR B+ P (F-F) - 49)
2

Recapitulaling, we can write the scattering amplitude as
; 1. & # et in }
i k'e— u),<k'1e+1- u>)( t w')
Z (< ! 2 7 LY. tia £+1: ! "] k)

FRR) pigkxRg (i B) -7 (B ) a(¥-F) (46)

F(0,¢)

il

14




where

78 = 12 B n )+t e (1)
F
- Eefes e npey @)
gk k) = %;[t§=e+%—tg=f_%] P B (48)
and

P 1 ; . A P

h'(k 'k) = % 1+3l:c-fc’ 2(23;1) t§+1E(Pf(k"k)+Pi+1 (kl'k)) . (49)
7
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III. THE CROSS-SECTIONS

The resulting spin-averaged elastic angular distribution is

do
dst

+ 2(1 + cos 8} |h{cos 8)*

while the spin polarization is

Tr (F & F*) [T(FF*)

s

=

s
I

- (" — .’E') (1 + cos#) Re(g{cos 8) h*(cos 9))]/ g%

and the spin rotation

G0.4) = 2 [ic x ¥ Re(f(cos8) g*(cos 0)) + (k + &) Im(f(cos8) h*(cos 0

We can now use the partial wave expansion to caleulate cross-sections directly

elastic cross-section, we have

= %TI(FF"') = }f(cos 0)|® + sin’ # |g(cos §)[*

2 [i} x k' ¥m( flcos 8) g*(cos 8)) (!} + fc') Re{f{cos#) k*(cos .

16

(50)

{51a)

(51b)

For the




4x? 11 N
e~ faurs | oo = 25 () (2 5)
Ju

(N s (feler N (ke b (S S\ (S e\ {eii]k
= (5) 2 (e ) (Hrerg ) - (5 E (s
- g\ (8 4 1ol |
(H tgiﬂ )(té té&l )( < 2JV| Rfc}) : = Z (23+1 [ ISJ| _isec-z-l! +1- |Sz+1| ““|Sz?:+1|2]

tf£+1 t£+1 t%l—u i;+1 <[Z +1 %]”
(25 + 1 ;2 Y ;g2 .2 T 27+ 1 C s ; '
= 5 2 Ol il + ] + ] - by B e e (S’ (51 51)) (59)
. Adding the two, we obtain the expected expressions for the total cross-section
4r ., . 25 +1 v ; : g > p p ross-sec
-G by B fre (i, (d+ )] (52
i

. . or = 0Op+oaBs
Defining the S-matrix as

s s{,ﬂ) (1+2it{ 2 thyy, ) 472 S 1 . P
- S ) (1 1) (53) T3 ({Eleg ), (kle+15 v))
( k2 ( 2 > < 2 )

St Sin ity 14+2ih,,
A ¢tjv|k
e [(5 5o )] (S
et Sti <2+153u k>

we can rewrite the elastic cress-section as

—

op = 555 B Nst st [t = 1+ S]]
J = 30 T [ Re(81) 1 e ()]
_%g_ﬁ,zi‘y;—J.g.Rﬂ(éH' (8i-1+80,-1)) . (54
; + 2. kz(%“) 2-Re {Sipt) - (s6)

Similarly, we find the absorption cross-section to be
The spin-averaged total cross-section is

[1 ~Re(S{) +1-Re(S)] - (57)

2%

17 18




The longitudival asymmetry coefficient,

1V. OPTICAL MODEL DESCRIPTION OF PNC IN THE SYSTEM : +22Th

) AT THERMAL NEUTRON ENERGIES
o7y — 07— .
ory +oro

. In this section we apply the theory developed in Section III to the scattering ¢ neutron
is

from **?Th at the low energies.
_ 2

We use for strong PC interaction the Madla: 1-Young
¢ = L+ Re (8440) )
k)

(58) optical potent.ia.‘l(n) which describes very well neutron scattering from actinide -uclei at

B, < 10 MeV. I is given by
In the next section, we shall use the above expressions for op, oaps, op and £ to

analyze the system n+2¥Th af thermal neutron energies, recently studied by the TRIPLE Ur) = — Vo fulr) = iWo fi{r)
collaboration.

f) = (1o 7Y

aj;

N—
Vi = 50.378 - 27.073 ( —Ag) — 0.354 Epan (MeV)

R = 12644 {m , a, = 0.612fm

9.265 - 12.666 (%—Z) 0232 Er,y + 0003318 E2, (Me\  (59)

Wo

Ry = 1256 AY® | ar = 0.553 +0.0144 Era, (MeV)

I3 1
Volr) = —5 V& = fLu(0)

V.o = 62 {MeV)
Reo. = 1.01AYE fm

ae = LT5 Im

We have calculated, o5, oaps, or and € for n+**Th in energy region 1 MeV <

E < 10 MeV, using the Ma.dland-YoungS) {M-Y) optical potential and a PNC

rtential,
Eq. 3, with a form facter »(r) given by
_ A1I3 -1
viry} = l erhell™7 [1 + exp (Ll——)] . {60)
2 a
rg = 1.25 fm a = 0.6 fm .

19 20




The parameter e; is properly adjusted to account for the experimental value of the longi-
tudinal asymmetry € (P%)

The cross-sections are shown in figure 1 vs. E, in the interval 105 MeV < E, < 10 MeV.
We see that in the region F, < 107° MeV, og is negligible compared to ¢aps, whereas in
the interval 1073 MeV < E, < 1 MeV it dominates. At F, >t MeV both cross-sections
are almost of equal magnitude.

In figure 2 we show the transmission coefficient for §1, P1 and P2 waves vs. B, .
At E, < 0.1 MeV the S-wave iransmission coefficient is several orders of magnitude larger
than either the P1 ot P3 ones, which are almost equal in magnitude. At E, > 1 MeV
the P-wave transmission coefficient becomes aimost twice as large as the S-wave one.

From the lransmission coellicients, we can evaluate the S- and P-wave strength functions
So and §;, which results (at B, =1eV)in

Sy = 7(s3) = 12x 107 (61)

2 L4 ELab {CV)
k?RZ
= 2 - {62
J(E2) = soxm @

In Egs. (28) and {29) T refers to the transmission coefficient and R in Eq. {29) is

[1 T(PY) 2 T(P})
3 5 VEn (&Y} | 3 27 B (V)

S =

taken to be 1.25 [m. The above values of S; and 5, are in reasonable agreement with the
experimental ones!2) given, respectively, by 084 £ 6.07 x 107* and 1.48 4+ 0.07 x 1074,
The value of 5, obtained in Ref. 9} with the Perey-Buck poten-tiallg), or equivalently
the Witmore-Hodgson potentiall®) is 5.29 x 10=%. The difference between the Wilmore-
Hodgson or Perey-Buck potential and the Madland-Young potential is clearly exhibited in
Fig. 3 which shows the corresponding strength functions vs. the mass number.

We have also calculated the longitudinal asymmetry, £, defined in Eq. (58). As in the

cross-section, € can also be divided into compound elastic, ez, absorption, aps, and total

21

er = £g + Eaps components. The results are shown in Figs. 4a and 4b vs. E,. The

values &7 at small FE, are shown in Fig. 4c. The values of er (P%) at E,=1¢eV

is €p (P%) = 6.7 x 107* (e; = 1}). Since the resonances in the n+*?Th system start

at E, = 8 eV, Fig. 5, (Ref. 15), we have to take the value of &7 at this energy. From
figure 4c we have er (P%) =237Tx10"* (E, =8, &; = 1). Thus, to account for the
experimental value of € (P%) in the resonance region (£, > 8 eV), whichis 8 % 6% 5),
we have taken for &7 = 307 % 240. This value is more than three orders of magnitude
larger than estimates based on meson-exchange models.

For the purpose of completeness, we show in figure 6, the PNC S-matrix elements
5= 1 and 85:3’2,1 vs. E, for g7 = 1. We see clearly that at E, < 1 MeV,
Sgﬁll % is completely dominant, as anticipated.

In Ref. 9), Koonin et al., obtained for &7 tﬂe value of 27. Their result was based on using
the Perey-Buc‘le) potential as already mentioned earlier. To exhibit the difference between
our resuft and theirs, we show in figure 7, the longitudinal asymmetry &, for g7 =1 and
E, =1eV vs. the mass number. We see clearly that whereas for 4 < 100, the P-B and
M-Y potentials give practically identical results, they differ appreciably in the heavy target
region. For A+ 232, the P-B yields ¢ (P%) =2Tx10" (E,=1 eV, ez =1). Thisis
about four 4imes bigger than our M-Y value. Note the conspicuous giant shape resonances
present in both calculations.

The variation of ¢ with £, is shown in fizure 8. The E;Y? trend is clearly seen
in both potentials. Koonin et al. took the value of & of the P-B potential at E, =1eV
and compared it with the experimental value. We, however, took the M-Y value of € at

B, =8 eV and compared with data. This is the origin of the difference in our extracted

value of ¢7.
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V. DISCUSSION AND CONCLUSIONS

In this paper we have treated the problem of parity-nonconservation in thermal neutron
scattering within the optical model. Taking for the OM potential a sum of a strong parity
conserving and a weak parity non-conserving (PNC} interactions, we have treated the PNC
piece within the distorted wave Born approximation. We have then calculated the average
cross-section and the longitudinal asymmetry for the system n4%? Th, recently studied
by the TRIPLE collaboration®). We have found that the PNC interaction is more thao
1000 tirnes bigger than estimmates based on meson-exchange models. In this respect we
compietely agree with the conclusions of Koonin, Johnson and Vogelg), who found a factor
100 enhancement using a different optical potential.

The origin of this large discrepancy is not fully understood. At most, we conjecture a
combined ruclear structure effects involving a doorway mechanism of the type discussed by
Auerbach®) and a strong modification of the PNC interaction inside heavy nuclei. Since
the PNC interaction involves products of strong and weak meson-nucleon couplings, medium
changes of both, following the reasonings of Brown and Rholﬁ), could give rise to rather
large overal! medium renormalization. Clearly, only detailed calculation would settle the
question.

As a final remark, we mention that the longitudinal asymmetry exhibits giant shape
resonances both in energy and in mass number. This should help plan future experiments
when ¢ could be larger. Furthermore, a careful measurement of both the spin polarization
and spin rotation at very small angles, where the fA* term in Egs. (51a) and (51b) become

appreciable, may supply more information about the PNC interaction.
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FIGURE CAPTIONS

Fig. 1.

Fig. 6.

Fig.- 7.

¥ig. 8.

The average cross-sections vs. F, for n+?*? Th, calculated with the Madland-

Young potential. a) Regular energy scale, b) logarithmic energy scale.
The transmission coeflicients T (5%) , T (P%) , and T (P%) vs. E, .

The singlet, Sp (1a), and triplet, S, {1b} strength functions vs. the mass number
A. The full curve is obtained with the Wilmore-Hodgson (Perey-Buck) poiential
while the dashed curve is obtained with the Madland-Young potential. The neutron

Lab. energy is £, =1 eV.

The lengitudinal asymmetry coefficient ¢ (P%) vs. En. (See text for details).

a)+b) 1 eV < B, <10 MeV, ¢} 1 eV < £, <1 KeV.

The n+2*Th resonances. a) S-resonances, b) P-resonances, c¢) all resonances.

(From Ref. 14).
The PNC S-matrix elements, |S§jlf2| and lS{Zsﬁl vs. £,

The asymmetry coefficient e (P%) for e7 =1, E,=1eV vs. A. Details of

curves are the same as in Fig. 3.

The fongitudinal asyminetry coefficieat ¢ (P%) for g7 =1, A =232 vs. the

neutron Lab. energy. Details of curves are the same as in Fig. 1.
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