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Abstract — Aifter a short introduction into the theory of dynamical systems and chaos,
recent applications Lo Plasma Physics are reviewed, including both Hamiltonian and

dissipative typical systems describing plasma phenomena.

Introduzem-se sucintamente elementos da teoria. de sistemas din&micos e caos deterministico
e resenham-se aplicages recentes a Fisica de Plasmas. Consideram-se tanto sistemas Haril-

tonianos como sistemas dissipativos descrevendo fendmenos tipicos em plasmas.

1. Introduction

Plasma Physics shows a very rich variety of non-linear phenomena and instabilities (1)
which are already present in several imi:ortant applications including Thermonuclear
Controlled Fusion, Solar Physics, and Astrophysics. Because of this richness, Plasma Physics
is an appropriate laboratory to discuss some of the concepts from the theory of dynamical
systems and chaos. This discussion is the main goal of this review paper.

- A growing interest in non-linear studies has been observed in the last decades. MNew
methods and concepts, both in conservative (Hamiltonian) (2,3) and dissipative (4,5) sys-
tems, have been introduced. The central feature of the new developments is that deter-
ministic chaos can be already found in syste.l:ns with at least three degreé of freedom. This
fact has significantly changed the previous picture of turbulent processes, particularly in
Physics of Fluids.

Non-linear Hamniltonian systems behave as integrable systems and, under certain con-
ditions, show chaotic or stochastic behavior. Examples of this last dynamics in Plasma
Physics are the motion of charged particles in the presence of electric or magnetic fields and
the stochastic behaviour and diffusion of magnetic field lines.

Most of the differences concerning previous approaches are found within the domain
of dissipative systems. For these systems, a mathematical theory of chaotic processes was
established, in particular intreducing the concept of chaotic attrector (4,5) and the associated
notion of sensitive dependence on initial conditions. The study of topological properties
of chaotic attractors reconstructed from experimental temporal series has giving rise to an
alternative interpretation of turbulent processes, where coherent dissipative siructures would
play a central role. The study of the order-chaos transition in dissipative systems has led
to the identification of sequences of bifurcations, including certain universal aspects, which

have been observed in several experiments scattered through different disciplines. Examples

of dissipative chaotic dynamics in Plasma Physics are provided by experimental studies of




routes to cihaos, the non-linear coupling of waves, and the low dimensionalities associated
with broadband chaotic experimenial signals.

The complexity of the subject and the variety of applications do not permit an exhaustive
review of the topic-title. I restrict myself to a general view of the subject considering specific
topics. In Seclion 2, the main ideas related to the above referred developments are shortly
presented. In Section 3, some recent applications to plasmas .in Hamiltonian dynamical
systems are discussed, including the stochastic behavior and diffusion of toroidal magnetic
field lines, and the chaotic guiding-centre diffusion of charged particles moving around a
single chain of magnetic islands in the presence of a single prescribed low-frequency elec-
trostatic wave. Section 4 reviews the domain of dissipative dynamical systems discussin.é
results for routes to chaos in laboratory plasmas, correlation dimension for electron den-
sity fluctuations measured in Tokamaks, non-linear coupling of waves, and certain analogies
between magneto-hydrodynamic interchange instabilities and the Rayleigh-Bénard convee-
tion. Conclusions are presented in Section 5.

The preseut review does not exhaust the subject. Its descriptive nature, opposed to
rigour, is intentional. The text below and the references in fine intend to give to the non-

-specialist Teader an idea of the developments as well as suggestions for further studies.

2. Fundamentals

Electromagnetism, Quantum Mechanics and Relativity have dominated Physics during
most of this century. The range of applicability of these disciplines was extended, with
appropriate techniques in perturbation theory, to include non-linear phenomena. In spite
of the success, lincarization does not answer all the questions. Several important problems,
e.g., the asymptotic stability of dynamical systems, were left without solution,

The tradition of dynamicat system studies comes back to Henri-Poincaré (1854-1912).

Inspired by problems in Celestial Mechanics (6), Poincaré noticed the utility of the study

of topological st:.ructures in the phase space of dynamical trajectories. G.D. Birkhoff (1884~
1944) (7) gave important contributions to the Ergodic Theory and the foundations of
Statistical Mechanics, reinforcing the theoretical basis of Poincaré. However, only during
the last thirty years the “Science of the Non-Linear” has been established with a certain
autonomy. A significant role for this transformation was played by different disciplines, as
the Theory of Critical Phenromena, Quantum Optics and Fluid Dynamics.

The theory of dynamical systems has been developed along different directions. One di-
rection, related to gquast-integrable systems, is associated with the so called KAM
theorem (8,9) (stated by Kolmogorov, demonstrated for fluxes by Arnold, and for maps by
Moser). This theorem says that multiple periodic systems, obtained by a sufficiently small
perturbation of an integrable system (for this the orbits are always over smooth surfaces, f.e.,
invariant tori determined by the constants of motion), have trajectories over the invariant
tori of the respective integrable system, once the initial conditions are sufficiently far away
from the resonances of the system. These invariant fori are destructed by sufficiently
large perturbations. Following Chirikov (10), the practical method to estimate the per-
turbation amplitude necessary for the destruction of the invariant surfaces is the overlapping
of resonances. When this overlap occurs, regions of stochasticity {resonant layers) near the
separatrix are formed, and global stochasticity appears when primary resonant layers meet
each other.

In order to study dissipative dynamical systems, Huxes and maps with contracting
phase space volumes, new concepts have been introduced: the strange (chaotic) attrac-
tor {11,12), and its corollary, the sensitive dependence on initial conditions {d.i.c.). Lorenz,

a meteorologist interested in the problem of weather forecasting for long times, was the

* first researcher to observe that intrinsically chaotic motions can be found in dissipative de-

terministic systems (13). Lorenz considered the equations associated with two-dimensional
thermal convection to conclude for the impracticability of such a prevision, because of im-

precisions in the determination of initial conditions.




Chaotic behavior can already be observed in systems with at least three degrees of free-
dom. This fact changes radically the picture of the order-turbulence transition in fluids:
turbulent behavior can also be reached in systems with dynamics completely represented in
a low dimension phase space. The traditional picture of this transition considers turbulence
as a hierarchy of instabilities. According to the scenario proposed by Landau (14), a succes-
sion of unstable modes, with incommensurable frequencies, appears as the control parameter
{typically a parameter proportional to the driving force of the system, e.g., voltage, tem-
perature, electric or magnetic field; in Fluid Dynamics: Reynolds number, Prandt] number,
elc.) is increased. As a consequence, the system will present more and more complicated
patterns, but not strictly chaolic, since the correlation time i¥ finite for a finite number of
waves. However, Landau’s model does not agree with exi)eriments. It does not give the con-
Linuous spectra which is observed in fluid turbulence, one of the features of chaotic dynamics,
and does not exhibit d.i.c., another feature of deterministic chaos.

The study of routes to chaos has its roots in the theory of differential equations (theory
of bifurcalions) and constitutes the so called geometric theory of chaos {15).

As aresult of the variation of the control parameter in a dynamical system, the associated
asymptotic motion may change. The values of the control parameter where there is a change
of asymplotic regime are called bifurcation points. Sequences of bifurcations may be seen as
scenarios. The problem of the possible scenarios or routes to chaos is basically to understand
how a periodic regime can loose stability. Depending on the way this occurs, and the type of
bifurcation involved, the dynamical behavior that will substitute the periodic regime (now
unstable) will be different.

The three main scenarios for the transition order-chaos are the Ruelle- Takens scenario,
via gquasi-periodicity, the Feigenbaum scenario, via period doubling, and the Pomeau-
-Manneville scenario, via intermittency.

The Ruelle-Takens scenario (11,16) is a route to chaos based on bifurcations of tori. It

includes: (a) initially the system is in a stationary state (e.g., laminar flow in a fluid); (b) for

a certain value of the control parameter, the system experiences a Hopf bifurcation (15) and
starts to oscillate with frequency f;; {¢) by further increasing of conirol parameter the sys-
tem experiences a Neimark bifurcation (15) and oscillates with two independent frequencies,
fi and f> ; (d) by an additional increase of the control parameter, there is a second Neimark
bifurcation producing an additional frequency fs. Then, the forus T° resulting from this
last bifurcation may, under general conditions, become unstable, with the appearance of a
strange {chaotic} attractor and a broadband continuous spectrum.

The Feigenbaum scenario (17,18) to chaos is the best known and studied scenario, being

supported by several experimnental evidences. The archetype for the study of this scenario

is the unimodal maps ‘with negative Schwarzian derivative (4). These maps show similar .

patterns of bifurcation, and chaos is reached through an infinite cascade of flip {period
doubling) bifurcations (15). The values of the control parameter p for successive bifurca-
tions form a rapidly increasing convergent series towards an accumulation point po, (not
universal) which can only be obtained numerically. Beyond this point chaos appears. Em-
bedded in the chaos there are windows of periodicity {also odd periodicity) and inverse
cascades (39).

Dynamical systems with Feigenbaum scenario display certain universalities: scaling laws
for the bifurcation points g, (n =1, 2,..) and for the distances d, between the fixed
points nearest to the critical point (maximum of the unimodal map) (13). The following
scaling laws are verifyed, g, = g, —cte § ", d,fd.31 = —a (n > 1), with the universal
values § = 4.669201609... and o = 2.502907875... for systems showing the Feigenbaum
route to chaos. There is an analogy between these scaling laws and the theory of phase
transitions. Using the renormalization group terminology, the constants é and o car be
considered as “critical ezponents” at the accamulation point e -

Pommeau and Manneville (20) proposed three mechanisms for the appearance of chaos,
which are related with intermitiency. Intermittencies are characterized by a signal which is

regular, periodic or guasi-periodic, during a certain time interval, and evolves to produce,




in a short period, a generally chaotic *burst”. This burst is followed by a phase of regular
oscillations interrupted again by another burst of a periodic oscillations. This patfern repeats
continuously. The global chaotic behavior is given by the burst, but mainly by the random
distribution of the lengths of the regular periods.

Other scenarios to chaos exist (21). They have in common the fact that chaos is initiated
by bifurcations. The different scenarios do not contradict each other; instead, they develop
themselves concurrently in different regions of the phase space (22).

The characterization of chaos found in experiments is an important problem in the theory
of chaos. The level of complexity of a dissipative system can be classified studying the
geomelric structure of the associated attractor. Dissipative systems show{ng chactic dy-
namnics, except rare cases, show a sirange attractor (chaotic, i.e., with di.c.) with frectal
(i.e., non integer) dimension (23). Classical methods {Fourier transform and auto-correlation
funclions) do not. permit the distinction between deterministic chaos and white nojse. The
use of Poincaré sections (4,15) or phase portraits is useful only for dynamics completely
represented in a phase space with dimension less than or equal to 3.

The theory of dynamical systems has provided new tools to analyze experimental chaotic
temporal series. When dealing with experiments, it is generally not possible to have access
to the m sirnu.ltancous signals necessary to describe the trajectory in the m-dimensional
“real” phase space. In fact, the temporal depéndence of only one scalar variable z{t) is often
monitored. A theorem, due to Takens (24,25}, permits the reconstruction of the dynamics in
a pseudo-phase space, in general topologically equivalent to the trajectory in the real phase
space.

Two general approaches have been applied to the description and characterization of
strange attractors. The metrical approach is related to dynamical information and the fopo-
logical approach is based on the properties of periodic orbits which are embedded in the
strange altractor. Metric properties provide information about expansion rates of initially

near trajectories {Lyapunov exponents (11,26)) and about the rate of production of infor-

mation in the system (I.(olmogor‘ov-Sina:' entropy (4,27)}). One positive Lyapunov exponent
means d.i.c. The Kolmogorov-Sinai entropy is a measure of the global degree of chaos in the
system. Deterministic chaos is characterized by a non-zero finite Kolmogorov-Sinai entropy.
The metrical characterization also includes the statical-statistical approack, where global
informations concerning the local structure of attractors are obtained. In most of the cases,
chaotic attractors are characterized by a fracial (23) or multifractal measure (28), which
can be analyzed using the gemeralized dimensions (28,29) or the spectrum of singularities
(28,30). The metrical characterization is invariant under coordinate changes but depends
on control parameters. The topological approach is independent of coordinate changes and
remains invariant under variation of the control parameter,~It provides information about
the organization of the strange attractor and uses the symbolic dynamics (5,31} as a basic
tool.

There is a great variely of algorithms (32) to analyze experimental signals. These
algorithms do not constitute a precise body. The application to experitnental data involves
certain aspects not completely elucidated and, apparently, optimistic error estimates.

These algorithfns include procedures to caleulate the spectrum of Lyapunov exponents {33),
the Kolmogorov-Sinai entropy (29), the correlation dimension (generalized dimension of order
two) (29), and the spectrum of singularities (30,34). Noise reduction and reconstruction
of the dynamics from temporal experimental series are topics related to the problem of
chaos characterization. However, in spite of some proposals in the literature (35,36), these
problems are not yet completely solved. ‘

This short résumé of fundamentals in dynamical systems and deterministic chaos theory
is very incomplete and fragmented. For those interested in additional details I suggest the
following books, classified according to the degree of complexity in elementary (15,19,37,38),
intermediary (2,5,27,39-43}, and advanced {3,46,47).




3. Plasmas as conservative systems

The structure and geometry of magnetic fields in confined plasmas are determining
elements of the behavior of these systems. The transport of charged particles along magnetic
field lines 1s much faster than across them. The destruction of the magnetic surfaces and tlie
formation of regions of stochastic field lines, as a consequence of external currents as well as
anto-consistent currents, produces the degradation of confinement.

These studies have experienced remarkable development through the use of techniques
from the theory of low dimension dynamical systems. Historically, Kadanoff (48) showed
that Feigenbaum’s ideas concerning renormalization, in the context of period doubling, could
be a‘ppli-(’:d to the problem of the existence of confining magnetic surfaces. Th.i's programine
was subsequently carried out by Mackay (45).

In systems with arisymmetric {oroidal geometry, like Tokamaks, the Hamiltonian
describing the magnetic field lines is integrable (50,51). When the toroidal component exists,
it is convenient io introduce, as a function of the position 7, the following natural magnetic
coardinales: the toroidal flux function é(7); the toroidal angle £{F}; and the poloidal
angle 8{r).

The magnetic field can be writlen, in the contravariant form, as {(51)
BGF) = VpxVI+VEX Ve, ,
where 3, = ,(F) is the poloidal flux function. The field line equations are given by

o ay, &b _ o, )

@& By de T W
They ave canonical equations of motion for the Hamiltonian 1, , where { is the
temporal variable. For axisymmetry, 3 is independent of £ , and the magnelic field lies
ou bhe so-called magnetic surfaces given by = cte, which are tori
The ficld lines can be studied using Poinearé sections (2,4); the problem of following field

lines can be so reduced to a map of the surface of section on it { Poincaré map). For integrable
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systerns the map so generated is conservative, which is equivalent o area conservation of

- the Poincaré invariants for Hamiltonian systems. Qrbits of field lines for perturbed non-

-axisymmetric systems can also be reduced to maps using an analogous procedure. If the
perturbation is not very large, the Poincaré map is similar to the non-perturbed map.

As a consequence, it is possible to identify field lines with orbits of a dynamical system
in a three-dimensional space. Reasoning in this way, the behavior of field lines is so generic
as the motion of particles in a system represented by an Hamiltonian with 11 degrees of
freedom. Also, another problem, the guiding-centre molion of particles in a Tokamak, can
be studyed using methods from the theory of dynamical systems.

Chaotic behavior can be found in magnetic field lines or in guiding-centre motion. This
stochastic behavior can be: partial, for small perturbations, when some magnetic sur-
faces around the rational surfaces are eventually destroyed and substituied by regions of
slochastic field lines; or, global, when these regions are sufficiently large o produce overlap
{Chirikov eriterion (10}), producing large scale stochasticity. Additional details, in an
introductory level, can be found in Lichtenberg and Lieberman {2,52). The connections
among renormalization, period doubling and destruction of magnetic surfaces are discussed
by Greene (53). The use of non-canonical phase space coordinates, in the context of the
description of magnetic field lines fluxes, isrconsidered by Littlejohn (51). The diffusion
of magnetic field lines in toroidal geometry and the chaotic diffusion of guiding-centres are

discussed, as examples, in the following Section.
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3.1, Stochasticily and diffusion of magnetic field lines

The fact that magnetic field lines can become stochastic as a result of the overlap of
two or-.morc chains of magnetic islands is a result known for more than twa decades (55).
In Tokamaks, this occurs as a result of two helicoidal resonant perturbations or only one
perturbation with loroidal effects,

In the last years, several applications of these ideas have been done, in particular to
the pro.l}lcm of confinement degradation with the increase of power in Tokamaks. Rebut ef
al. (56) propese a theoretical model for this degradation. The topology of the magnetic
ficld used by the authors is represented by a chain of magnetic islands, resulting from the
representation of the magoetic field in a stab geometry with torsion. By relating the flux of
heat with the magnelic perturbation level (large poloidal made numbers), they conclude that
significant, power can be transported through the plasma by low level magnetic fluctuations,
. The arthors conjecture also, as a possible mechanism for the self-maintenance of the magnetic
islands, the difference of resistivity belween chaotic zones and magnetic islands, as a result
of the magnetic field line trajectory and the presence of fast electrons in the chaotic zones.

Caldas et af. (57,58) consider the effect of perturbative resonant helicoidal currents
{produced by external helicoidal windings) in the topology of the magnetic fields in Tokamak
. ptasinas. These cffects can be used both to produce helicoidal perturbations to inhibit
undesirable plasma oscillations or to produce effects of magnetic ergodic limiter, In the first
case, 'fm.' helicoidal currents much smalier than the plasma current, it is observed partial

stochasticity in the Poincaré section, with the appearance of chaolic regions between the

- magneticislands. Tor the ergodic magnetic limiter, the integration of the perturbed magnetic

field Tines gives maps that show intermittent transition between chaotic and guasi periodic
 TeEINes,

The Llfmlial diffusion of magnetic ficld lines in toroidal geomeliry is considered by Men-

‘ donga (59} in a recent. paper. The originality of the anthor is to extend a previous formalism

1t

(renormalized theory of turbulence), used by Kromunes ef al. (60) and Misguich et . (61),
to study the guiding-centre diffusion of charged particles in magneto-plasmas in presence of
broadband electrostatic turbulence, In Mendonga's formalism, the guiding-centre equations
are essentially substituted by the magnetic field line equations (eq.(1)).

The renormalized theory of turbulence uses Gaussian-like approximations, inclueding
cumulant expansion {up to second order) and the Corsin hypothesis (61). These approxima-
tions are employed by Mendonca (59), together with the hypothesis of stationary and poloidal
homogeneity of the turbulence, to derive a general expression for the diffusion coefficient of
the stochastic field lines. This expression is valid both in the limits of small and large torsion
of the magnetic field. For small torsion the result agrees with the guasi-linear approximate
solution. The author also discusses the conditions to reduce the exact differential equations
for the field lines into discrete maps; the diffusion coefficient is written as a discrete map
that reduces to the standard map (2} in an appropriate limit.

All these results in Mendonga’s paper refer to situations where the magnetic field lines
are already stochastic and the diffusion process occurs in extensive regions of the toroidal
configuration. It is a stringent limitation concerning applicability of the results. In effect,
for low level magnetic field fluctuations, the stochastic field lines are confinred in thin layers
between magnetic islands and the previously calculated diffusion coefficient has no sense.
In order to overcome this limitation, the author proposes an alternative definition for the
diffusion coefficient, valid also in the transition regions between local and global stochasticity.

The pertinence and efficiency of this definition should still be verified.

3.2. Chaotic diffusion of guiding-centres

The motion of charged particles can become chaotic in the presence of a few electrostatic
waves. Zalavsky and Filonenko (62), and Escande (63) have shown that two electrostatic
waves are sufficient for this purpose. In this case the system is described by a 11 degrees

of freedom non-autonomous Hamiltonian.
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For the guiding-centre motion, two electrostatic waves propagating in the plane perpen-
dicular to a strong magnetic field are not sufficient to produce chaotic motion {64); three
plane waves are seen to be necessary (65).

Weyssow ef al. {64) consider the problem of guiding-centre diffusion in the presence of
an electric and a magnetic field. The fields are given by a model which assumes a chain of
magnetic islands and only one low-frequency electrostatic wave propagating perpendicular
to the non-perturbed magnetic field. For this last field a slab model with torsion is used
as a local approximation for the standard model (66) for the toroidal magnetic field. The
magnetic islands are introduced in the slab model with torsion as radial perturbations of
the magnetic field. The electrostatic wave is chosen in order to be localized near the same
rational surface as the magnetic island. It can be thought as a drift weve propagating in the
plane perpendicular to the magnetic field with an angular frequency and wave number near
the maximum of the spectrum. Experimental parameters from TFR and JET Tokamaks
are used both for the mmaguetic island and for the electrostatic wave. The authors include
in the guiding-centre equations the Ex B drift, the parallel motion, and the curvature
and magnetic gradient drifts. For low frequencies compared to the cyclotron frequency
the polarization drift is not taken into account. Also, as a consequence of the assumed
ordering, the curvature and magnetic drifts are seen to be of higher order. After these
approximations it results a 1% degrees of freedom Hamiltonian, which is the paradigm
Hamiltonian found in previous works (62, 63, 67). However, as the authors recall, their
siluation is different. Zaslavsky and Filonenko (62) consider a charged particle in the field
of two clectrostatic waves, and Rochester and Stix (67), magnetic field lines with helicoidal
magnetic perturbations.

The main resull of the paper by Weyssow cf al. is the numerical verification that the
guiding-centre motion in a chain of magnetic islands (slah geometry) ean become chaotic in
the prescnce of a single low frequency electrostatic wave. It is also verified that the chaotic

diffusion is sefective in the space of velocities; it is important mainly for ion velocities greater
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than the thermal velocity, and for practically all the electron population, except those with
very low parallel velocities (relativistic corrections were not taken into account). The authors
conjecture a mechanism for diffusion contributing to the electron and suprathermal ion radial
losses. The idea is that the diffusing process can be repeated in the radial direction through
successive chains of magnetic islands in the radial direction; the resulting radial diffusion

would contribute to the radial electric field and plasma rotation.

4. Plasma as dissipative systemns

{.1. Routes to chaos

Scenarios for the transition order-chaos have been observed in several experiments in
Plasma Physics.

Boswell (68) considers natural oscillations in an electron beam propagating parallel to a
magnetic field in a low pressure gas. The beam current I is the control parameter. Chaos
is observed after & sequence of period doublings in the amplitude of oscillations. A period-
-three window, with the period-six bifurcation, is observed increasing I. The author mimics
the oscillations with a quadratic map, F(z,) = C—z2, that reproduces the main features
of the observed pattern.

Bora et ol. (68) report period-doublings in non-linear ion-cyclotron and lower-hybrid
waves driven by a radio-frequency field near the lower hybrid frequency in the toroidal
experimental device BETA. Using the antenna power as control parameter, a few period-
-doublings are observed, giving § = 4.138 for the Feigenbaum constant (6. = 4.66).

Braun et al. (70) study dc-excited discharges in low pressure discharges. The control
parameter is the potential across the tube. The current through and the light from the dis-
charge show period-doublings, chaotic behavior and windows of periodicity, corresponding
to the typical dynamics found in unidimensional unimodal maps, like the logistic map

F(z,) = pza(l —=z,). It is also observed a scenario typical of two-dimensional maps,
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like the Henon map (4), where a period-doubling cascade is interrupted by a bifurcation
with period multiplied by integers other than 2 (mainly 3 or 5). The authors conjecture the
possibility that one-dimensional maps would not be sufficient to model such discharges,

Cheung and Wong (71) describe chaotic behavior in a pulsed plasma discharge in a large
non-magnetized device. Monitoring the total current collected in the dischazge camera, two
scenarios Lo chaos are observed. The first, through the raute T — IC — 3T — 2T,
where T is the period of the pulsed discharge (= 27 /w), IC means an intermittent chaotic
state, and 3T and 27' mean, respectively, periods 3 and 2. The second scenario is the
Feigenbaum route: three successive bifurcations (T' — 2T — 4T) give § = 44 £0.3
and o = 23402, which are in agreenient with the values found by Feigenbaum.”

lu another paper, Cheung et al. (72) use a steady-state unmagnetized plasma device,
consisting of an electron-emitting cathode at one end and a current-collecting anode at
the other end, to observe intermittency in the anode current (the voliage is the control
parameter). This intermittency seems to be of type-I (most probable laminar lengths are
the longer), according to the terminology introduced by Pommeau and Manneville {20).
Such indication foliows from the experimental verification of low [requency noise (f~21£02
for f>» 1kllz) at the thresheld of the chaotic busst. Such a scaling was also observed in
nunierical simulations showing type-I intermittence, where Lorentzian spectra with scaling
law % were also observed.

Jing et al. (74) use a multipolar magnetic device o study a steady-state plasma produced
by a dc discharge in Argon. The conirol parameters, which may be varied one at a time,
are the gas pressure, the filament current and the discharge voltage. They monitored the
clectron density N, , the plasma potential V,, and the discharge current I;. By varying
the voltage, Lhe authors report sequences of period doublings with the appearance of limit
cycles inthe I, x N, and N, x N, phase spaces. Similar results are obtained by Qin
¢t al. (75) in a plasma of the same type. In addition to period doubling in the principal

sequence and evidences of intermittent behavior, the authors find period doublings in odd
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period windows; the period-three window is seen to be the larger, shoﬁiﬁg resemblance with
the bifurcation diagram of unimodal one-dimensional maps.

In spite of the interesting results reported above, showing a very rich dynamics, additional
efforts should be done in order to model the experimental data. In particular, the re-
ported dynamies that resemble two-dimensional maps (70,71) give important informations
that should be taken into account. Recent techniques (35,36}, used.in the context of
dynamics reconstruction from temporal experimental series, can be envisaged as attractive

tools to attack this problem.

4.2. Correlation dimension

The statistical mechanics of turbulence is a very complex topic. In spite of the impor-
tance of turbulence in general, in particular in electromagnetic media, usually associated
with practical problems like anomalous diffusion in magnetic confinement devices and astro-
physical plasmas, there is no satisfactory theory for fully developed turbulence. The quasi-
-linear approximations, in spite of giving the threshold for several instabilities, fail in several
experimental situations of interest.

The theory of deterministic chaos gives alternative tools to analyze turbulent processes.
In particular, given an experimental temporal series, and a,dmjtting':the existence of an
associated attractor, the Haussdorf dimension Dy (fractal dimension) gives an estimate
of the complexity of the turbulence, corresponding, in principle, to the smaller number of
degrees of freedom necessary to describe the dynamics.

However, the available algorithms to determine Iy are problema.t:ic for Dy > 2. The
Haussdorf dimension belongs to an infinite series of generalized dimensions (28,29) D,
g€ R. The knowledge of the complete series corresponds to the full cl.iara,ct,erization of the
attractor. It was shown (76) that the dimensions D, are ordered accord?ng to D, € Dy,

¢ > q, where the equality is valid for homogeneous attractors. It follows that Dy is the

upper bound for the D,.
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The correlation dimension Dz. = v is available through the utilization of an algorithm
due to Grassberger and Procaccia (G&P) {25,29). In general » is very near to D,.

The G&P algorithm, when applied to experimental data, includes initially the Takens
reconstruction of the attractor (24). One constructs a set of d-dimensional vectors {E:} ,
with £ = {zld), (i +7), ..., s{i+(d — 1)1}, where the (i) represent the experimental
time data and 7 is a lime step of order of the signal auto-correlation time. The embedding
dimmension d is chosen sufficiently high in such a way that the phase space merges completely
the attractor.

The distribution of points in the reconstructed trajectory (topologicaly equivalent to the
“real” attractor) can be characterized by a correlation t'nteg.;nl C4(l), which is proportional
to the number of Euclidean distances between two points of the trajectory smaller than a
correlation length !, ie, CYl) = H T 7,00~ jé: - E:,]), where # is the Heaviside
function and N is the number of vectors t:: |

In general, C*({) shows, in the limit ! - 0, N — oo and d = oo, a scaling law
Cé(l)al*. Then, the slope of In[C?(1)] x In(l), for sufficiently high N and d, converges
to the dimension » {or increasingly embedding dimensions.

In practical applications N is finite. This imposes statistical limitations for the re-
construction at large embedding dimensions. In addition, experimental noise strongly re-
duces the efficiency of the G&P algorithm. Other limitations of the G&P algorithm are
discussed elsewhere {25,32). In particular, to guarantee convergence to a dimension v it is
necessary that d > 20+ 1 (25,29). As a consequence, the G&P algorithm does not permit,
m most of the practical situationé, to compute dimensions larger than 7 or 8.

Before continuing, a word of caution should be given. The study of dissipative dynamical
systems has permitted the construction of a theory for the order-temporal chaos transition.
This theory atlows the reconciliation of determinism and stochasticity in systems with a small
nutiber of degrees ol freedom. However, the application of this theory when several modes of

the system are in interaction is less evident. The Ruelle- Takens theory (11) emphasizes the
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instabilities of tl;ajectorieq in a strange attractor merged in an abstract low dimensional phase
space. In Hydrodynamics or in electromagnetic turbulence, the expression “turbulence” has
a precise meaning: it characterizes regimes that show random fluctuations both in time and
in space. As suggested by Monin (77), the approach in terms of dynamical systems that
assumes the projection of the dynamics in a small number of effective modes, perhaps does
not take into account the loss of spatial coherence. The study of temporal chaos for systems
with spatial order does not impose, in principle, any fundamental problem. This is not the
case when temporal chaos and spatial disorder are simultaneously present. For these cases,
procedures like the G&P algorithm should be regarded with cautioa.

There are several applications of the G&P algorithm to fluctuating signals in Tokamaks.
However, these signals were obtained in different devices and using different diagnostics.
Several physical variables were analyzed, e.g., magnetic field fluctuations (78-82), sawtooth
activity (79), and density fluctuations (79,83-86). In general it is not possible to draw a
definitive or unique picture from these papers.

However, some of the results presented in the literature reinforce the idea that low
dimensions can be found in fluctuating signals measured in Tokamaks. In particular, the
correlation dimension of electron density fluctuations at the edge of the Tokamaks TBR-1
(86), TFR. (84) and Tosca (79) show that 24 < v < 5.0, depending on the analyzed
signal. Magnetic fluctuations show that 2.0 < » £ 7.0. In some cases, no convergence was
observed up to embedding dimensions between 8 and 10, which means that v 2> 10.

A conjecture concerning the interpretation of the low dimensionalities found for the
density fluctuations was recently advanced (86).

These low dimensionalities may be consistent with the existence of coherent structures
(density blobs) together with waves at the edge of the plasma. This picture represents
a more ordered configuration, where self-organization would play a relevant part in the
dynamics of the process. It emerges from the theory of dissipative density-gradient-driven

turbulence in Tokamak edges (87). According to this theory, the basic constituents of the
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steady turbulent state are broadened collective resonances, rather than waves or eigenmodes.
The collective resonances are driven by emissions from localized density fluctuation elements
(blobs) produced by gradient relaxation and destroyed by the relative E x B convection
and parallel collisional diffusion. The density blobs resemble eddies in a turbulent fluid,
rather than perturbations associaled with linear waves. Hence, the stationary turbulent
stale is viewed as a “soup” compressing waves and eddy-like blobs, which can be thought of
as coherenl micro-struclures.

Large scale coherent structures (blobs) with a long decaying phase were recently observed
(88) in an implicit simulation of non-linear drift waves in a magnetic field with torsion. More
recently, lizuka ef al. (89) use a linear Q»machine to study the non-linear interaction of flute
oscillations with a convective cell. The interaction resembles a self-organization process:
energy from the inherent waves, as well as from the cells, is transferred to modes with lower
mode number; an inverse cascade in the spectrum occurs and an extended structure appears.

‘Some data for density fluctuations in the scrape-layer of Tokamaks continue, however, to
show high dimensionalities. Additional theoretical and experimental efforts should be done
in order to answer some questions: (a) are these high dimensionalities intrinsic to the signals,
indicating a usual turbulent behavior?; or, (b) are they spurious in the sense that they were
introduced by external factors like inappropriate frequency of sampling, electronic noise or
filtering processes?

Assuming that external factors are unimportant and that the G&P algorithm gives
trustable results, even for spatio-temporal chaos, a question remains: why some signals
are “morc complicated” (higher dimensionalities) than others? A possible interpretation for
this result, in the case of edge plasma, is that the plasma experiences a sort of competition
between the tendency toward self-organization and more complicated turbulent dynamics.
Different signals, associated with the same physical variable, may have different histories.
Some of themn may evolve to more coherent structures, while others may not. Also, we are

not able to control when the presumably more coherent structures appear. Some signals may
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have been analyzed at a stage when they were “less turbulent”. In other cases the analysis
has been performed at a more turbulent sta;.ge. This complex dynamics results either in low
dimensionality, with a picture related to a small number of degrees of freedom, or in high
dimensionality, manifested in non saturation at low embedding dimensions. There remain,
however, some doubts about the correciness of the application of the G&P algorithm to

processes showing spatio-temporal chaos.

4.8. Non-linear coupling of waves

Relatively simple dissipative systems may show a rich mathematical structure. This
richness is found in a great variety of experimental and theoretical sityations.

An interesting example is given by the non-linear coupling of a linearly stable high-
-frequency wave to a smaller frequency damped wave, as considered by Meunier et ol (90)
and reported by Maschke (91). Assume that both waves are characterized by complex
amplitudes dy; = |Aoy] exp(i dos), real frequencies wq,;, growing rates v > 0 and
m1 < 0, and are non-linearly coupled through the real coefficient V. Assume also that the

waves satisfy the coupling equations

dt

fdA
t(—dt_l —‘YlAl)

where Aw = wp—2uw; . Changing variables (90), the following dissipative dynamical system

i(ﬁ—mo) = VA,

VAU A; e-—iﬁwt ,

is obtained:

dX

= = -~ Z 42y
T X 4 aY +
¥ ¥ _ax-—2xy
dt

20




azZ

- = —hi+xz

where 7 = —v /7%, a = Awfv and Z > 0. Varying the parameters v and o,
the attractors experience normal and inverted Hopf bifurcations (4) and three regimes in
the ¥ — & plane are observed: stahble equilibrium, non-linear saturation, and non-limited
solution. In particular, intermittency is found in the transition from a limit cycle to a strange
attractor. This behavior is also found in some experimental routes to chaos, as previously
reported in Section 4.1.

In a refent paper, Nambu and Kawabe (92) propose a model for wave joniZation with
an external driving force. This model reduces to the well known Duffing equation (4,39)
for the eleciron density modification. For typical values of the parameters the model shows
chaotic behavior with type-l intermittency. This model, however, still waits for experimental
verification.

Another application of concepts of dynamical systems to Plasma Physics has been
developed by Maschke and Saramito (91,93). The authors study asymptotic solutions of
visco-resistive-MHD equations {attractors) and their successive bifurcations as a parameter
is changed. It is explored the formal equivalence between certain plasma instabilities, e.g.,
interchange-unstable plasma layer in a curved magnetic field, and the problem of thermal
instability of a fluid layer with a gradient of temperature {Rayleigh-Bénard convection (4,39}).
The authors explore these analogies to identify routes to chaos through period doubling and

bifurcation on {ori.

5. Conclusions

The theory of dynamical systems is part of the so called “Science of Complexity”, which

includes procedures and methods, as well as an appropriate conceptual background, with

a large range of applicability: E;hy'sics, Chemistry, E.cology, Medicine, Economy etc. The
identification of universal features and the study of mathematical analogies show the common
aspects of different phenomena.

Plasma Physics, an essentially non-linear discipline, is appropriate to the exploration of
the potentialities of these new developments from the theory of chaos and dynamical sys-
tems. Methods from this theory are powerful tools, still in development, not yet completely
explored in Plasma Physics. Additional efforts should be done to test the analytical or com-
putational models through experimental verification or construction of models to reproduce
experimental results, e.g., routes to chaos, low dimensionalities. In particular, it is important
to test the relevance of these new ideas ift’ the domain of fully developed tﬁrbulenoe.

The judicious application of the methods from the theory of chaos and dynamical systems
should be seen as an exploratory and complementary tool to the more traditional approaches

to non-linear plasma processes.
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