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Abstract

We use the Walecka model to investigate the influence of the charge
symmetry breaking p° — w mixing interaction on the neutron-proton
self-energy difference in muclear matter. Using 2m, < p°|Hlw >=
~4500 MeV?, and employing the Dirac-Hartre-Fock approximation,
we find that the neutron-proton self-energy difference is a decreasing
function of the nuclear density, and that it has a value of the order of
700 KeV at the normal density. The results indicate that the Nolen-
Schiffer anomaly might be explained by means of relativistic puclear
models in a similar way as it is explained by means of non-relativistic

models.

The experimental values of the masses of mirror nuclei (or analog states)
heavier than A = 3 are consistently larger than the theoretically calculated
ones. The discrepancy, known as the Nolen-Schiffer anomaly (1] (NSA), in-
creases with the mass number A and for A ~ 209 it can reach the value
of 900 KeV. Several nuclear structure effects such as correlations, core po-
larization and isospin mixing have been invoked to solve the problem with-
out definite success [2]. Because of this failure, explanations were searched
outside conventional nuclear structure, and naturally quark models were in-
voked to solve the problem (for a recent review see Ref. [3]). However, it is
largely known that charge symmetry breaking (CSB) forces of class III (pp-
nn) and class IV (pn) [4] can affect the binding energy differences of mirror
nuclei [5, 6]. In this context, recently Blunden and Igbal (7] (BI) performed
a systematic and detailed calculation of binding energy differences of mirror
nuclei in the range of 4 = 11 to A = 41. BI used in their calculation nucleon-
nucleon CSB potentials derived from p° —w and #” — # mixings and included
the effects of the neutron-proton mass difference in OPEP and TPEP. Within
the context of a Schrodinger equation calculation, these authors concluded
that CSB efects can explain about 75% of the NSA. In addition, their cal-
culation showed that the p° — w mixing class III potential is by far the most
important contributor to the CSB effect on the calculated binding energy
differences.

In a more recent publication, Miller [8] recalculated the binding energy
differences in the BI approach using a larger value for the p°—w mixing matrix
element than the one used by BL. The larger value of the matrix element is
the result of a recent precise p°® — w mixing experiment [9]. Using this new
value for the mixing, Miller showed that the net result of the calculations is
that no significant anomaly remains.

The p° — w mixing effective potential used in a Schrédinger equation
framework is the Fourier transform of the non-relativistic approximation of
the zelevant one boson exchange graph of the NN scattering matrix [10, 4]
Owing to the importance of the possible resolution of the long-standing NSA
by means of the CSB p° — w mixing interaction, it would be worthwhile to
investigate this matter in a relativistic framework, where the non-relativistic
approximation to the interaction is avoided. In particular, relativistic nuclear
models based on the original Walecka model [11] have been successful in
describing several nuclear properties and it would be interesting to investigate
the CSB effects of the p®—w mixing mechanism in the context of these models.
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In this letter we evaluate the influence of the p” — w mixing interaction
on the density dependence of the neutron-proton self-energy difference in nu-
clear matter using the Walecka model with pions and rhos. This calculation
should be considered as a first step towards a more complete calculation of
the binding energy differences of mirror nuclei with CSB interactions in rela-
tivistic models. To our knowledge [3], the only relativistic calculation of the
NSA is the one of Ref. [13]. Although the relativistic approach of Ref. [13]
helps in reducing the anomaly as compared with simple non-relativistic cal-
culations, they give comparable results to that obtained with non-relativistic
density-dependent Hartree-Fock calculations. The mechanism responsible
for the resolution of the NSA in the non-relativistic approach is the fact that
the p® — w mixing interaction gives more binding to the neutrons than to the
protons in medium and it is an increasing function of the nuclear density. We
see in the following that in the absence of the p° —w mixing interaction in the
Walecka model, the neutron-proton self-energy difference is almost constant
as a function of the nuclear density. On the other hand, including the p® —w
mixing and using the same value for the mixing matrix element as the one
used by Miller [8], we obtain a neutron-proton self-energy difference which
decreases with density, and at the normal nuclear density it is of the order of
700 KeV. This value is consistent with the NSA in the region of 4 ~ 200.
QOur results therefore indicate that a relativistic calculation on the lines of
Ref. [13] including the p° — w mixing interaction might solve the NSA in a
similar way as the non-relativistic calculation of Blunden and Igbal [7] solves
it.

To start with, we have used the following Lagrangian density[11],[12]:

L = Plid" — M+ g.d— gy V" — 2%7#75;. Bur — L 7. Y
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Here, 7, ¢, r, V* and p* stand respectively for the nucleon, the scalar-
isoscalar meson, the psendoscalar-isovector meson, the vector-isoscalar meson
and the vector-isovector meson, I = giV¥ — §¥VH, LW = §#p¥ — 97" and
A= —2m, < w|H|p® > is the p” — w mixing parameter.

The relativistic Hartree-Fock equations are obiained by using Dyson’s
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equation to sum to all orders the self-consistent tadpole and exchange con-
tributions to the baryon propagator

G{k) = G°(k) + G°(k)Z(k)G(k), (2)

where ¥ is the proper self-energy. The self-energy is composed of 2 momen-
tum independent tadpole term £7 and an exchange term 2% (k):

(k) = =7 + =X (k). (3)

The exchange term, when the neutron and the proton have different masses,
gives different contributions to the neutron and proton self-energies, whereas
the tadpole contributes equally to the proton and neutron self-energies.

In order not to repeat standard formulae which can be found e.g. in
Refs. [14],[15],(16], we show here just some equations which are important
for the understanding of the present work. Because of the translational and
rotational invariances in the rest frame of the infinite nuclear matter and the
assumed invariance under parity and time reversal, the self-energy may be
written as {14],]12]

B(k) = B°(k) — 73°() + 7 - FE(k) 4)

The p° —w mixing contribution for the proton, shown in Figure 1, is given
by [17]

P o o 8 A" Gylg)y”
If (k) = 1,9, f (27)* [(k — q)2 — m2 + i€][(k — q)* ~ m2 + ie] ®

and a similar equation for the neutron can be read off from the above one by
changing p — n and its sign.

We solve the coupled integral equations for the self-energies in the so-
called Dirac-Hartree-Fock approximation [14]. This approximation amounts
to keep in the baryon propagators the contributions from real nucleons in
the Fermi sea only. The effects of the medium on virtual nucleons and anti-
nucleons are neglected. This yields the familiar Hartree-Fock approximation
of non-relativistic many body theory when the assumptions of non-relativistic
kinematics and static meson exchange are made. The nucleon propagator in



a Fermi sea with Fermi momentum kr is then written as (the nuclear density
is po = 2k3./37?)

Go(k) = (1™ + My (K)o SR — Ey(k))6(kr — |F]) (6)

E‘(-’ﬂ)
where the subscript b stands either for proton or for neutron and

=k 2HR) = (K + Z9(k), E(L+ 33(R)) (7)

Ey(k) = V(B + My(R), M (k) = My + Bi(k) (8)

and Ey(k) is the “single-particle energy”, which is the solution of the tran-
scendental equation

Ey(k) = [By(k) — Ebo(k)]knga(k) . (9)

Performing the ¢° and angular integrals in the expressions for the various
‘components £°, X° ... of the self-energy, we obtain the following coupled
‘nonlinear integral equations
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In addition, there ate the three equations for the neutron self-energy, obtained
from the above equations by just exchanging the indices for protons with the
indices for neutrons and changing the sign of the mixing term (the one which
contains A). The equation for 7 is

5T __g_f_f"Fd z{erM (13)

T Temz Exq) © Ei(g)

In the above equations ¢ = | §l, k= | % |,

Ouh,q) = nffARD 1B g ) - AuledOulkd)
and
An(k,q) = B + & +m? - |Eyq) - Bo(R)’ - (15)

All self-energies are evaluated at the self-consistent single-particle energies,
o
q° = E(q)-



Eqs.(10-12) are solved by a direct iteration procedure with mean-field
self-energies as starting values. When the output values coincide within a
difference of less than 1078 with the input values at all points, we consider
that the self-consistency is achieved.

For completeness, we also investigate the density dependence on the
neutron-proton effective mass difference, This might be useful for compari-
son with other approaches which attempt to explain the NSA by means of
medium modifications of the neutron-proton mass difference[3]. Horowitz
and Serot [14] define the relativistic effective mass M°// in analogy to the
non-relativistic definition by the relation (b = p,n)

M (q)=q [(\J (%)_ - 1) ] (16)

which coincides with the definition of M°// in the Hartree approxima-
tion.With this definition, we have for the in-medium neutron-proton mass

difference (for k = k)
AM.ss(kp) = M (ki) — M7 (k). (17)

We choose to normalize the mode! parameters using the bulk binding
energy and saturation density of nuclear matter as usual. As normally done
in calculations with the Walecka model, we identify the vector meson with the
w whose mass is m, = 7T83MeV and set m, = 550 MeV for the scalar meson
mass. The pion and p meson masses, g, and g, are considered fixed at their
experimental values, i.e., m, = 138 MeV, m, == 770 MeV, g2 /47 = 14.4 and
g2 /4w = 2.4 respectively. The value of A quoted in ref. [8] is A = 4500 M eV?.
To saturate the binding energy per nucleon at —15.75 MeV at the Fermi
momentum of 1.38fm™! we use g2/4r = 7.2 and g2/4r = 10.6. The energy
density is given by
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The I, and I}, are integrals of the following form

1 ke Bk phr dig Do
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where the functions F,,, and F}, are given by

Fo(kyq) = [1/2 ~ (Eu(k) ~ E(0))* D}y (k ~ q)]
Fy(k,q) = [1 — (Ey(k) - E9))* D5 (k — g)] (20)
and the H,,'s are given by

H,(k,q) = [k5,q2 + My ()M (q)],

Hy(k,q) = [2(k — @} a;,(k — )28, — (k — )2(M; (k)M (a) + g5,k3%)]
Hy(k,q) = [K,a2" — 2M5 (R)MZ(q)]

Hy(k,q) = [k, 02" — 2M5 ()M (g)] - (21)

The D,,’s are the free meson propagators

1

Du(k) m 4 i€’

(22)

The energy per nucleon is shown in Fig. 2. The saturation point of
the energy density is quite independent of A. The curves for A = 0 and
A = 4500 MeV are indistinguishable. This is because the p° - w energy is
very small and the mean-field energy is by far the dominant term in Eq. (18).
Ounly for a (fictitious) value of A = 20000 MeV (dotted line), the effect of
the mixing would be visible on the energy density. :

In Fig. 3, it is shown the neutron-proton self-emergy difference % - X7
as a function of kr. For A = 0.0 (no p ~ w mixing considered), we observe
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that this difference remains almost unaltered with density. When the mixing
term is included, £ ~ £ decreases with increasing density. Contrary to the
case of the energy density, the neutron-proton self-energy difference is very
sensitive to the p — w mixing.

In fig. 4, AM.;; is plotted as a function of kp. For A = 0.0, AM,;
increases with density and for A = 4500 MeV? the difference decreases in a
way similar to the self-energy difference. Figs. 3 and 4 show very clearly the
crucial role played by the p° — w mixing interaction.

In summary, we underline the main features investigated in this work. We
have studied the importance of the CSB p° — w interaction on the neutron-
proton self-energy difference in nuclear matter within the context of the
Walecka model. By employing the self-consistent Dirac-Hartree-Fock approx-
imation to the nucleon propagator, we have shown that the inclusion of the
CSB p® — w mixing interaction in the Walecka model produces a neutron-
proton self-energy difference which is a decreasing function of the nuclear
density. Using the currently accepted value for the p° -~ w mixing matrix
element, 2m, < p°|Hlw >= —4500 MeV?, the neutron-proton self-energy
difference at the normal nuclear matter density has a value of the order of
700 KeV. The obtained value and density dependence of the neutron-proion
self-energy difference are very encouraging to implement a more complete cal-
culation of binding energy differences of mirror nuclei employing relativistic
models.

To finalize, we remark that although the situation regarding the resolution
of the NSA by means of the p°—w mixing interaction is very satisfactory, there
remains a question of principle that might be worthwhile to investigate[18].
The question is related to the off-shell behavior of the < p°|H|w > matrix
element. In comstructing the CSB potential, or using the p° - w “propa-
gator” in nucleon self-energy diagrams, one uses for < p'|H|w > the value
extracted at the w pole. However, the four-momentum transfer carried by
the exchanged mesons is spacelike. This matter was recently investigated[18]
in 2 simple quark model for the < p°|H|w > amplitude. The conclusion was
that off-shell effects are in fact very important and are such that the CSB
potential is reduced in one order of magnitude compared to potential usually
used. If this can be confirmed in more realistic calculations, the explanation
of the NSA based on the p° — w mixing mechanism, as well as the explana-
tions of other[3] CSB phenomena, have to be re-examined and probably the
quark substructure of nucleons and mesons have to be invoked.
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Figure 1

p° — w mixing contribution to the neiitron and proton self-energies.

Figure 2

Binding energy per nucleon as a function of kr for m, = 550 MeV,
my = 138 MeV, m, = 738 MeV, m, = 170 MeV, g?/4r = 1.2,
gifAw = 144, g/4r = 10.6, g2f4r = 24 and A = 0.0 or A =
4500 MeV? (solid line) and A = 20000MeV? (dotted line).

Figure 3

Neutron-proton self-energy difference as a function of kr for the same
parameters as in Fig. 2 with X = 4500 MeV? (dashed line) and A = 0.0
(solid line).

Figure 4

In-medium neutron-proton mass difference as a function of kr for the
same parameters as in Fig. 2 with A = 4500 MeV? (dashed line) and
A = 0.0 {solid line).
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