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Abstract . We analyzed diffusion of metallic nanoparticles in a viscous plastic 

medium submitted to stochastic, buoyancy and electric forces. Are determined 

necessary conditions to have only stochastic diffusion process.                                                       
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(1)Diffusion equation for particles in viscous medium.                                                                                           

 Let us consider metallic nanoparticles in a viscous medium 

submitted to stochastic and gravitational buoyancy forces and to an  

uniform static electric field Eo. In these conditions these particles obey the 

following equation of motion:                                                                                                              

                             mdv/dt = Fstochastic + Fb + FE                           (1.1), 

where             Fstochastic = - 6πηRv +  ξ(t),  is the stochastic force,
[1-3]

 

                         Fb = (4πR
3
/3){ρp - ρM}g  is the buoyancy force,

[4]
  

where η is the medium viscosity coefficient, m, R and v are, respectively, 

the mass, radius and velocity of the particle; ρp  and ρM are, respectively, 

the densities of the particle and of the medium and g the gravitational 

acceleration. FE  is the electric force  (see Appendix A) given by,  

 FE = force of Eo on the dipole moment d + interaction force between dipoles, 

 where Eo is the applied external electrical field.  

(2)Stochastic Diffusion.                                                                                            

 As well known
[1-3]

 stochastic diffusion occurs when, 

                       mdv/dt = - 6πηRv + ξ(t)                                  (2.1), 

that is, only when                                                                                                                     

           6πηRv >> Fb       and       6πηRv >> FE.  

Solving Eq.(2.1), remembering that v = dx/dt, the variance of the particle, 

δ
2
 = (< x

2
 > - < x >)

2
, is given by

[1-3]
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                                                   δ
2 
= 2Dt                                               where    

                                                    D = kBT/6πηR                                    (2.2)                 

 

 is the diffusion coefficient, kB the Boltzmann constant and T the absolute 

temperature of the viscous medium. 

 In the Appendix A is shown that for small applied electric field Eo, 

that is, when we can put FE = 0, we have only stochastic diffusion if the 

condition  

                                    6πηRv* >> (4πR
3
/3){ρp - ρM}g                          (2.3), 

is satisfied, that is, when                                                                                                                                             

                                  η >> (2R
2
/9v*){ρp - ρM}g                            (2.4), 

where v* = (8kBT/πm)
1/2

 is the average velocity of the particles, kB the 

Boltzmann constant, T the temperature of the medium and m = (4πR
3
/3)ρp.                                                                                

(3)Example of stochastic diffusion.                                                       

 Let us study the particular case of metallic nanoparticles with radius 

R ≈ 10
-9

m and density ρp ≈ 10
4
 Kg/m

3
 immersed in a dielectric medium at 

T ≈ 300
o
 K  with viscosity η ≈ 10

10
 MKS and density ρM  ≈10

3
 Kg/m

3
. In 

these conditions m ≈10
-22

 Kg and  v* 
 
≈ 10

2
 m/s.                                                                     

 Using Eq.(1.1) we see that, in the MKS system, 

           Fviscous =  6πηRv ≈10
4
 N     and   Fb = (4πR

3
/3){ρnp - ρM}g ≈ 10

-21
 N,     

that is                                                                                                                     

                    Fviscous  >> Fb                                           (3.1). 

 So, if the composite is submitted to small electric fields, electric 

forces effects can be neglected (see Appendix A). In this way, particle 

diffusion is stochastic and δ
2
 will be given by the Eq.(2.2):         

                          δ
2 
= 2Dt     where    D = kBT/6πηR ≈ 10

-19
 cm

2
/s. 

 In Appendix B is seen a particular case of Eq.(1.7) when the viscous 

force is very large and the mass is very small when Eq.(1.7) would be 

written as                                                                                                                     

           6πηR (dx/dt) ≈ F + ξ(t).                                  (3.2). 

  In this case is possible to have, simultaneously, diffusion and "drift" 

of the particles.
[1-3]
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APPENDIX A.                                                                                                             

Metallic Sphere submitted to an uniform electric field Eo.                                    

 Let us consider a conducting sphere, where a = R, submitted to an 

uniform electric field Eo as seen in Figure 1.                                                                                         

 

Figure 1. Metallic sphere submitted to an uniform electric field Eo.
[5,6]

  

 On the spherical surface is induced a charge density σ(θ) given by
[5,6]

   

                      σ(θ) = 3ε Eo cosθ                                      (A.1), 

where ε is the dielectric constant of the medium. The induced charges Q+ 

and Q
_  

on the upper and lower polar surfaces, respectively, are given by,  

                                      Q ≈ 2πR
2
 < σ(θ) > ≈ 12εEoR

2
                       (A.2). 

 So, each sphere would have an electric dipole dp ≈ QR.
[7] 

Of course, 

the resultant force of the uniform field Eo on the + and - charges  of the 

molecules will be zero. Remains now to calculate the force between the 

metallic particles due interactions between their induced dipoles.                                                                                                                                                                                                                     

 So, if ℓ is the average distance between two particles, there is dipole-

dipole electric potential
 
between them, given by Udd(ℓ) ≈ dp

2
/ℓ

3 [6]
. This 

potential would be responsible to an electric force Fdd (ℓ) between them 

given by,                                                                                                                     

    Fdd(ℓ) ≈ dUdd(ℓ)/dℓ = - 3dp
2 
/ℓ

4
                     (A.4),                                                                                                                                                                                               

                                                                                                                                                                                                                                                                

where                                       dp = QR ≈12εEoR
3
                                 (A.5). 

 So, for usually small Eo fields, R ~ 10
-7 

cm and ℓ ≥ 10
-7

 cm the 

electrostriction forces Fdd(ℓ) ~ 144(εEo)
2
 R

6
/ℓ

4
  are negligible.  
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APPENDIX B.                                                                                                                  

Fokker-Planck equation: diffusion and drift.                                           

 When the viscous force is very large and the mass is very small 

Eq.(1.7) would be written as 

                                              dx/dt ≈ f(x) + ζ(t)                                      (B.1), 

where f(x) = F/α, ζ(t) =ξ(t)/α and α = 6πηR.                                                                                                                    
                                        

 
Associated with Eq.(B.1) we have the Fokker-Planck equation,

[1]
 

                        ∂P(x,t)/∂t = -∂[f(x)P(x,t)]/∂x + (Γ/2)∂
2
P(x,t)/∂t

2
            (B.2), 

that gives the temporal evolution of the probability density P(x,t) that 

represents the distribution probabilities of the stochastic variable x obtained 

solving Eq.(B.1). The factor Γ is given by < ζ(t)ξ(t´) > = Γ δ(t-t´).                                                                                                                                         

 When f(x) = constant = c, solving Eq.(B.2), we  have
[1]

 

                              P(x,t) = (1/2πΓt)
1/2

 exp{-(x - xo - ct)
2
/2Γt}               (B.3).  

 In reference [1] are shown figures of the distribution probabilities 

P(x,t) as functions of the time t for the Brownian motion in the cases 

(a)symmetric (c = 0) and (b) asymmetric with "drift" at right (c > 0).                                             

 From these figures we verify that when  c = o there is only the 

diffusive process described by δ(t) = (2Γt)
1/2

. On the other hand when c ≠ 0 

there is, simultaneously, diffusion and "drift" of particles, with velocity c, 

induced by the external force F.                                                                                    
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