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Abstract.                                                                                                                
 This  paper was written to graduate and postgraduate  students of  Physics. We 
study the emission of gravitational waves by binaries composed by micro non-charged 
black holes (μBH).  It is assumed that the μBHb dynamics obeys General Relativity and 
that its inspiral motion can also be described by a quantum approach given by the 
Schrödinger-Newton equation, for large quantum numbers.                                                                           
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 (I) Introduction.                                                                                                
 This is a paper written to graduate and postgraduate students of physics. Our 
intention is to investigate only basic aspects about emission of gravitational waves 
(GW) by binaries composed by two non-charged micro black holes (μBHb). We use  
classical mechanics[1], classical electrodynamics,[2] quantum mechanics (QM),[3,4] 
special relativity (SR) and general relativity(GR).[5]  In Section 1 are given significant 
parameters associated with black holes (BH) and micro black (μBH). In Section 2 are 
estimated  with the GR the gravitational luminosity LGW and the "spiral time" τ of  a BH  
binary, that is, of a μBHb. In Section 3,we assume that the μBHb is a microscopic 
system that obeys a Schrödinger-Newton equation. So, in this context, we show to how 
calculate the gravitational energy per unit of time dE/dt emitted by the μBHb using an 
"hybrid" GR and QM approach. It is also shown that the dE/dt and the "spiral time" τ of 
the μBHb calculated with this hybrid approach is in good agreement with the LGW and τ 
estimated with the GR theory. In Section 4 are presented conclusions and discussions of 
our analysis. In Appendix A is shown how to calculate the emission of gravitational 
waves emitted by a BHb. In Appendix B and C is briefly shown how to calculate  the 
electromagnetic radiation in Classical and Quantum Electrodynamics. Finally, in 
Appendix D are done comments  on "gravitational" quantum field theory .   
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(1) Significant Parameters associated with μBH.                                    
 In Figure 1 is shown a micro binary (μBHb) composed by two non-charged 
micro black holes masses μ = m1 = m2.[5,7] 

         

Figure 1. Binary system (μBHb) formed by non-charged mini black holes(μBH).  

 The masses μ according to the classical GR[5] can be arbitrarily small, however, 
its smallest mass is estimated by Planck mass[8] μ = MP = (ħc/G)1/2.  Associated to this 
mass we have the Plank length ℓP = ħ/cMP.  The BH Schwarzschild  radius[9] rs  and its 
lifetime τH

[10] , due to the Hawking radiation,  are  estimated,  by  rs = 2Gμ/c2  and   τH = 
5120πG2μ3/(ħc4),  respectively.  Below, the Planck the mass MP,  length ℓP, radius rs , 
lifetime τH ,"gravitational Bohr radius" (ao)g  and the  metric tensor component goo(r) are 
written in terms of the constants c, G and ħ, in the MKS system,                                                                    

                                        MP = μ= (ħc/G)1/2 ~ 2 10-8   ( Kg)                                  (1.1),                                 

                                         ℓP = ħ/cμ ~ 1.616 10-35 m      (m)                                  (1.2)                                    

                                          rs  = 2Gμ/c2  ~ 1.5 10-27 μ      (m)                                  (1.3), 

                                          τH = 5120πG2μ3/(ħc4) ~ 4 10-18 μ3  (s)                           (1.4),                                 

                                         (ao)g = ħ2/Gμ3 ~  10-58/μ3         (m)                                 (1.5), 

                                          goo(r) =  - 1- 2Gμ/rc2                                                                                  (1.6), 

(2)Gravitational BHb luminosity according to the "classical"GR.  
 Gravitational waves emitted by a black hole binary (BHb) formed by black 
holes, with total mass M+ = M1 + M2 ~ 20 - 30 solar masses, have been recently 
detected  by Abbott et al.[ 11,12]  The BHb motion is unstable; this unstable motion can be 
divided into three stages:[11-13] "inspiral", "merger" (or "plunge") and "ringdown". 
During this motion the BHb emits GW.  The "inspiral" is the first stage of the BHb life 
which resembles a gradually shrinking orbit and take a longer time; the emitted GW are  
weak when BH are distant from each other.  During the "inspiral" motion  with M1 ≈ M2 
≈ M* the gravitational luminosity LGW  would be given by [5,13-16] (Appendix A)  

                                      LGW  = dE/dt ≈  (8G/5c5) M*2 r4 ω6                                       (2.1), 

where r is distance between the BH and ω is the orbital rotational frequency. With  
Kepler´s law[1,5]  r(t)3ω(t)2 = Gm the luminosity given by Eq.(2.1) becomes,  

                                |LGW(ω)|  =  (8G/5c5) M*2r4ω6  ~ 10-192/3 (M*ω)10/3                    (2.2 
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or 

                                    |LGW(r)|  = - (8G/5c5) M*2r4ω6  ~  10-84 (M*/r)5                      (2.3). 

In addition, as rs = 2GM*/c2 ~1.5 10-27 M*we get 

                                                ωmax
  ~ 1026 (M*)1/2                                                                    (2.4). 

 The "spiral time" τ [5,16] of the BHb was estimated writing  the total mechanical 
energy E of the BBH as E = Iω2/2 - GM*2/r  that can be written,  using the "virial" 
theorem,[1]  as E = - GM*2/2r. Taking this equation and Eq.(2.1) we verify that[5] 

                                           dr/dt = - (128/5c5) G3M*3/r3                                        that is,  

                                    r3 dr/dt = (1/4)d(r4)/dt  = -(128/5c5) G3M*3                           (2.6). 

Integrating Eq.(2.6) from ro up to 2rs we get       

                                         ro
4  = (2rs)4 - (128/5c5) G3M*3τ                                        (2.7),    

where τ, that is also called "time to fall" from a generic orbit r = ro to the closest 
distance 2rs between two BH, is given by : 

                                      τ  =  [5c5/(128 G3M*3)] (ro
4 - 16rs

4)                                      (2.8). 

 According to the LIGO GW observations from a BBH,[11,12] known as 
GW150914 and GW151226, the measured GW frequencies ω are in the range 30 -500 
Hz, the peaked luminosities LGW ~1049 W and the spiral times τ ~1 s. Assuming that the 
BBH were composed by masses M* ~ 1030 kg these results are in good agreement with 
our estimations seen above and that shown in our paper..[13] 

(3) GW from Micro Black Hole Binaries.                                                    
 Now let us study binaries composed by micro black holes, that is, μBHb. So, let 
us assume that the micro black holes (μBH) have, for instance, mass μ ~ 106 kg. So, 
according to Eq.(1.4), its lifetime τH  would be τH ~ 60 s. For this mass, according to  
Eqs.(1.1)-(1.4) the Schwarzschild radius rs  ~ 1.5 10-27 μ ~ 10-21 m. For these masses the 
μBHb would have microscopic dimensions. ...                                                                                               
 Kepler´s law, in non relativistic classical mechanics, for this binary is given by   
ω2r3 = 2MG, where m1 = m2 = μ, establishes a constraint between ω(t) and r(t). The 
maximum values of ω(t) occurs for the minimum value of r(t) and vice-versa. So, 
putting μ = 106 kg in Eq.(1.3) and Eqs.(2.2)-(2.4) we get  rs ~ 10-21 m, ωmax ~ 1029 rad/s  
and the maximum luminosity                             

                         |LGW|max = |LGW(ωmax)|  =  |LGW(rs)| ~ 1041 J/s = 1041W                     (2.9). 

 The time τ to fall from ro ~ 100 rs
 m up to 2rs ~ 10-21 m given by Eq.(2.8) is                           

                          τ  =  [5c5/(128 G3μ3)] (ro
4 - 16rs

4) ~3 1053 10-76 ~ 10-17 s               (2.10), 

that is, the gravitational energy would be "instantaneously" emitted , like a "flash".  
   



 

4 

 

(3)μBHb described by Schrödinger-Newton Equation.                                         
 According  to Section 2, depending on the BH masses, μBHb systems  can have 
microscopic dimensions.  In this way, let us suppose that they can be taken as small 
systems in Dirac´s[6] sense and so, could be described in the spiral stage, for very large 
quantum numbers, when GR gravitational effects are small, by a Schrödinger-Newton 
equation[17]                                                                                                                                        
     H ={(ħ2/2μ)∆ - GM2/r }Ψ(r,θ,φ) = EΨ(r,θ,φ)                     (3.1), 

taking into account that the BH masses are concentrated in a very small region of the 
space.  In Eq.(3.1), r is distance between the μBH, ∆  the Laplacian operador in 
spherical coordinates and μ = m1m2/(m1+m2) =  μ/2 is the reduced mass of the system. 
In semi-classical limit [3,4], that is, for large quantum numbers, we will suppose that 
Eq.(3.1) can give a good description of the μBHb orbits obtained by the GR. Thus, 
solving Eq.(3.1)[3,4] the gravitational energies Eg n of the μBHb are given by                                                
                                                                                                                    
              Eg

 
n = - Θgrav/n2,                                                          (3.2),   

where n = 1,2,3,...and  Θgrav = (μ/2)(Gμ2)2/2ħ2  = G2μ5/4ħ2. Since  G ~ 10-10 MKS   and               
ħ ~10-34 MKS we have                                                                                                                   
                          Θgrav = G2μ5/4ħ2 ~ 1047 μ5     J                                     (3.3). 

 For the hydrogen-like-atom (HLA) with charge Z we have,[3,4]  

                                                      Eelect n = - Θelect/n2                                                  (3.4), 

where Θelect = Z2mee4/2ħ2  and me = electron mass. That is,[3,4]  

                                 Θelectr = Z2 13.6 eV ~  Z2 10-18   J                               (3.5).  

and the normalized energy eigenfunctions  unℓm(r,θ,φ)  given by                                                                    
                                                                                                        
      unℓm(r,θ,φ) = Rnℓ (r) |ℓm >                                         (3.6), 

where  Rnℓ (r) and |ℓm > = Yℓm(θ,φ) are shown in references,[3,4] remembering  that                          
n = 1,2,..., ℓ = 0,1,2,..,n -1  and   m = -ℓ ,-ℓ+1,...,ℓ-1 ,ℓ.                                                       
 For the HLA the "electromagnetic Bohr radius" (ao)elect is given by[3,4]           

                                            (ao)elect= ħ2/me2 ~ 0.5 10-10 m                                           (3.7)                             

 Similarly, for the μBHb the "gravitational Bohr radius" is given by,     

                                                     (ao)g = ħ2/G2μ3                                                        (3.8). 

 From  Eqs.(3.2) - (3.8)  we verify that  the energies  Eg n = Eelet n  if   M ~ 10-13 
kg; in this case the μBHb would be small in Dirac´s sense.  The orbit radius rn  are given 
by (rn)elect = n2(ao)Bohr

  = n2 (ħ2/me2) ~ n2 0.5 10-10 m  and (rn)g = n2(ao)g = n2(ħ2/G2μ3). 
Let us remember that for the HLA the Kepler´s law is written as ω(t)2r(t)3 = Ze2/μ .                         
 Since v = ωr, the orbital relativistic parameter β = (v/c) for the μBHb will be 
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given by β = (1/r)1/2(2Gμ/c2)1/2. For HLA the fundamental state n = 1 is stable.[3,4] We 
assume that this also occurs in the gravitational  case. So, gravitational waves (GW) 
would be emitted in "spontaneous" decay transitions between the quantum states 
unℓm(r,θ,φ)  → un´ℓ´m´(r,θ,φ) for n → n-1, when n  > 1.  At this point we could ask:"what 
kind of interaction field would be responsible for these transitions?" This question 
will be analyzed in Section (3.3). 

(3.1)Condition for μBHb Stability.                                                                                
 For the Hydrogen Atom, as well known, the ground state unℓm(r,θ,φ) (n = 1) is 
stable.[3,4]  In this state the atomic radius r ~ 10-10 m is much larger the nuclear radius ~ 
10-15 m. So, the electron can be thought as moving in a orbit very far from nucleus. 
 Assuming that this condition is essential to the HLA stability  we "take for 
granted" that μBHb ground state cannot be stable if inside the sphere with radius  (ao)g 
= ħ2/G2μ3 there is "contact" between the mini black holes, which one with radius rs.                  
 So, let us assume  that μBHb system would be unstable if, for instance,  4rs > 
(ao)g. Taking into account (1.3) - (3.5) we see that 8Gμ/c2  >  ħ2/G2μ3. Thus, μ4 > 
(ħ2/G3c2)/8, that is, μ > 0.5 (ħ/c)G-3/2 ~ 10-27 kg. So, we verify that the μBHb would be 
unstable if  

                                                              μ  >  10-14 kg                                                      (3.7). 

(3.2) Unstable μBHb System.                                                                                                      
 Assuming that μ > 10-14 kg the μBHb is  unstable. So, let us divide its 
motion,[11-14] into three stages: "inspiral", "merger" (or "plunge") and "ringdown". 
During this motion the binary is emitting GW.  The "inspiral" is the first stage which 
resembles a gradually shrinking orbit and take a longer time; the emitted GW are weak 
when each μBH is distant  from the other, that is, when r >> rs. As the μBHb orbit 
shrinks, the speeds of the mini black holes increase, and the GW emission increases. 
 When the μBH are close (r ~ rs ) the orbit shrink very quickly and the μBH 
reach extremely high velocities. This is followed by a plunging orbit and the μBH will 
"merge" once they are close enough, that is, when r ≤ rs. At this moment the GW 
amplitude reaches its peak. Once merged, the single hole settles down to a stable form, 
via a stage called “ringdown", where any distortion in the shape is dissipated as more 
gravitational waves.[11-14]    

Inspiral motion.                                                                                                         
 For  M = 106 kg, by Eq.(1.2) the Schwarzschild radius rs  ~ 1.5 10-27 M ~ 10-21 m, 
(ao)g = ħ2/G2M3

 ~10-66 m and the binary "quantum radius" would be (r)g = n2 10-66 m. 
The energies En (see Eqs.(3.2) - (3.4)) are given by Eg 

n = - 1077/n2  J ~ - 1096/n2  eV.  As 
rs ~10-21 m the μBH would be distant when (r)g  > 10-21 m,  that is, only  when  n > 1022.  
For  r ≥ 10-20 m  the binary is still  a microscopic system, about 107 times smaller than 
the hydrogen-like atom(HLA). For r ≥ 10-20 m we get, using Eq.(1.5), that goo(r) ~ -1 
showing that gravitational distortions of the metric are negligible.[5]  If rs  ~ 10-21 m and 
the mBBH radius  r = rn = n210-66 m we see that  r/rs ~ 3 1027/n2.  For n > 1022  we verify 
that  r/rs  < 1 and relativistic effects are  negligible.  So, we can say that the inspiral 
motion is restricted  to distances  r > rs, that is, for n > 1022 . Higher energy GW would 
be generated by transitions for distances (r)g ~ rs . Let us suppose that the inspiral motion 
occurs for n values in the range  n ~1024. For these large n values we see that the 
energies ħω in the transitions  n → n + 1 are given by 
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          ħω = Eg 
n+1 - Eg 

n = -1077[1/(n +1)2 - 1/n 
2 ] ≈ 1077/n4 J ≈ 1096/n4 eV.    (3.8).    

 So, in the inspiral region, for n ~ 1024 we have frequencies ω ~ 1 rad/s.  Note 
that for the recently observed GW frequencies[11,12]  we have   ω ~ 150π 170π rad/s.                                   
                                                                                                                                                  
(3.3) μBHb gravitational luminosity emitted with Schrödinger approach.                                            
 Let us consider  GW with energies ħω = Eg 

n+1 - Eg 
n given by Eq. (3.8),  emitted 

in transitions n → n + 1. To do this let us assume that there is some kind of interaction 
(what kind?) that induces transitions between the quantum states  n →n + 1. It will be 
done taking into account the perturbation theory derived from Schrödinger´s equation. 
Let us represent by W(t) this interaction harmonically depend on the time[4  

                                                   W ± (t) =  w± exp[±iωt]                                            (3.9),]                             

where w± is time independent. It can be shown[4] that the transition probability m → n 
per unit of time P±

nm is given by                                                                                                       
                                                                                                                             
                             P±

nm = (2π/ħ) |< n | w± | m >|2 δ(En - Em  ± ħω)                 (3.10),  

where the  + and - correspond to the signs in the exponential in Eq.(3.9). Thus, under 
this perturbation, transitions take place to states with energies satisfying the condition 
Em = En  ± ħω. If the perturbation is of the form  W+ (t) = w+ exp(iωt) the system loses an 
energy ħω (energy is emitted), since En= Em - ħω in the transition, while if it is of the 
form W-(t) = w- exp(-iωt)  it gains an energy ħω, since En =  Em + ħω. Our main problem 
is to determine the function W ± (t). The gravitational "luminosity" (LGW)nm  in the 
inspiral stage would estimated by (LGW)nm = ħω P+

nm for very large quantum numbers.                                
 Before to propose a model to obtain W+(t) let us remember that according to 
Bohr correspondence principle (CP)[3] for very large quantum numbers, classical and 
quantum physics are expected to give the same answer, at least in average. The 
probabilistic interpretation of the phenomenon obtained with the Schrödinger´s  
equation will give, in average the same results obtained by classical laws. Ehrenfest,    
for instance, showed that Newton's laws hold on average:  the quantum statistical 
expectation value of the position and momentum obey Newton's laws. Thus, we expect 
that in the inspiral stage mBHb properties estimations given by the "classical"  GR and 
QM laws agree in average. In addition,  as seen in Appendix B and C, in Classical 
Electrodynamics the luminosities Lω , emitted by  dipolar and quadrupolar radiation 
are given, respectively, by                                                                                                                               

                Lω = dE/dt = (ck4/3) |D|2 = (ω4/3c3) |D|2             and        (3.11)                                 

                 Lω = dE/dt = (ω6/360c5)Σαβ |Qαβ|2 .  

In  Quantum Electrodynamics these are given, respectively, by  Lω = (4ω4/3c3) |Dnm|2  
and Lω ≈ (ω6/2πc5)|Qnm|2 , where  ω = ωnm , Dnm = < n |D |m > and Qnm  =  < n | Q | m >.  
 Finally, according to the "classical" GR estimations, the  luminosity, in the 
inspiral stage, LGW is given by the quadrupolar radiation[11-14]according to Eq.(2.1):   

                   LGW = (32μ2G/5c5)r4ω6 = (8Gω6/5c5) M2r4 = (8Gω6/5c5)Q2          (3.12), 
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where Q = Mr2 is the mass quadrupole of the mBHb. Thus, by analogy with the 
predicted electromagnetic  radiation and based in the CP we could believe that the QM 
gravitational luminosity (LGW)nm  can be estimated by 

                            (LGW)nm = ħω P+
nm  ≈ (8Gω6/5c5) | < n | Q | m >|2                   (3.13).                                   

In Appendix D is shown a different approach of Weinberg[15] to calculate  (LGW)nm .                                    
 Now, let us give a reasonable justification for Eq.(3.13). Thus, let us assume that 
W+ (t) is proportional to the small perturbations hμυ of the tensor metric gμυ created by 
the quadrupole temporal oscillations Qαβ(t)[16,19] of the μBBH that are written as   

                 Qxx(t) = 3μr2[1 + cos(2ωt)]/2    and    Qyy(t) = 3μr2[1- cos(2ωt)]/2      (3.14). 

 where  μ = m1m2/(m1 + m2)  and ω is the orbital angular frequency (see Appendix A).  
That is, gμν is slightly modified,  gμυ ≈ gμυ

(o) + hμυ, where hμυ is due to quadrupolar 
effects pointed above. Taking into account that [14,19] hαβ(t,x) = (2G/c2r)(∂2Qαβ/∂t2) the 
"classical" gravitational luminosity LGW

  is given by (see Appendix A)   

LGW = (G/45c5) < (∂3Qαβ/∂t3)2 > = (G/45c5) [< (∂3Qxx/∂t3)2 > + [< (∂3Qyy/∂t3)2 > ] = 

                                                    = (32μ2G/5c5)r4ω6  =  (8Gω6/5c5)Q2               (3.15), 

where Q = μr2 is the μBBH mass quadrupole.  So, putting (LGW)nm = ħω P+
nm ,  w+(t) ~ 

hαβ(t) and using Eq.(3.10) we will assume that the QM the gravitational luminosity 
(LGW)nm  can be estimated by                                                                

                             (LGW)nm =  ħω P+
nm  ≈ (8Gω6/5c5) |< n | Q | m >|2                  (3.16), 

in agreement with Eq.(3.12). At this point it is important to analyze this proposed 
mechanism to explain the decay transitions in mBBH. Indeed, as seen in Appendix A, 
the amplitude of the emitted GW are given by Ψαβ(t,x) = hαβ(t,x) = (2G/c2R)(∂2Qαβ/∂t2). 
That is, GW are emitted due to the  "metric perturbation" hαβ(t). To obtain Eq.(3.15) a 
similar hypothesis is assumed: the time dependent metric modification is responsible by 
a potential interaction W+ that induces transitions n → m between quantum states. The 
gravitational luminosity would now be given by (LGW)nm = ħω P+

nm. That is, 
gravitational quantum transitions are induced by metric perturbations due to mass  
quadrupolar effects. In the electromagnetic quantum field theory transitions are induced 
by "vacuum" fluctuations due to electric quadrupoles.        

(3.4)Estimation of  the quantum luminosity (LGW)nm.                                               
 Let us compare the LGW emitted in the inspiral stage given by Eq.(2.1), using 
the "classical" GR, with our hybrid GR&QM approach given by Eq.(3.12). So, putting 
in Eq.(3.12)  M = 106 kg and taking | n > → | m > =  | n +1 >, ω = ωnm = (En - Em)/ħ  and  

      |< n | Q | m >|2 ~ [2M < n |r2| m > ]2 = 4 M2 | < n |r2| n +1 > |2 = 4 M2  | (r2)n,n+1 |2   

we have                                                                                                                                       
          (LGW)nm  ~ 10-41 ωn,n+1

6  | (r2)n,n+1 |2                            (3.17). 

As in the inspiral stage, following Eq.(3.8), ħω = ħωn,n+1 = Eg 
n+1 - Eg 

n ≈ 1077 /n4  J, the 
most significant contributions to the luminosity occurs when n is the range n ~1021-1023  
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with  frequencies  in the range ω ~1029 - 1019 rad/s.                                                                      
 Taking, e.g., ω ~ 5 1027 rad/s and  |r n,n+1| ~ 10-20m the gravitational luminosity 
(LGW)nm  estimated with the QM approach, using Eq.(3.17), is given by  

                                                  (LGW)nm  ~ 1041 W, 

showing a fair agreement with the luminosity |LGW|max ~ 1041 W calculated with the GR 
theory  using Eq.(2.9). This agreement is not at all surprising because according to Bohr 
correspondence principle (CP)[3] for very large quantum numbers, e.g. n >> 1, classical 
and quantum physics are expected to give the same answer, at least in average.  

(3.5)Evaluation of the spiral time.                                                                                                      
  To evaluate the QM "spiral time" τ we must remember that in this stage, 
according to Eqs.(3.2) and (3.3) the energy levels Eg

n = - Θgrav/n2 are very close since 
quantum numbers are very large,e.g. n > 1024. As there is a "continuum of levels" it is 
expected, according to the CP, the mBBH description given by quantum mechanics 
approaches asymptotically a state of motion obtained with the "classical" GR. Indeed, 
for the inspiral stage Eq.(3.11) can be written as  

                 (LGW)ab = (dE/dt)ab  ≈  (8Gω6/5c5) M2r4 = (8 M2Gω6/5c5) r4                  (3.18). 

which is similar to Eq.(2.1) given by the "classical" GR. Integrating Eq.(3.18) as was 
done in Section 2 we get for the spiral time τ the same result predicted by Eq.(2.8).   

 

(4)Conclusions and Discussions.                                

(4.1)A good agreement between the estimated luminosity and inspiral time is obtained 
with the GR and the quantum approach. So, it seems reasonable that in the mBHb spiral 
motion the effects of the gravitation interaction can be quantized in a non relativistic 
limit of Schrödinger - Newton equation.                                                                                                 

(4.2) As, in the inspiral motion, according to Appendix C, quantum states |a > and |b > 
of the mBBH are represented  by unℓm(r,θ,φ) = Rnℓ (r) |ℓm > the quadrupole matrix 
elements are written as  

                           Qab 
=   ∫dr r4 Ra (r) Rb (r) < ℓbmb|Y2m

*(θ,φ)| ℓama >                        (4.2.1). 

Eq.(4.2.1) shows that, according to the Wigner-Eckart Theorem,[4] quadrupole 
transitions  a → b  are allowed only if  ℓb  = ℓa  ± 2  and   mb = ma + 2 . So, if GW are 
composed by "gravitons", selection rules dictated by the matrix elements  in Eq.(4.2.1) 
suggest  that "gravitons" have spin 2. 

(4.3)According to Appendix (A.1) the gravitational luminosity LGW emitted by a BH  
binary with black holes with equal mass M, is given by LGW = (32M2G/5c5)r4ω6 . In the 
radiation zone the gravitational energy is transported by a plane wave with amplitude 
h(ω) given by Eq.(A.17)[13,14]                                                                                              
     h(ω) = (42/3/√36) [(GM)5/3/Rc4] ω2/3                        (4.3.1)                               
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where R is distance from the BHb and the observer  at the radiation zone.                                                    
 Gravitational waves have been detected,[11-13] from black hole binaries (BHb) 
distant  R ~ 1.3 109 light years from the Earth and with M ~ 20 solar masses. Using 
Eq.(4.3.1) and the BHb parameters given above we verify that                                                                       

                                 h(ω)  ~ 5.6 10-52 M5/3 ω2/3 ~ 10-23 ω2/3                                    (4.3.2). 

The  average measured amplitude[11-13 < h >  for frequencies  ω ~ 160 π rad/s was found 
to be < h > ~10-21, in good agreement with h(ω) predicted by Eq.(4.3.2).   

(4.4) Let us take a μBHb and a BHb both distant R ~1.3 109 light-years ~1.2 1025 m 
from the Earth. The μBH with mass μ and the BH with mass M. Using Eq.(4.3.1) we 
have, respectively, 

                                               hμ(ω)  ~ 5.6 10-52 μ5/3 ω2/3                                         (4.4.1)                              
and                                                                                                                                                       
    hM(W)  ~ 5.6 10-52 M5/3 W2/3                                     (4.4.2). 

 From Eqs.(4.4.1) and (4.4.2) results,  

                                           hμ(ω)/ hM(W)  = (μ/M)5/3 (ω/W) 2/3                              (4.4.3). 

According to Kepler´s law, the highest frequencies ωmax and Wmax are given by ωmax
2 = 

2Gμ/rs
3  and  Wmax

2 = 2GM/r´s
3, where rs = 2Gμ/c2  and r´s =2GM/c2 are the 

Schwarzschild radius of the masses μ and M, respectively. From these relations obtain  

                                                   ωmax/ Wmax  =  M/μ                                               (4.4.4), 

showing that  ωmax >>  Wmax  if  M >> μ. That is, frequencies  emitted by μBHb could 
be much  higher than those emitted by BHb. With Eqs.(4.4.3) and (4.4.4) we verify that  

                                             hM(Wmax)  = (M/μ)5/3 hμ(ωmax)                                   (4.4.3), 

showing, on the other hand, that hM(Wmax)  >> hμ(ωmax)  if  M >> μ.                                             
 This implies that  energies emitted by the BHb can be much higher than that 
emitted by μBHb. Considering the now days detection techniques[11,12] it would be 
easier to detect GW from BHb than those emitted by μBHb.                                                                
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Appendix A. Emission of gravitational waves by BHb.                                               
  In GR [5,14-16], assuming that the gravitation field is weak and that the bodies 
have small velocities compared with the light velocity, the space-time metric tensor gμυ 
we can put gμυ ≈ gμυ

(o) + hμυ, where hμυ is as mall perturbation of gμυ
(o).[5,14-16] In the 

Newtonian limit we have goo = - 1 - 2φ/c2, where φ = GM/r.[5] In these conditions the 
Ricci tensor Rik can be written as  

                                                      Rik = - (1/2)□hμυ                                                   (A.1). 

 Defining  the gravitational field  as Ψμυ  = hμυ - (1/2)δμυ h, where h = hα
α , in 

weak field limit the field Ψμυ  obeys the equations[5, 14-16]   

                   □Ψμυ = - (16πG/c4)τμυ    and    ∂μΨμυ =  0     (gauge condition)            (A.2),                              

  where τμυ is a pseudo-tensor mass-energy momentum.                                                    
 The solution of (A.2) for retarded times is given by[5,18]  

                       Ψμυ(x,t) = - (4G/c4) ∫τμυ(t - |x - x´|/c, x) d3x´/ |x - x´|                        (A.3), 

 where the integration is over the volume V of the system.                                        
 Supposing that gravitational effects  are observed very far from the origin O 
("wave zone") where they are produced, that is, |x| = R >> |x´|  we get from (A.3), 
remembering that we have a retarded time function τμυ : 

                                           Ψμυ(x,t) ≈ - (4G/c4R) ∫τμυ d3x´                                        (A.4). 

Integrating Eq.(A.4) over the volume V we obtain the gravitational field[5,13] 

                                          Ψαβ(x,t) = (2G/c2R) (∂2Qαβ/∂t2)                                        (A.5), 

where Qαβ is the mass quadrupole moment of the emitting system defined by  

                                            Qαβ  = ∫ρo(x´)(3x´αx´β - r´2δαβ) d3x´                                     

where ρo is the mass density.  At this point it opportune to remember that gravitational 
multipoles are defined by the potential expansion [14] 

φ(x) = -G ∫ρo(x´)d3x´/|x - x´| ≈ - Gm/r - (G/r3) x.D - (G/2r5)Σαβ Qαβ xαxβ + ....      (A.6),  

where   m = ∫ρo(x´) d3x´,  D = ∫ρo(x´) x´d3x´  and  Qαβ = ∫ρo(x´)(3x´αx´β - r´2δαβ) d3x´.   

The mass dipole moment is null (D = 0) since the origin of coordinates O is chosen to 
coincide with the center of mass.                  
 In vacuum we have the traditional wave equations 

                □Ψμυ = □hμυ   = 0         with the "gauge "      ∂(hμ 
ν)/∂xμ  = 0                    (A.7)                             
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showing that the gravitational field propagates with the light velocity. Note that the 
tensor field hμυ is obtained integrating Eq.(A.4) as will be seen later.                                    
 At this point we find a fruitful  analogy with the electromagnetism. The Maxwell 

equations in Lorentz gauge in empty space are  □Aμ = 0   and  ∂Aμ/∂xμ  = 0.                           
 Let us consider a plane GW, that is, a field that changes only in one direction z 
of the space. Choosing z > 0 as the direction of propagation of the wave we can write  
hik = hik(t -z/c). So, the wave equation  Eq.(A.7) becomes  

                                              [∂2/∂z2  - (1/c2) (∂2/∂t2)] hik  = 0                                  (A.8) 

that has the familiar solution with the gauge condition, 

                                                  hik(z,t) = Aik cos(kμxμ)                                             (A.9),                              

where kμ = (0,0,k,ω), k = kz = |k| = ω/c is the wave vector and ω is the frequency of the 
wave. As hik(z) obey (A.8) the following conditions are obeyed: Aβαkα = 0 and kαkα = 0. 
Under these conditions the amplitude tensor Aik has only 4 non-null components    
A11= - A22 

, A12 = A21 with the condition Tr(Aik) = Ai
i = 0 and only the following 

transversal components to the z-direction of propagation: Axx = -Ayy and Axy = Ayx.  

                                                Aik  = 



















0000

0AA0

0AA0

0000

1112

1211

-

                                     

The transversal fields hxx, hyy and hxy are represented using (2x2) matrices called 
polarization matrices (ε+)ik and (εx)ik :  

                          ( ε+ )ik = 







10

01
            and         ( εx )ik = 








01

10
                     (A.10)                             

The general solution of Eq.(A.8) can be written as a linear combination of the fields hik, 
with polarizations (+) and (x), respectively:                                                                                 

             hik
(+) = h+ (ε+)ik cos(ωt - kz)      and     hik

(x) = hx (ε+)ik cos(ωt - kz + α)      (A.11), 

where  h+
 = A11, hx = A12 and α is an arbitrary phase. The tensorial  polarization of the 

GW creates an effect much more complicate than the linear polarization of the 
electromagnetic waves. These fields deform the space-time creating tidal (shear) on the 
matter . The line forces due to the polarizations (X) and (+) are shown in Figure 2. 
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Figure 2. Line forces due to the polarizations (X) and (+). 

  The total energy emitted per unit of time dE/dt  or "gravitational luminosity"  
LGW is given by[5,14]    

                                 LGW = dE/dt =  - (G/45c5) < (∂3Qαβ/∂t3)2 >                              (A.12), 

 where the brackets indicates a time average and are taken into account the effect of all 
components of the quadrupole tensor.  Note that the GW is a tensor function not a scalar 
function like an electromagnetic wave.  

(A.1)GW emitted by BHb.                                                 
 For a binary system (see Fig.1) composed by stars with masses m1 and m2

  
separated by a distance r one can show[14,19] that  

               Qxx = 3μr2[1 + cos(2ωt)]/2     and          Qyy = 3μr2[1- cos(2ωt)]/2              (A.13), 

 where  μ = m1m2/(m1 + m2)  and ω is the orbital angular frequency. In these 
conditions  one see that hαβ(t,x), using Eqs.(A.11) and (A.13), would be given by 

                      Ψαβ(t,x) = hαβ(t,x) = (2G/c2R)(∂2Qαβ/∂t2) ~  h cos(2ωt)                      (A.14),  

where h = 6μGr2/Rc2.  Showing that the GW frequency is ωg = 2ω.                         
 Using Eqs.(A.12) and (A.13) we obtain 

 LGW = (G/45c5) < (∂3Qαβ/∂t3)2 > = (G/45c5) [<(∂3Qxx/∂t3)2 > + [<(∂3Qyy/∂t3)2 > ] = 

                                                      = (32μ2G/5c5)r4ω6                                               (A.15).  

  As the energy of the GW in the radiation zone  is transported by a plane wave 
with amplitude h and rotation frequency ω one can show that[13,14] 

                                               h2 = (8πG/ω2c3) (LGW /4πR2)                                    (A.16). 

            As Kepler´s  law for a binary [1,5] says that ω2r3 = G(M1 + M2) and M1= M2 = M 
we get r = (2GM/ω2)1/3. Substituting this r value  in Eq.(A.16) we obtain h as a function 
of the orbital angular frequency ω (rad/s):[11,12] 

            h(ω) =  (4GM/Rc4√36)(2GM/ω2)2/3ω2 = (42/3/√36) [(GM)5/3/Rc4] ω2/3      (A.17). 
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 Recently [ 11-13]  gravitational waves have been detected, with frequencies                   
ω ~ 160 π rad/s. They have been emitted by a black hole binary (BHb). The BHb, that 
was distant R ~ 1.3 109 light years ~1.2 1025 m from the Earth had M ~ 20 solar masses. 
Using Eq.(A.17) and taking into account the BHb parameters given above we see that 

                                               h(ω)  ~ 10-23 ω2/3                                                        (A.18). 

 The  measured average amplitude < h > for frequencies  ω ~ 160 π rad/s  was 
found to be < h > ~10-21, in good agreement with the experimental results.  

 

Appendix B. Classical electromagnetic radiation.                                      
  According to classical Electrodynamics[2]  

                                      □A(x,t) = - μoJ(x,t)                                          (B.1), 

 where □ is the d´Alembertian operator □ =  ∂μ∂μ . The solution of (A.1)is given by[2] 

                      A(x,t) = μo∫ d3x´∫dt´[J(x´,t´)/|x - x´|] δ (t´+ |x - x´|/c - t)              (B.2).  

With the sinusoidal time dependence J(x,t) = J(x) exp(-iωt)  (A.1) becomes given by  

                           A(x,t) = μo∫ J(x´) exp(ik|x - x´|)/|x - x´| d3x´                             (B.3), 

that can be expanded in series taking into account that the fields are very far from the 
source, that is, r >> d  and that d << λ, where d is the dimension of the source and λ the 
wavelength of the emitted radiation.  The rate of the emitted electromagnetic radiation 
dE/dt can be calculated expanding A(x,t) using electric and magnetic multipoles. [2]                                    
 In vacuum (A.1) obeys the equation    

                                                       □A(x,t) = 0                                                     (B.4). 

The general solutions of the above equations for A is formed by superposing  transverse 
waves[2] of the field A(xμ). In second quantization context [4,21] planes waves A are 
written as (omitting details of normalization constant, wave polarization,...) where kμ = 
(k,iω/c), 

                                   A(xμ) = Σkω [akω exp(ikμxμ) + a*kω exp(-ikμxμ
 )]                   (B.5), 

 (B.1) Emitted electromagnetic energy per unitof time dE/dt.                                                                    
 If the emitted radiation is mainly due to the electric dipole D = ∫ x´ρe(x´) d3x´ we 
have [2] 

                                             dE/dt = (ck4/3) |D|2  = (ω4/3c3) |D|2                             (B.6),                            
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where ρe(x´) is the electric charge density and k =2π/λ = ω/c.                                            
 If the energy is mainly emitted by electric quadrupole Qαβ and by magnetic 
dipole m we can show that [2] 

                                                   dE/dt = (ck6/360)Σαβ |Qαβ|2                                    (B.7), 

where  Qαβ = ∫ρe(x´)(3x´αx´β - r´2δαβ) d3x´   and  m = ∫ x´X J(x´) d3x´.                      

(B.2)Larmor Acceleration Formula.                                                          
 According to the classical electrodynamics accelerated charges emit radiation 
and the dominant energy loss is from electric dipole which obeys the Larmor formula 
(in Gaussian units),[2,17]      

                                                    dE/dt = (2/3c3)|d2D/dt2|                                                           (B.8). 

 This formula can be used to estimate the classical lifetime of the Bohr atom.[17] 
For very large quantum numbers n, Bohr's correspondence principle (CP) demands that 
classical physics and quantum physics give the same answer, at least in average.  In 
these conditions as the energy levels are very close the radiate energy is estimated using 
the classical electrodynamics.[17] So, putting D = er it is assumed that the electron 
moves in circular orbits around the nucleus emits continuously radiating energy 
according to, 

                                                        dE/dt =  (2/3c3)e2a(t)2                                                        (B.9), 

 where a the electron acceleration, which is essentially the radial one ar = rω2. In this 
adiabatic approximation the electronic orbit remains nearly circular at all times whith   
ω ≈ constant. According to reference [17] the electron will fall to the origin, following a 
spiral motion, after a time  tfall  ~ 10-11 s. The observed lifetime of the 2p1/2 state of the 
hydrogen is ~10-9 s (see Appendix C). In quantum mechanics the ground state, however, 
"appears" to have infinite lifetime. The accelerated electron along a radius r(t) with a 
tangential speed vΘ(t) and angular speed ω = dΘ/dt = vΘ(t)/r emits a wave with 
frequency ω called synchrotron radiation.                                                                                                      
 Taking into account that |a| ~ ar = rω2 Eq.(B.9) becomes written as 

                                                    dE/dt  ≈  (2e2ω4/3c3) r(t)2                                                  (B.10).   

 

Appendix C. Quantum electromagnetic radiation.                                                 
 In Special Relativity (SR) [2,4] the generalized vector potential is defined by            
Aμ = (A, iAo) = (A, iφ).  A free particle with a mass m has a 4-momentum pμ = (p, iE) 
where E is the total energy  E = (m2c2 + p2c2)1/2 . The 4-momentum a charged particle 
submitted to an electromagnetic field   becomes given by pμ → pμ

 - (e/c) Aμ.  That is,     
E → E - eφ and p →  p - (e/c)A.                                                                                                                     
 The relativistic wave equation [4] for a charged spin zero particle submitted to an 
external electromagnetic field  is obtained through the transformation 

                                       pμ - (e/c) Aμ  →  - iħ ∂/∂xμ -  (e/c) Aμ                                              (C.1), 
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that is 

                                   { Σμ (- iħ ∂/∂xμ - (e/c) Aμ)2 + m2c2 }Ψ  = 0                          (C.2),                       
or 

                              (1/c2)[iħ ∂/∂t - eφ]2 Ψ  =  [(iħ grad  - (e/c)A)2 + m2c2 ]Ψ             (C.3). 

According to quantum mechanics[4] the interaction of a charged spinless particle with 
the electromagnetic radiation is given by the operator, putting p = -iħ grad, 

                        W(t) = -(e/mc)(A.p) + (e2/2mc2)A2                            (C.4),  

where the vector potential A is written  in the form of a plane wave with wave vector k 
and frequency  ω,  A(r,t) = Ao u cos[k.r - ωt], with u the unit vector determining the 
polarization of the radiation (direction of the electric field vector). With the perturbation 
theory to evaluate the transitions probabilities, in a first order approximation, we neglect 
the term (e2/2mc2)A2 since it is gives a small contribution, of the order of α = e2/hc 
~1/137.[4]  In this way we retain only the first term of (C.4),   

                                                    W(t) =  - (e/mc)(A.p)                                             (C.5). 

 The amplitude ao will be determined in such a way that there are an average N 
photons of energy ħω and polarization u in a volume V . So, from  

                                         E= - (1/c)∂A/∂t = Ao u (ω/c) sin[k.r - ωt]                           and 
from the condition  

                       Nħω/V = < E2(t)>/4π = (Ao
2ω2/4πc2) < sin2[k.r - ωt] > = Ao

2ω2/8πc2 

 we see that   Ao = 2c(2πħN/ωV)1/2.                                                                           
 Writing  W(t) = w exp(iωt) + w*exp(- iωt) where w = Ao exp(-ik.r)(u.p) the 
transition  probability per unit of time  for a transition from a (initial) state |b > to a 
(final)state |a > with the emission of a quantum ħω will be determined by the expression  

                                           Pab = (2π/ħ) | < a |w| b > |2 ρ(Efin)                                     (C.6), 

where the initial energy  Einit = final energy Efin or Ea = Eb + ħω and  ρ(Efin) = ρ(ħω) [4]  
is the density of final photon states dN/dε = ρ(ħω) = [Vω2/(2πc)3ħ]dΩ , remembering 
that for photons  ε = ħω and p = ε/c. The matrix element < a |w| b > is given by   

                                    < a |w| b > = - Ao < a | e - i k.r (u.p) | b >                                  (C.7), 

remembering that p = -iħ grad. Since the integration of matrix element is will be 
essentially over the region (r) of the size (a) of emitting system it is convenient to 
expand the exponential factor in a power series, 

                                     e - i k.r  = 1 - i (k.r) + [-i(k.r)]2/2! +... =                                  (C.8). 

(C.1) Dipole radiation.                                                                                                  
 When  ka = 2π/λ << 1, where λ is the wavelength of the emitted photon, it is 
enough to consider only of the first term of Eq.(C.8) obtaining:[4] 
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                                             < a |w| b > = - i ωab Ao(u.D)ab                                      (C.9),                              

where D = Σi qi ri is the electric dipole moment operator of the emitting system with 
discrete charges qi. One can show that  

                                              < a |w| b > = - i ωab Ao u.(Dab)                                   (C.10), 

 where the vector  Dab = < a |D |b > is called the electrical dipole moment of the  b → a  
transition. In this way, using (C.6)-(C.10) we obtain the probability per unit of time 
dPab

+  that a photon with polarization u and frequency ω = |ωab| = (Ea - Eb)/ħ is emitted 
within a solid angle dΩ , 

                                          (dPab
+ )dip

  = N (ω3/2πħc3) |u.(Dab)|2 dΩ                         (C.11). 

 The polarization u is perpendicular to the direction of propagation k. If we 
denote by θ the angle between k and the dipole moment of the transition Dab we have 
|u.(Dab)|2  = |Dab|2 sin2θ . Thus,   

                                           (dPab
+ )dip

 = N (ω3/2πħc3) |Dab|2 sin2θ dΩ                      (C.12). 

Integrating Eq.(C.12) with N =1[4] over all directions of the radiation we get the total 
transition probability per unit of time Pab involving the emission of one photon: 

                                                (Pab
+ )dip = (4ω3/3ħc3) |Dab|2                                      (C.13). 

To estimate the order of magnitude of Eq.(C.13) for atomic systems with linear 
dimension a we put D = er taking  |rab|  = a ≈ e2/ħω. Thus, (Pab

+)dip can be written as 

                                              (Pab
+ )dip ≈  (e2ω/ħc)(ωa/c)2   ≈  ω/(137)3, 

that for optical radiation (ω ~ 1015/s)  gives  (Pab )dip~109/s. The observed lifetime            
τ ~1/(Pab)dip of the 2p1/2 state of the hydrogen is τ ~10-9 s.[4]                                                               
 Consequently, energy emitted  per unit of time dE/dt will be given by (dEab )dip = 
ħω(Pab

+ )dip, that is,  

                                               (dE/dt)dip = (4ω4/3c3) |Dab|2                                       (C.14). 

In case of the Bohr atom with D = er (C.14) becomes written as 

                                                (dE/dt)dip  = (4e2ω4/3c3) |rab|2                                    (C.15).  

It becomes equal to Eq.(B.8) if the average energy (averaged over the time) emitted per 
unit of time is due to a dipole D(t) = er(t) = 2 (|Dab|2)1/2 cos(ωt) = 2e |rab| cos(ωt).   

(C.2)Quadrupole radiation.                                                                                                    
 If it is necessary to take into account the second term of the expansion (B.8) the 
matrix element  < a |w| b > given by Eq.(C.7)  will be   

        < a |w| b >  = -i Ao < b |(k.r´)(u.p´)| a >  = Ao (ħk/2)μω < b| r´(n.r´)| a >    (C.16),                                
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where ωab = ω, μ the electron mass and n = r´/r´. Eq.(C.16) would be responsible for 
electric quadrupole transitions involving  matrix elements of the products xy, xz and yz 
and dipole magnetic transitions of matrix elements of the angular momentum operators 
Lx, Ly and Lz. In quantum systems with spherically symmetric potential magnetic dipole 
transitions give no contributions to photons emission.[4] So, following the same 
procedure used for dipole radiation we can calculate the total emission probability per 
unit of time within the solid angle dΩ. The general  angular distribution of the 
quadrupole radiation is very complicated. [2,20,21]   As we only intend to obtain an order 
of magnitude of the quadrupole radiation  we put 

                                                                                                                                                                         
                          (Pab

+)Q ≈ (ω5/2πħc5)|Qab|2                                        (C.17), 

where, the quadrupole matrix element is represented by Qab.  So, the total energy per 
unit of time (dE/dt)Q emitted by the quadrupole is given by  

                                                (dE/dt)Q ≈ (ω6/2πc5)|Qab|2                                         (C.18). 

In classical electrodynamics we have[2] 

                                        (dE/dt)class ≈ (ck6/240)Qo
2  = (ω6/240c5) Qo

2                     (C.19). 

 Let us estimate  (Pab
+)Q, given by Eq.(C.17), for systems emitting optical 

frequencies ω ~ 1015/s  and with atomic dimensions a ~10-7 cm. Taking Qab ~ ea2 we 
verify that   

                                           (Pab
+)Q ≈ (ω5/2πħc5)|Qab|2 ~  105/s                                 (C.20), 

that is, (Pab
+)Q  ~ 10-4 (Pab

+ )dip. 

                   
(C.3)Multipole tensor operators Tℓm(θ,φ).                                                                              
 Since calculations of quadrupole and magnetic dipole transitions and of higher 
order terms of the expansion (B.8) are very intricate it is convenient to use a different 
approach to estimate these matrix elements. In this way are used the tensor multipole 
operators Tℓm(θ,φ) defined by [2,4,20,21] 

              Tℓm(r,θ,φ) = [4π /(2ℓ +1)]1/2 rℓ Yℓm(θ,φ) = [4π /(2ℓ +1)]1/2 rℓ |ℓm>            (C.21), 

where ℓ =1, 2,...correspond to dipole, quadrupole ,... and the angle θ is between k and r. 
 If the state functions are given by  unℓm(r,θ,φ) = Rnℓ (r) |ℓm > the transition 
probabilities per unit of time Pab will directly proportional to |aE(ℓ,m)|2 where the 
amplitudes  aE(ℓ,m) are given, for ka << 1, by[4] 

                             aE(ℓ,m) = - [4π/(2ℓ+1)!!](ℓ+1/ℓ)1/2 kℓ+2 Qℓm                                (C.22),  
where                                                                                                                                    

      Qℓm 
=   ∫dr rℓ+2 Ra (r) Rb (r) < ℓbmb|Yℓm

*(θ,φ)| ℓama >.     

The matrix element  < n´j´m´|Tk
q | n j m > according to the Wigner-Eckart Theorem 

(WET)[22] is given by < n´j´m´|Tk
q | n j m > = (jkmq|j´m´) (n´j´||Tk||nj), where 
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(jkmq|j´m´) ≠ 0 only when  m + q = m´ and |j - k| ≤  j´ ≤ j + k.                                            
 For dipole (ℓ=1)  using Eq.(C.18) the transition probabilities per unit of time Pab 
between  states  | a > and | b > are proportional to |Dab|2 where,  

                       |Dab| =  (4π /3)1/2 ∫ dr r3 Ra (r) Rb (r) < ℓbmb|Y10(θ,φ)| ℓama >             (C.23). 

Thus, following the WET the a → b transition is allowed only if we have:  

                                           ℓb  = ℓa  ± 1      and     mb = ma .                                    

This kind radiation is called electrical dipole radiation and is denoted by E1.           
 For electric quadrupole (ℓ=2) Pab is proportional to |Qab|2 where          

                           Qab 
=   ∫dr r4 Ra (r) Rb (r) < ℓbmb|Y2m

*(θ,φ)| ℓama >                         (C.24), 

showing that quadrupole transitions  a → b  are allowed only if   

                                            ℓb  = ℓa  ± 2   and    mb = ma + 2                                   (C.25).                             

This kind of radiation is called electric quadrupole radiation and is denoted by E2.                                      

(C.4)Second quantization approach.                                                        
 Basic ideas on the quantization of radiation can be seen in many books.  In 
vacuum, with the Lorentz gauge the electromagnetic field A(xμ ) is given by[4,21]       

div(A) = 0, ∂μ∂μ = □A = 0, μ =1,2,3,4, xμ = (x, ict) and Aμ = (A,iφ).                             
 The general solutions of the above equations for A is formed by superposing  
transverse waves[2,4] of the field A(xμ). In the second quantization context planes waves 
A are written as (omitting details of normalization constant, wave polarization,...)  

                              A(xμ) = Σkω [akω exp(ikμxμ
 + a*kω exp(-ikμxμ

 )]/√ω                   (C.26), 

where kμ = (k,iω/c) , akω and a*kω are the creation and annihilation photon operators, 
respectively.                 
 In this approach transition probabilities Pab  are now estimated using in Eq.(C.6) 
the field operator  A defined by Eq.(C.22). Taking into account transitions involving  
vacuum states and wavefunctions unℓm(r,θ,φ) = Rnℓ (r)|ℓm >  we get the same results 
obtained before without the second quantization  approach. The main difference now is 
that the electromagnetic radiation is composed by photons.  Selection rules obeyed in  
electrical dipole radiation (E1) show that photons must have spin 1.    

 

                                                                                                                                                                        
Appendix D. Comments on gravitation quantum field theory.                                          
 Classical electrodynamics, quantum theory and their connections are very well 
established. To introduce basis of a quantum field theory in GR, Weinberg[15] analyzed, 
for instance, the possibility to quantize the gravitational wave field hμν that in free obeys 

the equations (see Appendix A) □hρν = 0  and  ∂hρ
ν/∂xν = 0.  The general solutions of 

these equations are given by the superposition of transverse plane tensor waves hρν(x) 



 

19 

 

which propagates with the light velocity c and helicities μ = ± 2. This would be done in 
order to construct, similarly to the Electromagnetic field, a Lorentz invariant 
Hamiltonian in terms of creation and annihilation operators of gravitons. That is, the 
Hamiltonian would be built up of quantum fields hρν(x) [transverse plane waves] that in 
a second quantization framework would be given by[15] 

      hρν(x) = Σμ ∫d3k{a(k,μ) eρν(k,μ) exp(ikλxλ) + a+(k,μ) e*ρν(k,μ) exp(-ikλxλ)} (D.1), 

where eρν(k,μ)  is the polarization tensor for a graviton of momentum hk and helicity     
μ = ± 2, and  a(k,μ) and a+(k,μ)  are the corresponding annihilation and creation 
operators, characterized by the commutation relations  

                                       [a(k,μ) , a+(k´,μ´)] = δ3(k - k´) δμ´μ                                                                           
                                 (D.2) 

                                   [a(k,μ) , a(k´,μ´)] =  [a+(k,μ) , a+(k´,μ´)] =  0     

 The difficult in this approach comes from the fact that the operator Eq.(4.1) is 
not a "Lorentz tensor"(which is invariant by Lorentz group). Remembering that τμν is a 
Lorentz tensor if it transforms as τ´μν = Λμ

ρ Λν
σ τρσ

 , where Λ is the Lorentz matrix.[15]   

As shown by Weinberg[15] in Section (10.2) a "true" plane wave tensor would have 
helicities  0,  ±1 as well ± 2. This is in contradiction with Eq.(D.1) where there are only 
helicities  μ = ± 2. Of course, we can start with a true tensor and then subject eμν to a 
gauge transformation that will eliminate the unphysical helicities  0 and ±1, but once we 
choose a gauge in this way, hρν(x) is no longer a Lorentz tensor. This gauge condition is 
not Lorentz invariant. Many other attempts are mentioned by Weinberg..[15] According 
to him  at present does not exist any complete and self-consistent  quantum field theory 
of gravitation . In his book he presents to the reader some taste of what a quantum 
theory of gravitation would be like.  Instead of using Lagragian or Hamiltonian  
formalisms  he adopts a different way. In this way he proposed, for instance, that for a 
general system the emission rate dΓGW of a gravitational wave ("gravitons") with 
frequency ω in a solid angle dΩ  is given by 

                           dΓGW = (Gω/ħπ)[Tλν*(k,ω) Tλν(k,ω) - (1/2) |Tλ
λ(k,ω)|2] dΩ            (D.3), 

where Tλν(k,ω) is the energy-momentum tensor. Using Eq.(D.1) one can show[15] that in 
the quadrupole approximation the total power emitted at a single discrete frequency ω is 
given by 

                                  ΓGW  = (2Gω6/5)[D*ij(ω)Dij(ω) - (1/2)|Dij(ω)|2]                        (D.4),  

where Dij(ω) =  ∫ xixjToo(x,ω) d3x   which is the quadrupole matrix operator and Too(x,ω) 
the energy density operator written as ρ. In this way, ΓGW given by Eq.(D.4) could 
interpreted as matrix element of ρ between final and initial states ψa and ψb. That is, in a 
quantum transition  a → b  the total rate (ΓGW)ab would be given by  

                         (ΓGW)ab  = (2Gω5/5ħ)[D*ij(a →b)Dij(a →b) - (1/3)|Dij(a →b)|2]       (D.5),  
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where Dij(a →b) ≡ ∫ψb*(x) ρ xi xj ψa(x) d3x  which is a quadrupole matrix element. He 
applied this formula to calculate  GW emitted by 3d → 1s transition of hydrogen and 
concluded that there is no chance to be observe the event. Probably, he ought to have 
applied his formula to calculate GW emitted by mBBH. 
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